Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Alcoholic and Non-Alcoholic Liver Diseases: Promising Molecular Drug Targets and their Clinical Development

Author(s): Komal Thapa, Ajmer Singh Grewal*, Neha Kanojia, Lata Rani, Neelam Sharma and Sukhbir Singh

Volume 18, Issue 3, 2021

Published on: 21 January, 2020

Page: [333 - 353] Pages: 21

DOI: 10.2174/1570163817666200121143959

Price: $65

Abstract

Alcoholic and non-alcoholic fatty liver diseases have become a serious concern worldwide. Both these liver diseases have an identical pathology, starting from simple steatosis to cirrhosis and, ultimately to hepatocellular carcinoma. Treatment options for alcoholic liver disease (ALD) are still the same as they were 50 years ago which include corticosteroids, pentoxifylline, antioxidants, nutritional support and abstinence; and for non-alcoholic fatty liver disease (NAFLD), weight loss, insulin sensitizers, lipid-lowering agents and anti-oxidants are the only treatment options. Despite broad research in understanding the disease pathophysiology, limited treatments are available for clinical use. Some therapeutic strategies based on targeting a specific molecule have been developed to lessen the consequences of disease and are under clinical investigation. Therefore, focus on multiple molecular targets will help develop an efficient therapeutic strategy. This review comprises a brief overview of the pathogenesis of ALD and NAFLD; recent molecular drug targets explored for ALD and NAFLD that may prove to be effective for multiple therapeutic regimens and also the clinical status of these promising drug targets for liver diseases.

Keywords: Alcoholic liver disease, apoptosis signal‐regulating kinase 1, farnesoid X receptor, Micro RNAs, fibroblast growth factors, non-alcoholic fatty liver disease.

[1]
Rehm J, Gmel G, Sempos CT, Trevisan M. Alcohol-related morbidity and mortality. Alcohol Res Health 2003; 27(1): 39-51.
[PMID: 15301399]
[2]
Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014; 28(4): 637-53.
[http://dx.doi.org/10.1016/j.bpg.2014.07.008] [PMID: 25194181]
[3]
Younossi Z, Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology 2016; 150(8): 1778-85.
[http://dx.doi.org/10.1053/j.gastro.2016.03.005] [PMID: 26980624]
[4]
Diehl AM. Liver disease in alcohol abusers: Clinical perspective. Alcohol 2002; 27(1): 7-11.
[http://dx.doi.org/10.1016/S0741-8329(02)00204-5] [PMID: 12062630]
[5]
Potts JR, Verma S. Alcoholic hepatitis: Diagnosis and management in 2012. Expert Rev Gastroenterol Hepatol 2012; 6(6): 695-710.
[http://dx.doi.org/10.1586/egh.12.57] [PMID: 23237255]
[6]
Torres DM, Williams CD, Harrison SA. Features, diagnosis, and treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2012; 10(8): 837-58.
[http://dx.doi.org/10.1016/j.cgh.2012.03.011] [PMID: 22446927]
[7]
Lazaridis N, Tsochatzis E. Current and future treatment options in non-alcoholic steatohepatitis (NASH). Expert Rev Gastroenterol Hepatol 2017; 11(4): 357-69.
[http://dx.doi.org/10.1080/17474124.2017.1293523] [PMID: 28276821]
[8]
Gao B, Bataller R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 2011; 141(5): 1572-85.
[http://dx.doi.org/10.1053/j.gastro.2011.09.002] [PMID: 21920463]
[9]
Kong LZ, Chandimali N, Han YH, et al. Pathogenesis, early diagnosis, and therapeutic management of alcoholic liver disease. Int J Mol Sci 2019; 20(11)E2712
[http://dx.doi.org/10.3390/ijms20112712] [PMID: 31159489]
[10]
Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM 2010; 103(2): 71-83.
[http://dx.doi.org/10.1093/qjmed/hcp158] [PMID: 19914930]
[11]
Eriksson CJ, Fukunaga T, Sarkola T, et al. Functional relevance of human adh polymorphism. Alcohol Clin Exp Res 2001; 25(5)(Suppl ISBRA): 157S-63S.
[http://dx.doi.org/10.1111/j.1530-0277.2001.tb02391.x] [PMID: 11391066]
[12]
Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res 2017; 38(2): 147-61.
[PMID: 28988570]
[13]
Bosron WF, Ehrig T, Li TK. Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis 1993; 13(2): 126-35.
[http://dx.doi.org/10.1055/s-2007-1007344] [PMID: 8337601]
[14]
Cederbaum AI. Alcohol metabolism. Clin Liver Dis 2012; 16(4): 667-85.
[http://dx.doi.org/10.1016/j.cld.2012.08.002] [PMID: 23101976]
[15]
Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 2010; 5: 145-71.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102132] [PMID: 20078219]
[16]
Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 2016; 150(8): 1769-77.
[http://dx.doi.org/10.1053/j.gastro.2016.02.066] [PMID: 26928243]
[17]
Bugianesi E, Gastaldelli A, Vanni E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 2005; 48(4): 634-42.
[http://dx.doi.org/10.1007/s00125-005-1682-x] [PMID: 15747110]
[18]
Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146(3): 726-35.
[http://dx.doi.org/10.1053/j.gastro.2013.11.049] [PMID: 24316260]
[19]
Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis 2008; 28(4): 370-9.
[http://dx.doi.org/10.1055/s-0028-1091981] [PMID: 18956293]
[20]
Kitamoto T, Kitamoto A, Yoneda M, et al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet 2013; 132(7): 783-92.
[http://dx.doi.org/10.1007/s00439-013-1294-3] [PMID: 23535911]
[21]
Sapio L, Gallo M, Illiano M, et al. The natural cAMP elevating compound Forskolin in Cancer therapy: Is it time? J Cell Physiol 2017; 232(5): 922-7.
[http://dx.doi.org/10.1002/jcp.25650] [PMID: 27739063]
[22]
Huerta M, Urzúa Z, Trujillo X, González-Sánchez R, Trujillo-Hernández B. Forskolin compared with beclomethasone for prevention of asthma attacks: A single-blind clinical trial. J Int Med Res 2010; 38(2): 661-8.
[http://dx.doi.org/10.1177/147323001003800229] [PMID: 20515580]
[23]
Vetrugno M, Uva MG, Russo V, et al. Oral administration of forskolin and rutin contributes to intraocular pressure control in primary open angle glaucoma patients under maximum tolerated medical therapy. J Ocul Pharmacol Ther 2012; 28(5): 536-41.
[http://dx.doi.org/10.1089/jop.2012.0021] [PMID: 22731245]
[24]
Lu D, Aroonsakool N, Yokoyama U, Patel HH, Insel PA. Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: A novel therapeutic approach for cardiac fibrosis. Mol Pharmacol 2013; 84(6): 787-93.
[http://dx.doi.org/10.1124/mol.113.087742] [PMID: 24085841]
[25]
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. Liver Res 2018; 2(4): 161-72.
[http://dx.doi.org/10.1016/j.livres.2018.11.002] [PMID: 31214376]
[26]
Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH. ACG clinical guideline: alcoholic liver disease. Am J Gastroenterol 2018; 113(2): 175-94.
[http://dx.doi.org/10.1038/ajg.2017.469] [PMID: 29336434]
[27]
Singal AK, Shah VH. Current trials and novel therapeutic targets for alcoholic hepatitis. J Hepatol 2019; 70(2): 305-13.
[http://dx.doi.org/10.1016/j.jhep.2018.10.026] [PMID: 30658731]
[28]
An L, Wang X, Cederbaum AI. Cytokines in alcoholic liver disease. Arch Toxicol 2012; 86(9): 1337-48.
[http://dx.doi.org/10.1007/s00204-012-0814-6] [PMID: 22367091]
[29]
Kawaratani H, Tsujimoto T, Douhara A, et al. The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm 2013.2013495156
[http://dx.doi.org/10.1155/2013/495156] [PMID: 24385684]
[30]
Yin M, Wheeler MD, Kono H, et al. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice. Gastroenterology 1999; 117(4): 942-52.
[http://dx.doi.org/10.1016/S0016-5085(99)70354-9] [PMID: 10500078]
[31]
Tilg H, Jalan R, Kaser A, et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J Hepatol 2003; 38(4): 419-25.
[http://dx.doi.org/10.1016/S0168-8278(02)00442-7] [PMID: 12663232]
[32]
Maddrey WC, Boitnott JK, Bedine MS, Weber FL Jr, Mezey E, White RI Jr. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 1978; 75(2): 193-9.
[http://dx.doi.org/10.1016/0016-5085(78)90401-8] [PMID: 352788]
[33]
Louvet A, Mathurin P. Alcoholic liver disease: Mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12(4): 231-42.
[http://dx.doi.org/10.1038/nrgastro.2015.35] [PMID: 25782093]
[34]
Orman ES, Odena G, Bataller R. Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol 2013; 28(S1)(Suppl. 1): 77-84.
[http://dx.doi.org/10.1111/jgh.12030] [PMID: 23855300]
[35]
Sougioultzis S, Dalakas E, Hayes PC, Plevris JN. Alcoholic hepatitis: From pathogenesis to treatment. Curr Med Res Opin 2005; 21(9): 1337-46.
[http://dx.doi.org/10.1185/030079905X56493] [PMID: 16197651]
[36]
Stickel F, Seitz HK. Update on the management of alcoholic steatohepatitis. J Gastrointestin Liver Dis 2013; 22(2): 189-97.
[PMID: 23799218]
[37]
Majeed MB, Agrawal R, Attar BM, Abu Omar Y, Gandhi SR. Safety and efficacy of infliximab in severe alcoholic hepatitis: A systematic review. Cureus 2019; 11(7)e5082
[http://dx.doi.org/10.7759/cureus.5082] [PMID: 31516791]
[38]
Blendis L, Dotan I. Anti-TNF therapy for severe acute alcoholic hepatitis: what went wrong? Gastroenterology 2004; 127(5): 1637-9.
[http://dx.doi.org/10.1053/j.gastro.2004.09.089] [PMID: 15521033]
[39]
Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: A control switch that regulates liver function. FASEB J 2002; 16(1): 15-26.
[http://dx.doi.org/10.1096/fj.01-0401rev] [PMID: 11772932]
[40]
Purohit V, Abdelmalek MF, Barve S, et al. Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: Summary of a symposium. Am J Clin Nutr 2007; 86(1): 14-24.
[http://dx.doi.org/10.1093/ajcn/86.1.14] [PMID: 17616758]
[41]
Lieber CS, Casini A, DeCarli LM, et al. S-adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology 1990; 11(2): 165-72.
[http://dx.doi.org/10.1002/hep.1840110203] [PMID: 2307395]
[42]
Song Z, Zhou Z, Chen T, et al. S-adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. J Nutr Biochem 2003; 14(10): 591-7.
[http://dx.doi.org/10.1016/S0955-2863(03)00116-5] [PMID: 14559110]
[43]
Barak AJ, Beckenhauer HC, Mailliard ME, Kharbanda KK, Tuma DJ. Betaine lowers elevated s-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats. J Nutr 2003; 133(9): 2845-8.
[http://dx.doi.org/10.1093/jn/133.9.2845] [PMID: 12949375]
[44]
Dey A, Cederbaum AI. Alcohol and oxidative liver injury. Hepatology 2006; 43(2)(Suppl. 1): S63-74.
[http://dx.doi.org/10.1002/hep.20957] [PMID: 16447273]
[45]
Karaa A, Thompson KJ, McKillop IH, Clemens MG, Schrum LW. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model. Shock 2008; 30(2): 197-205.
[PMID: 18180699]
[46]
Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ. Treatment of alcoholic liver disease. Therap Adv Gastroenterol 2011; 4(1): 63-81.
[http://dx.doi.org/10.1177/1756283X10378925] [PMID: 21317995]
[47]
Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 2003; 124(5): 1488-99.
[http://dx.doi.org/10.1016/S0016-5085(03)00276-2] [PMID: 12730887]
[48]
Kharbanda KK, Todero SL, King AL, et al. Betaine treatment attenuates chronic ethanol-induced hepatic steatosis and alterations to the mitochondrial respiratory chain proteome. Int J Hepatol 2012.2012962183
[http://dx.doi.org/10.1155/2012/962183] [PMID: 22187660]
[49]
Neuman MG. Cytokines--central factors in alcoholic liver disease. Alcohol Res Health 2003; 27(4): 307-16.
[PMID: 15540802]
[50]
El-Assal O, Hong F, Kim WH, Radaeva S, Gao B. IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver. Cell Mol Immunol 2004; 1(3): 205-11.
[PMID: 16219169]
[51]
Ki SH, Park O, Zheng M, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3. Hepatology 2010; 52(4): 1291-300.
[http://dx.doi.org/10.1002/hep.23837] [PMID: 20842630]
[52]
Kong X, Feng D, Mathews S, Gao B. Hepatoprotective and anti-fibrotic functions of interleukin-22: Therapeutic potential for the treatment of alcoholic liver disease. J Gastroenterol Hepatol 2013; 28(Suppl. 1): 56-60.
[http://dx.doi.org/10.1111/jgh.12032] [PMID: 23855297]
[53]
Dugum M, McCullough A. Diagnosis and management of alcoholic liver disease. J Clin Transl Hepatol 2015; 3(2): 109-16.
[http://dx.doi.org/10.14218/JCTH.2015.00008] [PMID: 26356792]
[54]
Vergis N, Atkinson SR, Thursz MR. The future of therapy for alcoholic hepatitis - Beyond corticosteroids. J Hepatol 2019; 70(4): 785-7.
[http://dx.doi.org/10.1016/j.jhep.2019.01.016] [PMID: 30791978]
[55]
Chang B, Xu MJ, Zhou Z, et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology 2015; 62(4): 1070-85.
[http://dx.doi.org/10.1002/hep.27921] [PMID: 26033752]
[56]
Wieser V, Adolph TE, Enrich B, et al. Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors. Gut 2017; 66(5): 930-8.
[http://dx.doi.org/10.1136/gutjnl-2015-310344] [PMID: 26858343]
[57]
Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci 2002; 7(2): d1899-914.
[http://dx.doi.org/10.2741/A887] [PMID: 12161342]
[58]
Lefebvre E, Moyle G, Reshef R, et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 2016; 11(6)e0158156
[http://dx.doi.org/10.1371/journal.pone.0158156] [PMID: 27347680]
[59]
Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998; 21(12): 521-8.
[http://dx.doi.org/10.1016/S0166-2236(98)01283-1] [PMID: 9881850]
[60]
Ahmad R, Koole M, Evens N, et al. Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol 2013; 15(4): 384-90.
[http://dx.doi.org/10.1007/s11307-013-0626-y] [PMID: 23508466]
[61]
Mallat A, Teixeira-Clerc F, Lotersztajn S. Cannabinoid signaling and liver therapeutics. J Hepatol 2013; 59(4): 891-6.
[http://dx.doi.org/10.1016/j.jhep.2013.03.032] [PMID: 23567085]
[62]
Lotersztajn S, Teixeira-Clerc F, Julien B, et al. CB2 receptors as new therapeutic targets for liver diseases. Br J Pharmacol 2008; 153(2): 286-9.
[http://dx.doi.org/10.1038/sj.bjp.0707511] [PMID: 17952109]
[63]
Giannone FA, Baldassarre M, Domenicali M, et al. Reversal of liver fibrosis by the antagonism of endocannabinoid CB1 receptor in a rat model of CCl(4)-induced advanced cirrhosis. Lab Invest 2012; 92(3): 384-95.
[http://dx.doi.org/10.1038/labinvest.2011.191] [PMID: 22184091]
[64]
Louvet A, Teixeira-Clerc F, Chobert MN, et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 2011; 54(4): 1217-26.
[http://dx.doi.org/10.1002/hep.24524] [PMID: 21735467]
[65]
Pascual D, Goicoechea C, Suardíaz M, Martín MI. A cannabinoid agonist, WIN 55,212-2, reduces neuropathic nociception induced by paclitaxel in rats. Pain 2005; 118(1-2): 23-34.
[http://dx.doi.org/10.1016/j.pain.2005.07.008] [PMID: 16213089]
[66]
De Ternay J, Naassila M, Nourredine M, et al. Therapeutic prospects of cannabidiol for alcohol use disorder and alcohol-related damages on the liver and the brain. Front Pharmacol 2019; 10: 627.
[http://dx.doi.org/10.3389/fphar.2019.00627] [PMID: 31214036]
[67]
Basavarajappa BS, Joshi V, Shivakumar M, Subbanna S. Distinct functions of endogenous cannabinoid system in alcohol abuse disorders. Br J Pharmacol 2019; 176(17): 3085-109.
[http://dx.doi.org/10.1111/bph.14780] [PMID: 31265740]
[68]
Turna J, Syan SK, Frey BN, et al. Cannabidiol as a novel candidate alcohol use disorder pharmacotherapy: a systematic review. Alcohol Clin Exp Res 2019; 43(4): 550-63.
[http://dx.doi.org/10.1111/acer.13964] [PMID: 30698831]
[69]
Seth D, Haber PS, Syn WK, Diehl AM, Day CP. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol 2011; 26(7): 1089-105.
[http://dx.doi.org/10.1111/j.1440-1746.2011.06756.x] [PMID: 21545524]
[70]
Seth D, Duly A, Kuo PC, McCaughan GW, Haber PS. Osteopontin is an important mediator of alcoholic liver disease via hepatic stellate cell activation. World J Gastroenterol 2014; 20(36): 13088-104.
[http://dx.doi.org/10.3748/wjg.v20.i36.13088] [PMID: 25278703]
[71]
Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014; 20(36): 12908-33.
[http://dx.doi.org/10.3748/wjg.v20.i36.12908] [PMID: 25278688]
[72]
Nan YM, Kong LB, Ren WG, et al. Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol mediated liver fibrosis in mice. Lipids Health Dis 2013; 12: 11.
[http://dx.doi.org/10.1186/1476-511X-12-11] [PMID: 23388073]
[73]
George J, Fiel MI, Nieto N. Carbon tetrachloride-induced liver injury and fibrosis correlates with osteopontin expression in mice. Hepatology 2010; 52(S1): 453.
[74]
Apte UM, Banerjee A, McRee R, Wellberg E, Ramaiah SK. Role of osteopontin in hepatic neutrophil infiltration during alcoholic steatohepatitis. Toxicol Appl Pharmacol 2005; 207(1): 25-38.
[http://dx.doi.org/10.1016/j.taap.2004.12.018] [PMID: 15885730]
[75]
Wen Y, Jeong S, Xia Q, Kong X. Role of osteopontin in liver diseases. Int J Biol Sci 2016; 12(9): 1121-8.
[http://dx.doi.org/10.7150/ijbs.16445] [PMID: 27570486]
[76]
Ge X, Leung TM, Arriazu E, et al. Osteopontin binding to lipopolysaccharide lowers tumor necrosis factor-α and prevents early alcohol-induced liver injury in mice. Hepatology 2014; 59(4): 1600-16.
[http://dx.doi.org/10.1002/hep.26931] [PMID: 24214181]
[77]
Ge X, Lu Y, Leung TM, Sørensen ES, Nieto N. Milk osteopontin, a nutritional approach to prevent alcohol-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2013; 304(10): G929-39.
[http://dx.doi.org/10.1152/ajpgi.00014.2013] [PMID: 23518682]
[78]
Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematology (Am Soc Hematol Educ Program) 2006; 2006: 29-35, 507.
[http://dx.doi.org/10.1182/asheducation-2006.1.29] [PMID: 17124036]
[79]
Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012; 1823(9): 1434-43.
[http://dx.doi.org/10.1016/j.bbamcr.2012.01.014] [PMID: 22306005]
[80]
Roy CN, Andrews NC. Anemia of inflammation: The hepcidin link. Curr Opin Hematol 2005; 12(2): 107-11.
[http://dx.doi.org/10.1097/00062752-200503000-00001] [PMID: 15725899]
[81]
Xiong S, She H, Sung CK, Tsukamoto H. Iron-dependent activation of NF-kappaB in Kupffer cells: A priming mechanism for alcoholic liver disease. Alcohol 2003; 30(2): 107-13.
[http://dx.doi.org/10.1016/S0741-8329(03)00100-9] [PMID: 12957294]
[82]
Bridle K, Cheung TK, Murphy T, et al. Hepcidin is down-regulated in alcoholic liver injury: Implications for the pathogenesis of alcoholic liver disease. Alcohol Clin Exp Res 2006; 30(1): 106-12.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00002.x] [PMID: 16433737]
[83]
Ohtake T, Saito H, Hosoki Y, et al. Hepcidin is down-regulated in alcohol loading. Alcohol Clin Exp Res 2007; 31(1)(Suppl.): S2-8.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00279.x] [PMID: 17331161]
[84]
Harrison-Findik DD, Lu S, Zmijewski EM, Jones J, Zimmerman MC. Effect of alcohol exposure on hepatic superoxide generation and hepcidin expression. World J Biol Chem 2013; 4(4): 119-30.
[http://dx.doi.org/10.4331/wjbc.v4.i4.119] [PMID: 24340135]
[85]
Heritage ML, Murphy TL, Bridle KR, Anderson GJ, Crawford DH, Fletcher LM. Hepcidin regulation in wild-type and Hfe knockout mice in response to alcohol consumption: evidence for an alcohol-induced hypoxic response. Alcohol Clin Exp Res 2009; 33(8): 1391-400.
[http://dx.doi.org/10.1111/j.1530-0277.2009.00969.x] [PMID: 19426170]
[86]
Guo Xiaoqiang, Li Wenjie, Xin Qiliang, et al. Vitamin C protective role for alcoholic liver disease in mice through regulating iron metabolism. Toxicol Ind Health 2011; 27(4): 341-8.
[http://dx.doi.org/10.1177/0748233710387007] [PMID: 21078691]
[87]
Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological targeting of the hepcidin/ferroportin axis. Front Pharmacol 2016; 7: 160.
[http://dx.doi.org/10.3389/fphar.2016.00160] [PMID: 27445804]
[88]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[89]
He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447(7148): 1130-4.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
[90]
Dolganiuc A, Petrasek J, Kodys K, et al. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 2009; 33(10): 1704-10.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01007.x] [PMID: 19572984]
[91]
Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNFalpha) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 2011; 286(2): 1436-44.
[http://dx.doi.org/10.1074/jbc.M110.145870] [PMID: 21062749]
[92]
Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem 2012; 287(13): 9817-26.
[http://dx.doi.org/10.1074/jbc.M111.333534] [PMID: 22308024]
[93]
Dippold RP, Vadigepalli R, Gonye GE, Patra B, Hoek JB. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res 2013; 37(Suppl. 1): E59-69.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01852.x] [PMID: 22823254]
[94]
Dong X, Liu H, Chen F, Li D, Zhao Y. MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcohol Clin Exp Res 2014; 38(1): 68-77.
[http://dx.doi.org/10.1111/acer.12209] [PMID: 23905773]
[95]
Schueller F, Roy S, Vucur M, Trautwein C, Luedde T, Roderburg C. The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int J Mol Sci 2018; 19(1)E261
[http://dx.doi.org/10.3390/ijms19010261] [PMID: 29337905]
[96]
Torres JL, Novo-Veleiro I, Manzanedo L, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24(36): 4104-18.
[http://dx.doi.org/10.3748/wjg.v24.i36.4104] [PMID: 30271077]
[97]
Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res 2015; 39(5): 763-75.
[http://dx.doi.org/10.1111/acer.12704] [PMID: 25872593]
[98]
Betrapally NS, Gillevet PM, Bajaj JS. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology 2016; 150(8): 1745-1755.e3.
[http://dx.doi.org/10.1053/j.gastro.2016.02.073] [PMID: 26948887]
[99]
Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6(3): 517-26.
[http://dx.doi.org/10.1016/S1097-2765(00)00051-4] [PMID: 11030332]
[100]
Kim I, Ahn SH, Inagaki T, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48(12): 2664-72.
[http://dx.doi.org/10.1194/jlr.M700330-JLR200] [PMID: 17720959]
[101]
Cicione C, Degirolamo C, Moschetta A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 2012; 56(6): 2404-11.
[http://dx.doi.org/10.1002/hep.25929] [PMID: 22753116]
[102]
Wu W, Zhu B, Peng X, Zhou M, Jia D, Gu J. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem Biophys Res Commun 2014; 443(1): 68-73.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.057] [PMID: 24269813]
[103]
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5(2): 158-67.
[http://dx.doi.org/10.1016/j.apsb.2014.12.011] [PMID: 26579442]
[104]
Lu C, Zhang F, Xu W, et al. Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes. IUBMB Life 2015; 67(8): 645-58.
[http://dx.doi.org/10.1002/iub.1409] [PMID: 26305715]
[105]
Peeraphatdit TB, Simonetto DA, Shah VH. Exploring new treatment paradigms for alcoholic hepatitis by extrapolating from NASH and cholestasis. J Hepatol 2018; 69(2): 275-7.
[http://dx.doi.org/10.1016/j.jhep.2018.05.012] [PMID: 29792896]
[106]
McClain CJ, Su LC. Zinc deficiency in the alcoholic: a review. Alcohol Clin Exp Res 1983; 7(1): 5-10.
[http://dx.doi.org/10.1111/j.1530-0277.1983.tb05402.x] [PMID: 6342450]
[107]
Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol 2012; 86(4): 521-34.
[http://dx.doi.org/10.1007/s00204-011-0775-1] [PMID: 22071549]
[108]
Mohammad MK, Zhou Z, Cave M, Barve A, McClain CJ. Zinc and liver disease. Nutr Clin Pract 2012; 27(1): 8-20.
[http://dx.doi.org/10.1177/0884533611433534] [PMID: 22307488]
[109]
Chai F, Truong-Tran AQ, Ho LH, Zalewski PD. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 1999; 77(3): 272-8.
[http://dx.doi.org/10.1046/j.1440-1711.1999.00825.x] [PMID: 10361260]
[110]
Kang X, Zhong W, Liu J, et al. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4α and peroxisome proliferator-activated receptor-α. Hepatology 2009; 50(4): 1241-50.
[http://dx.doi.org/10.1002/hep.23090] [PMID: 19637192]
[111]
Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol Commun 2017; 1(10): 1024-42.
[http://dx.doi.org/10.1002/hep4.1108] [PMID: 29404440]
[112]
Zhou Z, Liu J, Song Z, McClain CJ, Kang YJ. Zinc supplementation inhibits hepatic apoptosis in mice subjected to a long-term ethanol exposure. Exp Biol Med (Maywood) 2008; 233(5): 540-8.
[http://dx.doi.org/10.3181/0710-RM-265] [PMID: 18375824]
[113]
Liuzzi JP, Narayanan V, Doan H, Yoo C. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication. Biometals 2018; 31(2): 217-32.
[http://dx.doi.org/10.1007/s10534-018-0077-7] [PMID: 29392448]
[114]
Mehal W, To U. New approaches for fibrosis regression in alcoholic cirrhosis. Hepatol Int 2016; 10(5): 773-8.
[http://dx.doi.org/10.1007/s12072-016-9752-3] [PMID: 27460408]
[115]
Schug TT, Li X. Sirtuin 1 in lipid metabolism and obesity. Ann Med 2011; 43(3): 198-211.
[http://dx.doi.org/10.3109/07853890.2010.547211] [PMID: 21345154]
[116]
Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 2014; 25(3): 138-45.
[http://dx.doi.org/10.1016/j.tem.2013.12.001] [PMID: 24388149]
[117]
Wang S, Moustaid-Moussa N, Chen L, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25(1): 1-18.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.001] [PMID: 24314860]
[118]
Kitada M, Kume S, Kanasaki K, Takeda-Watanabe A, Koya D. Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets 2013; 14(6): 622-36.
[http://dx.doi.org/10.2174/1389450111314060002] [PMID: 23445543]
[119]
Revollo JR, Li X. The ways and means that fine tune Sirt1 activity. Trends Biochem Sci 2013; 38(3): 160-7.
[http://dx.doi.org/10.1016/j.tibs.2012.12.004] [PMID: 23394938]
[120]
You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004; 127(6): 1798-808.
[http://dx.doi.org/10.1053/j.gastro.2004.09.049] [PMID: 15578517]
[121]
Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 2008; 295(4): G833-42.
[http://dx.doi.org/10.1152/ajpgi.90358.2008] [PMID: 18755807]
[122]
Everitt H, Hu M, Ajmo JM, et al. Ethanol administration exacerbates the abnormalities in hepatic lipid oxidation in genetically obese mice. Am J Physiol Gastrointest Liver Physiol 2013; 304(1): G38-47.
[http://dx.doi.org/10.1152/ajpgi.00309.2012] [PMID: 23139221]
[123]
You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008; 294(4): G892-8.
[http://dx.doi.org/10.1152/ajpgi.00575.2007] [PMID: 18239056]
[124]
Ponugoti B, Kim DH, Xiao Z, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010; 285(44): 33959-70.
[http://dx.doi.org/10.1074/jbc.M110.122978] [PMID: 20817729]
[125]
Walker AK, Yang F, Jiang K, et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 2010; 24(13): 1403-17.
[http://dx.doi.org/10.1101/gad.1901210] [PMID: 20595232]
[126]
Lieber CS, Leo MA, Wang X, Decarli LM. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function. Biochem Biophys Res Commun 2008; 373(2): 246-52.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.006] [PMID: 18555008]
[127]
Liang X, Hu M, Rogers CQ, Shen Z, You M. Role of SIRT1-FoxO1 signaling in dietary saturated fat-dependent upregulation of liver adiponectin receptor 2 in ethanol-administered mice. Antioxid Redox Signal 2011; 15(2): 425-35.
[http://dx.doi.org/10.1089/ars.2010.3780] [PMID: 21194380]
[128]
Shen Z, Ajmo JM, Rogers CQ, et al. Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines. Am J Physiol Gastrointest Liver Physiol 2009; 296(5): G1047-53.
[http://dx.doi.org/10.1152/ajpgi.00016.2009] [PMID: 19299582]
[129]
Yin H, Hu M, Liang X, et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 2014; 146(3): 801-11.
[http://dx.doi.org/10.1053/j.gastro.2013.11.008] [PMID: 24262277]
[130]
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP pathway in glucose and lipid metabolism. Handb Exp Pharmacol 2016; 233: 29-49.
[http://dx.doi.org/10.1007/164_2015_32] [PMID: 26721678]
[131]
Sutherland EW, Robison GA. The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes 1969; 18(12): 797-819.
[http://dx.doi.org/10.2337/diab.18.12.797] [PMID: 4311899]
[132]
Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 2012; 44(1): 33-45.
[http://dx.doi.org/10.1016/j.biocel.2011.10.001] [PMID: 22004992]
[133]
Lent BA, Kim KH. Phosphorylation and activation of acetyl-coenzyme A Carboxylase kinase by the catalytic subunit of cyclic AMP-dependent protein kinase. Arch Biochem Biophys 1983; 225(2): 972-8.
[http://dx.doi.org/10.1016/0003-9861(83)90113-3] [PMID: 6312899]
[134]
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49: 105-15.
[http://dx.doi.org/10.1016/j.cellsig.2018.06.005] [PMID: 29902522]
[135]
Wu C, Rajagopalan S. Phosphodiesterase-4 inhibition as a therapeutic strategy for metabolic disorders. Obes Rev 2016; 17(5): 429-41.
[http://dx.doi.org/10.1111/obr.12385] [PMID: 26997580]
[136]
Avila DV, Barker DF, Zhang J, McClain CJ, Barve S, Gobejishvili L. Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis. J Pathol 2016; 240(1): 96-107.
[http://dx.doi.org/10.1002/path.4760] [PMID: 27287961]
[137]
Malinda KM, Sidhu GS, Mani H, et al. Thymosin β4 accelerates wound healing. J Invest Dermatol 1999; 113(3): 364-8.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00708.x] [PMID: 10469335]
[138]
Philp D, Goldstein AL, Kleinman HK. Thymosin β4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev 2004; 125(2): 113-5.
[http://dx.doi.org/10.1016/j.mad.2003.11.005] [PMID: 15037013]
[139]
Sosne G, Qiu P, Christopherson PL, Wheater MK. Thymosin beta 4 suppression of corneal NFkappaB: A potential anti-inflammatory pathway. Exp Eye Res 2007; 84(4): 663-9.
[http://dx.doi.org/10.1016/j.exer.2006.12.004] [PMID: 17254567]
[140]
Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004; 432(7016): 466-72.
[http://dx.doi.org/10.1038/nature03000] [PMID: 15565145]
[141]
Hong Y, Yao Q, Zheng L. Thymosin β4 attenuates liver fibrosis via suppressing Notch signaling. Biochem Biophys Res Commun 2017; 493(4): 1396-401.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.156] [PMID: 28965947]
[142]
Shah R, Reyes-Gordillo K, Cheng Y, Varatharajalu R, Ibrahim J, Lakshman MR. Thymosin β4 prevents oxidative stress, inflammation, and fibrosis in ethanol-and LPS-induced liver injury in mice. Oxid Med Cell Longev 2018.20189630175
[http://dx.doi.org/10.1155/2018/9630175] [PMID: 30116499]
[143]
Jiang Y, Han T, Zhang ZG, et al. Potential role of thymosin beta 4 in the treatment of nonalcoholic fatty liver disease. Chronic Dis Transl Med 2017; 3(3): 165-8.
[http://dx.doi.org/10.1016/j.cdtm.2017.06.003] [PMID: 29063072]
[144]
Desai BN, Singhal G, Watanabe M, et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol Metab 2017; 6(11): 1395-406.
[http://dx.doi.org/10.1016/j.molmet.2017.08.004] [PMID: 29107287]
[145]
Sun Q, Zhang W, Zhong W, Sun X, Zhou Z. Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function. Biochim Biophys Acta, Gen Subj 2017; 1861(1 Pt A): 2912-21.
[http://dx.doi.org/10.1016/j.bbagen.2016.09.009] [PMID: 27634671]
[146]
You Y, Li WZ, Zhang S, et al. SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy. J Hepatol 2018; 69(1): 129-41.
[http://dx.doi.org/10.1016/j.jhep.2018.01.038] [PMID: 29452206]
[147]
El-Kharashi OA, El-Din Aly El-Waseef DA, Nabih ES, Mohamed DI. Targeting NLRP3 inflammasome via acetylsalicylic acid: Role in suppressing hepatic dysfunction and insulin resistance induced by atorvastatin in naïve versus alcoholic liver in rats. Biomed Pharmacother 2018; 107: 665-74.
[http://dx.doi.org/10.1016/j.biopha.2018.08.032] [PMID: 30118883]
[148]
Satishchandran A, Ambade A, Rao S, et al. MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease. Gastroenterology 2018; 154(1): 238-252.e7.
[http://dx.doi.org/10.1053/j.gastro.2017.09.022] [PMID: 28987423]
[149]
Kwong EK, Liu R, Zhao D, et al. The role of sphingosine kinase 2 in alcoholic liver disease. Dig Liver Dis 2019; 51(8): 1154-63.
[http://dx.doi.org/10.1016/j.dld.2019.03.020] [PMID: 31003959]
[150]
Palma E, Ma X, Riva A, et al. Dynamin-1–like protein inhibition drives megamitochondria formation as an adaptive response in alcohol-induced hepatotoxicity. Am J Pathol 2019; 189(3): 580-9.
[http://dx.doi.org/10.1016/j.ajpath.2018.11.008] [PMID: 30553835]
[151]
Seo W, Gao Y, He Y, et al. ALDH2 deficiency promotes alcoholassociated liver cancer by activating oncogenic pathways via oxidized DNA enriched extracellular vesicles. J Hepatol 2019 S0168-8278 S0168-8278(19)30390-3
[152]
Su QQ, Tian YY, Liu ZN, Ci LL, Lv XW. Purinergic P2X7 receptor blockade mitigates alcohol-induced steatohepatitis and intestinal injury by regulating MEK1/2-ERK1/2 signaling and egr-1 activity. Int Immunopharmacol 2019; 66: 52-61.
[http://dx.doi.org/10.1016/j.intimp.2018.11.012] [PMID: 30445307]
[153]
Laitakari A, Ollonen T, Kietzmann T, et al. Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease. Redox Biol 2019.22101145
[http://dx.doi.org/10.1016/j.redox.2019.101145] [PMID: 30802717]
[154]
Eshraghian A. Current and emerging pharmacological therapy for non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23(42): 7495-504.
[http://dx.doi.org/10.3748/wjg.v23.i42.7495] [PMID: 29204050]
[155]
Musso G, Gambino R, Cassader M. Emerging molecular targets for the treatment of nonalcoholic fatty liver disease. Annu Rev Med 2010; 61: 375-92.
[http://dx.doi.org/10.1146/annurev.med.60.101107.134820] [PMID: 20059344]
[156]
Takahashi Y, Sugimoto K, Inui H, Fukusato T. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2015; 21(13): 3777-85.
[http://dx.doi.org/10.3748/wjg.v21.i13.3777] [PMID: 25852263]
[157]
Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 2017; 66(1): 180-90.
[http://dx.doi.org/10.1136/gutjnl-2016-312431] [PMID: 27646933]
[158]
Smith BW, Adams LA. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci 2011; 48(3): 97-113.
[http://dx.doi.org/10.3109/10408363.2011.596521] [PMID: 21875310]
[159]
Huang YY, Gusdon AM, Qu S. Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Lipids Health Dis 2013; 12: 171.
[http://dx.doi.org/10.1186/1476-511X-12-171] [PMID: 24209497]
[160]
Adorini L, Pruzanski M, Shapiro D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 2012; 17(17-18): 988-97.
[http://dx.doi.org/10.1016/j.drudis.2012.05.012] [PMID: 22652341]
[161]
Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochem Pharmacol 2013; 86(11): 1517-24.
[http://dx.doi.org/10.1016/j.bcp.2013.08.015] [PMID: 23988487]
[162]
Kong B, Luyendyk JP, Tawfik O, Guo GL. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 2009; 328(1): 116-22.
[http://dx.doi.org/10.1124/jpet.108.144600] [PMID: 18948497]
[163]
Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol 2009; 51(2): 380-8.
[http://dx.doi.org/10.1016/j.jhep.2009.03.025] [PMID: 19501927]
[164]
Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 2016; 15(4): 249-74.
[http://dx.doi.org/10.1038/nrd.2015.3] [PMID: 26794269]
[165]
Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145(3): 574-82.e1.
[http://dx.doi.org/10.1053/j.gastro.2013.05.042] [PMID: 23727264]
[166]
Jahn D, Rau M, Wohlfahrt J, Hermanns HM, Geier A. Non-alcoholic steatohepatitis: from pathophysiology to novel therapies. Dig Dis 2016; 34(4): 356-63.
[http://dx.doi.org/10.1159/000444547] [PMID: 27170389]
[167]
Liles JT, Karnik S, Hambruch E, et al. FXR agonism by GS-9674 decreases steatosis and fibrosis in a murine model of NASH. J Hepatol 2016; 64(2): S169.
[http://dx.doi.org/10.1016/S0168-8278(16)01682-2]
[168]
Xu L, Kitade H, Ni Y, Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules 2015; 5(3): 1563-79.
[http://dx.doi.org/10.3390/biom5031563] [PMID: 26197341]
[169]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[170]
Friedman S, Sanyal A, Goodman Z, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials 2016; 47: 356-65.
[http://dx.doi.org/10.1016/j.cct.2016.02.012] [PMID: 26944023]
[171]
Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 2008; 20(6): 1010-8.
[http://dx.doi.org/10.1016/j.cellsig.2007.12.006] [PMID: 18191382]
[172]
Spiegel S, Milstien S. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003; 4(5): 397-407.
[http://dx.doi.org/10.1038/nrm1103] [PMID: 12728273]
[173]
Haus JM, Kashyap SR, Kasumov T, et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; 58(2): 337-43.
[http://dx.doi.org/10.2337/db08-1228] [PMID: 19008343]
[174]
Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab 2012; 23(8): 365-71.
[http://dx.doi.org/10.1016/j.tem.2012.04.005] [PMID: 22609053]
[175]
Kakazu E, Mauer AS, Yin M, Malhi H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res 2016; 57(2): 233-45.
[http://dx.doi.org/10.1194/jlr.M063412] [PMID: 26621917]
[176]
Tsochatzis E, Papatheodoridis GV, Archimandritis AJ. The evolving role of leptin and adiponectin in chronic liver diseases. Am J Gastroenterol 2006; 101(11): 2629-40.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00848.x] [PMID: 16952281]
[177]
Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens) 2012; 11(1): 8-20.
[http://dx.doi.org/10.1007/BF03401534] [PMID: 22450341]
[178]
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116(7): 1784-92.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[179]
Munday MR. Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 2002; 30(Pt 6): 1059-64.
[http://dx.doi.org/10.1042/bst0301059] [PMID: 12440972]
[180]
Saha AK, Ruderman NB. Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol Cell Biochem 2003; 253(1-2): 65-70.
[http://dx.doi.org/10.1023/A:1026053302036] [PMID: 14619957]
[181]
Rogers CQ, Ajmo JM, You M. Adiponectin and alcoholic fatty liver disease. IUBMB Life 2008; 60(12): 790-7.
[http://dx.doi.org/10.1002/iub.124] [PMID: 18709650]
[182]
Giby VG, Ajith TA. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease. World J Hepatol 2014; 6(8): 570-9.
[http://dx.doi.org/10.4254/wjh.v6.i8.570] [PMID: 25232450]
[183]
Awazawa M, Ueki K, Inabe K, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun 2009; 382(1): 51-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.131] [PMID: 19254698]
[184]
Lee WH, Kim SG. AMPK-dependent metabolic regulation by PPAR agonists. PPAR Res 2010.2010549101
[http://dx.doi.org/10.1155/2010/549101] [PMID: 20814441]
[185]
Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112(1): 91-100.
[http://dx.doi.org/10.1172/JCI200317797] [PMID: 12840063]
[186]
Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase: Role in metabolism and therapeutic implications. Diabetes Obes Metab 2006; 8(6): 591-602.
[http://dx.doi.org/10.1111/j.1463-1326.2005.00561.x] [PMID: 17026483]
[187]
Xie X, Yan D, Li H, et al. Enhancement of adiponectin ameliorates nonalcoholic fatty liver disease via inhibition of FoxO1 in type I diabetic rats. J Diabetes Res 2018.20186254340
[http://dx.doi.org/10.1155/2018/6254340] [PMID: 30186875]
[188]
O-Sullivan I, Zhang W, Wasserman DH, et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun 2015; 6(1): 7079.
[http://dx.doi.org/10.1038/ncomms8079] [PMID: 25963540]
[189]
Takeda K, Shimozono R, Noguchi T, et al. Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1. J Biol Chem 2007; 282(10): 7522-31.
[http://dx.doi.org/10.1074/jbc.M607177200] [PMID: 17210579]
[190]
Kanda T, Matsuoka S, Yamazaki M, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol 2018; 24(25): 2661-72.
[http://dx.doi.org/10.3748/wjg.v24.i25.2661] [PMID: 29991872]
[191]
Kefala G, Tziomalos K. Apoptosis signal-regulating kinase-1 as a therapeutic target in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13(3): 189-91.
[http://dx.doi.org/10.1080/17474124.2019.1570136] [PMID: 30791762]
[192]
Soga M, Matsuzawa A, Ichijo H. Oxidative stress-induced diseases via the ASK1 signaling pathway. Int J Cell Biol 2012.2012439587
[http://dx.doi.org/10.1155/2012/439587] [PMID: 22654913]
[193]
Loomba R, Lawitz E, Mantry PS, et al. GS-US-384-1497 Investigators. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology 2018; 67(2): 549-59.
[http://dx.doi.org/10.1002/hep.29514] [PMID: 28892558]
[194]
Younossi ZM, Stepanova M, Lawitz E, et al. Improvement of hepatic fibrosis and patient-reported outcomes in non-alcoholic steatohepatitis treated with selonsertib. Liver Int 2018; 38(10): 1849-59.
[http://dx.doi.org/10.1111/liv.13706] [PMID: 29377462]
[195]
Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2(4): 217-25.
[http://dx.doi.org/10.1016/j.cmet.2005.09.001] [PMID: 16213224]
[196]
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011; 149(2): 121-30.
[http://dx.doi.org/10.1093/jb/mvq121] [PMID: 20940169]
[197]
Degirolamo C, Sabbà C, Moschetta A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15(1): 51-69.
[http://dx.doi.org/10.1038/nrd.2015.9] [PMID: 26567701]
[198]
Luo Y, Ye S, Li X, Lu W. Emerging structure–function paradigm of endocrine FGFs in metabolic diseases. Trends Pharmacol Sci 2019; 40(2): 142-53.
[http://dx.doi.org/10.1016/j.tips.2018.12.002] [PMID: 30616873]
[199]
Fisher FM, Chui PC, Nasser IA, et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014; 147(5): 1073-83.e6.
[http://dx.doi.org/10.1053/j.gastro.2014.07.044] [PMID: 25083607]
[200]
Sanyal A, Charles ED, Neuschwander-Tetri BA, et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2019; 392(10165): 2705-17.
[http://dx.doi.org/10.1016/S0140-6736(18)31785-9] [PMID: 30554783]
[201]
Harrison SA, Rinella ME, Abdelmalek MF, et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2018; 391(10126): 1174-85.
[http://dx.doi.org/10.1016/S0140-6736(18)30474-4] [PMID: 29519502]
[202]
Vatner DF, Weismann D, Beddow SA, et al. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am J Physiol Endocrinol Metab 2013; 305(1): E89-E100.
[http://dx.doi.org/10.1152/ajpendo.00573.2012] [PMID: 23651850]
[203]
Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94(2): 355-82.
[http://dx.doi.org/10.1152/physrev.00030.2013] [PMID: 24692351]
[204]
Harrison S, Moussa S, Bashir M, et al. MGL-3196, a selective thyroid hormone receptor-beta agonist significantly decreases hepatic fat in NASH patients at 12 weeks, the primary endpoint in a 36 week serial liver biopsy study. J Hepatol 2018; 68: S38.
[http://dx.doi.org/10.1016/S0168-8278(18)30292-7]
[205]
Everett L, Galli A, Crabb D. The role of hepatic peroxisome proliferator-activated receptors (PPARs) in health and disease. Liver 2000; 20(3): 191-9.
[http://dx.doi.org/10.1034/j.1600-0676.2000.020003191.x] [PMID: 10902968]
[206]
Yessoufou A, Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly 2010., 140w13071.
[http://dx.doi.org/10.4414/smw.2010.13071] [PMID: 20842602]
[207]
Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 2012; 23(7): 351-63.
[http://dx.doi.org/10.1016/j.tem.2012.05.001] [PMID: 22704720]
[208]
Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013; 19(3): 269-84.
[http://dx.doi.org/10.1089/ars.2012.4875] [PMID: 22900819]
[209]
Brocker CN, Patel DP, Velenosi TJ, et al. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J Lipid Res 2018; 59(11): 2140-52.
[http://dx.doi.org/10.1194/jlr.M088419] [PMID: 30158201]
[210]
Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013.2013549627
[http://dx.doi.org/10.1155/2013/549627] [PMID: 23781121]
[211]
Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 2013; 28(Suppl. 1): 68-76.
[http://dx.doi.org/10.1111/jgh.12212] [PMID: 23855299]
[212]
Jain MR, Giri SR, Bhoi B, et al. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int 2018; 38(6): 1084-94.
[http://dx.doi.org/10.1111/liv.13634] [PMID: 29164820]
[213]
Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis 2014; 5(1)e996
[http://dx.doi.org/10.1038/cddis.2013.499] [PMID: 24434519]
[214]
Ferreira DM, Castro RE, Machado MV, et al. Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia 2011; 54(7): 1788-98.
[http://dx.doi.org/10.1007/s00125-011-2130-8] [PMID: 21455726]
[215]
Yilmaz Y. Systematic review: caspase-cleaved fragments of cytokeratin 18 - the promises and challenges of a biomarker for chronic liver disease. Aliment Pharmacol Ther 2009; 30(11-12): 1103-9.
[http://dx.doi.org/10.1111/j.1365-2036.2009.04148.x] [PMID: 19769633]
[216]
Anstee QM, Concas D, Kudo H, et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 2010; 53(3): 542-50.
[http://dx.doi.org/10.1016/j.jhep.2010.03.016] [PMID: 20557969]
[217]
Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol 2011; 5(2): 201-12.
[http://dx.doi.org/10.1586/egh.11.6] [PMID: 21476915]
[218]
Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012; 18(19): 2300-8.
[http://dx.doi.org/10.3748/wjg.v18.i19.2300] [PMID: 22654421]
[219]
Hatting M, Zhao G, Schumacher F, et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology 2013; 57(6): 2189-201.
[http://dx.doi.org/10.1002/hep.26271] [PMID: 23339067]
[220]
Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015; 35(3): 953-66.
[http://dx.doi.org/10.1111/liv.12570] [PMID: 24750664]
[221]
Pradere JP, Troeger JS, Dapito DH, Mencin AA, Schwabe RF. Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis 2010; 30(3): 232-44.
[http://dx.doi.org/10.1055/s-0030-1255353] [PMID: 20665376]
[222]
Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair 2010; 3(1): 21.
[http://dx.doi.org/10.1186/1755-1536-3-21] [PMID: 20964825]
[223]
Dattaroy D, Seth RK, Das S, et al. Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. Am J Physiol Gastrointest Liver Physiol 2016; 310(7): G510-25.
[http://dx.doi.org/10.1152/ajpgi.00259.2015] [PMID: 26718771]
[224]
Eguchi A, Povero D, Alkhouri N, Feldstein AE. Novel therapeutic targets for nonalcoholic fatty liver disease. Expert Opin Ther Targets 2013; 17(7): 773-9.
[http://dx.doi.org/10.1517/14728222.2013.789502] [PMID: 23600493]
[225]
Dibba P, Li AA, Perumpail BJ, et al. Emerging therapeutic targets and experimental drugs for the treatment of NAFLD. Diseases 2018; 6(3)E83
[http://dx.doi.org/10.3390/diseases6030083] [PMID: 30235807]
[226]
Hsu DK, Kuwabara I, Liu FT. Galectin-3 and regulation of cell function. Transfus Med Hemother 2005; 32(2): 83-96.
[http://dx.doi.org/10.1159/000083236]
[227]
Hsu DK, Chen HY, Liu FT. Galectin-3 regulates T-cell functions. Immunol Rev 2009; 230(1): 114-27.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00798.x] [PMID: 19594632]
[228]
Traber PG, Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One 2013; 8(12)e83481
[http://dx.doi.org/10.1371/journal.pone.0083481] [PMID: 24367597]
[229]
Traber PG, Chou H, Zomer E, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 2013; 8(10)e75361
[http://dx.doi.org/10.1371/journal.pone.0075361] [PMID: 24130706]
[230]
Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019; 65: 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[231]
Alukal JJ, Thuluvath PJ. Reversal of NASH fibrosis with pharmacotherapy. Hepatol Int 2019; 13(5): 534-45.
[http://dx.doi.org/10.1007/s12072-019-09970-3] [PMID: 31363910]
[232]
Molnar J, Fong KS, He QP, et al. Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta 2003; 1647(1-2): 220-4.
[http://dx.doi.org/10.1016/S1570-9639(03)00053-0] [PMID: 12686136]
[233]
Kagan HM, Ryvkin F. Lysyl Oxidase and Lysyl Oxidase-Like EnzymesThe Extracellular Matrix: An Overview. Berlin: Springer-Verlag 2011; pp. 303-35.
[http://dx.doi.org/10.1007/978-3-642-16555-9_9]
[234]
Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem 2014; 57: 231-41.
[http://dx.doi.org/10.1016/j.bioorg.2014.07.003] [PMID: 25146937]
[235]
Kumari S, Panda TK, Pradhan T. Lysyl oxidase: its diversity in health and diseases. Indian J Clin Biochem 2017; 32(2): 134-41.
[http://dx.doi.org/10.1007/s12291-016-0576-7] [PMID: 28428687]
[236]
Oh H, Jun DW, Saeed WK, Nguyen MH. Non-alcoholic fatty liver diseases: update on the challenge of diagnosis and treatment. Clin Mol Hepatol 2016; 22(3): 327-35.
[http://dx.doi.org/10.3350/cmh.2016.0049] [PMID: 27729634]
[237]
Ratziu V. Novel pharmacotherapy options for NASH. Dig Dis Sci 2016; 61(5): 1398-405.
[http://dx.doi.org/10.1007/s10620-016-4128-z] [PMID: 27003143]
[238]
Puente A, Fortea JI, Cabezas J, et al. LOXL2-a new target in antifibrogenic therapy? Int J Mol Sci 2019; 20(7)E1634
[http://dx.doi.org/10.3390/ijms20071634] [PMID: 30986934]
[239]
Talal AH, Feron-Rigodon M, Madere J, et al. 1319 Simtuzumab, an antifibrotic monoclonal antibody against lysyl oxidase-like 2 (LOXL2) enzyme, appears safe and well tolerated in patients with liver disease of diverse etiology. J Hepatol 2013; 58: S532.
[http://dx.doi.org/10.1016/S0168-8278(13)61319-7]
[240]
Schilter H, Findlay AD, Perryman L, et al. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J Cell Mol Med 2019; 23(3): 1759-70.
[PMID: 30536539]
[241]
Chan K, Lu R, Chang JC, Kan YW. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 1996; 93(24): 13943-8.
[http://dx.doi.org/10.1073/pnas.93.24.13943] [PMID: 8943040]
[242]
Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 2004; 37(4): 433-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.033] [PMID: 15256215]
[243]
Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2013; 85(6): 705-17.
[http://dx.doi.org/10.1016/j.bcp.2012.11.016] [PMID: 23219527]
[244]
Gupte AA, Lyon CJ, Hsueh WA. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis. Curr Diab Rep 2013; 13(3): 362-71.
[http://dx.doi.org/10.1007/s11892-013-0372-1] [PMID: 23475581]
[245]
Shimozono R, Asaoka Y, Yoshizawa Y, et al. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol 2013; 84(1): 62-70.
[http://dx.doi.org/10.1124/mol.112.084269] [PMID: 23592516]
[246]
Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 2004; 29(1): 18-24.
[http://dx.doi.org/10.1016/j.tibs.2003.11.005] [PMID: 14729328]
[247]
Beckerman M. Cellular Signaling in Health and Disease. New York: Springer-Verlag 2009.
[http://dx.doi.org/10.1007/978-0-387-98173-4]
[248]
Hardie DG, Ross FA, Hawley SA. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13(4): 251-62.
[http://dx.doi.org/10.1038/nrm3311] [PMID: 22436748]
[249]
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am J Physiol Endocrinol Metab 2016; 311(4): E730-40.
[http://dx.doi.org/10.1152/ajpendo.00225.2016] [PMID: 27577854]
[250]
Foretz M, Even PC, Viollet B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int J Mol Sci 2018; 19(9)E2826
[http://dx.doi.org/10.3390/ijms19092826] [PMID: 30235785]
[251]
Woods A, Williams JR, Muckett PJ, et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep 2017; 18(13): 3043-51.
[http://dx.doi.org/10.1016/j.celrep.2017.03.011] [PMID: 28355557]
[252]
Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 2013; 62(7): 2164-72.
[http://dx.doi.org/10.2337/db13-0368] [PMID: 23801715]
[253]
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6(1): 1-19.
[http://dx.doi.org/10.1016/j.apsb.2015.06.002] [PMID: 26904394]
[254]
Wu T, Liu YH, Fu YC, Liu XM, Zhou XH. Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients. Ann Clin Lab Sci 2014; 44(4): 410-8.
[PMID: 25361925]
[255]
Nassir F, Ibdah JA. Sirtuins and nonalcoholic fatty liver disease. World J Gastroenterol 2016; 22(46): 10084-92.
[http://dx.doi.org/10.3748/wjg.v22.i46.10084] [PMID: 28028356]
[256]
Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450(7170): 712-6.
[http://dx.doi.org/10.1038/nature06261] [PMID: 18046409]
[257]
Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8(5): 347-58.
[http://dx.doi.org/10.1016/j.cmet.2008.08.017] [PMID: 19046567]
[258]
Li Y, Wong K, Giles A, et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 2014; 146(2): 539-49.e7.
[http://dx.doi.org/10.1053/j.gastro.2013.10.059] [PMID: 24184811]
[259]
Zhang Y, Wang C, Tian Y, et al. Inhibition of poly(ADP-ribose) polymerase-1 protects chronic alcoholic liver injury. Am J Pathol 2016; 186(12): 3117-30.
[http://dx.doi.org/10.1016/j.ajpath.2016.08.016] [PMID: 27746183]
[260]
Gariani K, Ryu D, Menzies KJ, et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J Hepatol 2017; 66(1): 132-41.
[http://dx.doi.org/10.1016/j.jhep.2016.08.024] [PMID: 27663419]
[261]
Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res 2014; 34(10): 837-43.
[http://dx.doi.org/10.1016/j.nutres.2014.09.005] [PMID: 25311610]
[262]
Faghihzadeh F, Adibi P, Hekmatdoost A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br J Nutr 2015; 114(5): 796-803.
[http://dx.doi.org/10.1017/S0007114515002433] [PMID: 26234526]
[263]
Chen S, Zhao X, Ran L, et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig Liver Dis 2015; 47(3): 226-32.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[264]
Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 2007; 115(1): 84-105.
[http://dx.doi.org/10.1016/j.pharmthera.2007.04.006] [PMID: 17561264]
[265]
Wong L, Tan SS, Lam Y, Melendez AJ. Synthesis and evaluation of sphingosine analogues as inhibitors of sphingosine kinases. J Med Chem 2009; 52(12): 3618-26.
[http://dx.doi.org/10.1021/jm900121d] [PMID: 19469544]
[266]
Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 2015; 125(4): 1379-87.
[http://dx.doi.org/10.1172/JCI76369] [PMID: 25831442]
[267]
Kwong EK, Li X, Hylemon PB, Zhou H. Sphingosine kinases/sphingosine 1-phosphate signaling in hepatic lipid metabolism. Curr Pharmacol Rep 2017; 3(4): 176-83.
[http://dx.doi.org/10.1007/s40495-017-0093-2] [PMID: 29130028]
[268]
Gabriel TL, Mirzaian M, Hooibrink B, et al. Induction of Sphk1 activity in obese adipose tissue macrophages promotes survival. PLoS One 2017; 12(7)e0182075
[http://dx.doi.org/10.1371/journal.pone.0182075] [PMID: 28753653]
[269]
Chen J, Wang W, Qi Y, et al. Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: Role of PPARγ. Biochim Biophys Acta 2016; 1861(2): 138-47.
[http://dx.doi.org/10.1016/j.bbalip.2015.11.006] [PMID: 26615875]
[270]
Chiang JY. Sphingosine-1-phosphate receptor 2: A novel bile acid receptor and regulator of hepatic lipid metabolism? Hepatology 2015; 61(4): 1118-20.
[http://dx.doi.org/10.1002/hep.27616] [PMID: 25418695]
[271]
Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B 2015; 5(2): 151-7.
[http://dx.doi.org/10.1016/j.apsb.2014.12.009] [PMID: 26579441]
[272]
Nagahashi M, Takabe K, Liu R, et al. Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 2015; 61(4): 1216-26.
[http://dx.doi.org/10.1002/hep.27592] [PMID: 25363242]
[273]
Kleuser B. Divergent role of sphingosine 1-phosphate in liver health and disease. Int J Mol Sci 2018; 19(3)E722
[http://dx.doi.org/10.3390/ijms19030722] [PMID: 29510489]
[274]
Pilkis SJ, Claus TH, el-Maghrabi MR. The role of cyclic AMP in rapid and long-term regulation of gluconeogenesis and glycolysis. Adv Second Messenger Phosphoprotein Res 1988; 22: 175-91.
[PMID: 2852023]
[275]
Yajima H, Komatsu M, Schermerhorn T, et al. cAMP enhances insulin secretion by an action on the ATP-sensitive K+ channel-independent pathway of glucose signaling in rat pancreatic islets. Diabetes 1999; 48(5): 1006-12.
[http://dx.doi.org/10.2337/diabetes.48.5.1006] [PMID: 10331404]
[276]
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2(8): 599-609.
[http://dx.doi.org/10.1038/35085068] [PMID: 11483993]
[277]
Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma. Nature 2003; 426(6963): 190-3.
[http://dx.doi.org/10.1038/nature02110] [PMID: 14614508]
[278]
Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413(6852): 179-83.
[http://dx.doi.org/10.1038/35093131] [PMID: 11557984]
[279]
Ríos-Hoyo A, Gutiérrez-Salmeán G. New dietary supplements for obesity: what we currently know. Curr Obes Rep 2016; 5(2): 262-70.
[http://dx.doi.org/10.1007/s13679-016-0214-y] [PMID: 27053066]
[280]
El-Agroudy NN, El-Naga RN, El-Razeq RA, El-Demerdash E. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride-induced liver fibrosis in rats. Br J Pharmacol 2016; 173(22): 3248-60.
[http://dx.doi.org/10.1111/bph.13611] [PMID: 27590029]
[281]
Beavo JA, Brunton LL. Cyclic nucleotide research -- still expanding after half a century. Nat Rev Mol Cell Biol 2002; 3(9): 710-8.
[http://dx.doi.org/10.1038/nrm911] [PMID: 12209131]
[282]
Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 2012; 165(5): 1288-305.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01729.x] [PMID: 22014080]
[283]
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2015; 21(1): e25-50.
[http://dx.doi.org/10.1111/odi.12275] [PMID: 25056711]
[284]
Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol 2018; 9: 1048.
[http://dx.doi.org/10.3389/fphar.2018.01048] [PMID: 30386231]
[285]
Zhang Y, Chen ML, Zhou Y, et al. Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Mol Nutr Food Res 2015; 59(8): 1443-57.
[http://dx.doi.org/10.1002/mnfr.201500016] [PMID: 25943029]
[286]
Middleton SA, Rajpal N, Cutler L, et al. BET inhibition improves NASH and liver fibrosis. Sci Rep 2018; 8(1): 17257.
[http://dx.doi.org/10.1038/s41598-018-35653-4] [PMID: 30467325]
[287]
Zarei M, Barroso E, Palomer X, et al. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Mol Metab 2018; 8: 117-31.
[http://dx.doi.org/10.1016/j.molmet.2017.12.008] [PMID: 29289645]
[288]
Chen Y, He X, Yuan X, Hong J, Li P, Guo J. Activation of NLRP3 inflammasomes in non-alcoholic steatohepatitis: A novel molecular target of FTZ remedy for metabolic syndrome 2018. FASEB J 2018; 32: 832.1.
[289]
Liu J, Tang T, Wang GD, Liu B. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease. Biosci Rep 2019; 39(7)BSR20181722
[http://dx.doi.org/10.1042/BSR20181722] [PMID: 31064820]
[290]
Becares N, Gage MC, Voisin M, et al. Impaired LXRα phosphorylation attenuates progression of fatty liver disease. Cell Rep 2019; 26(4): 984-995.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.12.094] [PMID: 30673619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy