Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Fas配体增强RIG-I样受体激动剂和放疗协同作用的肺癌细胞凋亡

卷 20, 期 5, 2020

页: [372 - 381] 页: 10

弟呕挨: 10.2174/1568009620666200115161717

价格: $65

摘要

背景: 视黄酸诱导基因I (RIG-I)样受体(RLRs)在抗病毒反应中发挥关键作用,但最近的研究表明,RLR的激活也能激发抗癌活性,包括细胞凋亡。之前,我们证明了RLR激动剂Poly(I:C)-HMW/LyoVec™[Poly(I:C)-HMW]对人肺癌细胞的抗癌活性可以通过与电离辐射(IR)协同治疗而增强。此外,与Poly(I:C)-HMW和IR共同处理可诱导细胞凋亡,且不依赖于Fas,细胞表面Fas表达增加。 目的: 探讨聚(I:C)-HMW+IR协同作用下Fas配体(FasL)促进肺癌细胞凋亡的假说。 方法: 经Poly(I:C)- HMW+IR共处理24 h后,将FasL加入培养基中,观察细胞表面Fas在人肺癌细胞A549和H1299上的表达。 结果: FasL增强了用聚(I:C)-HMW+IR处理A549细胞和H1299细胞。同样的,单IR -而不是聚(I:C)-HMW-导致细胞表面Fas表达上调,随后对Fas配体诱导的凋亡产生高反应,这表明Poly(I:C) -HMW +IR处理的细胞对fas配体诱导的凋亡的高敏感性是由于细胞对IR的反应。最后,siRNA敲除Fas证实了处理细胞对FasL诱导的凋亡的高应答依赖于Fas的表达。 结论: 综上所述,研究表明,经聚(I:C)-HMW和IR协同治疗后上调的Fas表达对Fas配体诱导的细胞凋亡具有应答作用,而结合RLR激动剂、IR和FasL可能是一种有潜力的肿瘤治疗方法。

关键词: 凋亡,Fas

图形摘要

[1]
Mollinedo, F.; Gajate, C. Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist. Updat., 2006, 9(1-2), 51-73.
[http://dx.doi.org/10.1016/j.drup.2006.04.002] [PMID: 16687251]
[2]
Peter, M.E.; Hadji, A.; Murmann, A.E.; Brockway, S.; Putzbach, W.; Pattanayak, A.; Ceppi, P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ., 2015, 22(4), 549-559.
[http://dx.doi.org/10.1038/cdd.2015.3] [PMID: 25656654]
[3]
Wajant, H. The Fas signaling pathway: More than a paradigm. Science, 2002, 296(5573), 1635-1636.
[http://dx.doi.org/10.1126/science.1071553] [PMID: 12040174]
[4]
Kaufmann, T.; Strasser, A.; Jost, P.J. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ., 2012, 19(1), 42-50.
[http://dx.doi.org/10.1038/cdd.2011.121] [PMID: 21959933]
[5]
Kawaguchi, S.; Mineta, T.; Ichinose, M.; Masuoka, J.; Shiraishi, T.; Tabuchi, K. Induction of apoptosis in glioma cells by recombinant human Fas ligand. Neurosurgery, 2000, 46(2), 431-438.
[http://dx.doi.org/10.1097/00006123-200002000-00030] [PMID: 10690733]
[6]
Hamasu, T.; Inanami, O.; Asanuma, T.; Kuwabara, M. Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists. J. Radiat. Res. (Tokyo), 2005, 46(1), 103-110.
[http://dx.doi.org/10.1269/jrr.46.103] [PMID: 15802865]
[7]
Ifeadi, V.; Garnett-Benson, C. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways. PLoS One, 2012, 7(2) e31762
[http://dx.doi.org/10.1371/journal.pone.0031762] [PMID: 22389673]
[8]
Chang, G.C.; Hsu, S.L.; Tsai, J.R.; Liang, F.P.; Lin, S.Y.; Sheu, G.T.; Chen, C.Y. Molecular mechanisms of ZD1839-induced G1-cell cycle arrest and apoptosis in human lung adenocarcinoma A549 cells. Biochem. Pharmacol., 2004, 68(7), 1453-1464.
[http://dx.doi.org/10.1016/j.bcp.2004.06.006] [PMID: 15345335]
[9]
Yoneyama, M.; Fujita, T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity, 2008, 29(2), 178-181.
[http://dx.doi.org/10.1016/j.immuni.2008.07.009] [PMID: 18701081]
[10]
Kawai, T.; Takahashi, K.; Sato, S.; Coban, C.; Kumar, H.; Kato, H.; Ishii, K.J.; Takeuchi, O.; Akira, S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol., 2005, 6(10), 981-988.
[http://dx.doi.org/10.1038/ni1243] [PMID: 16127453]
[11]
Elion, D.L.; Cook, R.S. Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget, 2018, 9(48), 29007-29017.
[http://dx.doi.org/10.18632/oncotarget.25626] [PMID: 29989043]
[12]
Wu, Y.; Wu, X.; Wu, L.; Wang, X.; Liu, Z. The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy. Transl. Res., 2017, 190, 51-60.
[http://dx.doi.org/10.1016/j.trsl.2017.08.004] [PMID: 28917654]
[13]
Besch, R.; Poeck, H.; Hohenauer, T.; Senft, D.; Häcker, G.; Berking, C.; Hornung, V.; Endres, S.; Ruzicka, T.; Rothenfusser, S.; Hartmann, G. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest., 2009, 119(8), 2399-2411.
[http://dx.doi.org/10.1172/JCI37155] [PMID: 19620789]
[14]
Yoshino, H.; Iwabuchi, M.; Kazama, Y.; Furukawa, M.; Kashiwakura, I. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro. Oncol. Lett., 2018, 15(4), 4697-4705.
[http://dx.doi.org/10.3892/ol.2018.7867] [PMID: 29541243]
[15]
Sato, Y.; Yoshino, H.; Kazama, Y.; Kashiwakura, I. Involvement of caspase‑8 in apoptosis enhancement by cotreatment with retinoic acid‑inducible gene‑I‑like receptor agonist and ionizing radiation in human non‑small cell lung cancer. Mol. Med. Rep., 2018, 18(6), 5286-5294.
[http://dx.doi.org/10.3892/mmr.2018.9536] [PMID: 30320341]
[16]
Horton, J.K.; Siamakpour-Reihani, S.; Lee, C.T.; Zhou, Y.; Chen, W.; Geradts, J.; Fels, D.R.; Hoang, P.; Ashcraft, K.A.; Groth, J.; Kung, H.N.; Dewhirst, M.W.; Chi, J.T. FAS death receptor: A breast cancer subtype-specific radiation response biomarker and potential therapeutic target. Radiat. Res., 2015, 184(5), 456-469.
[http://dx.doi.org/10.1667/RR14089.1] [PMID: 26488758]
[17]
Sun, S.Y.; Yue, P.; Hong, W.K.; Lotan, R. Induction of Fas expression and augmentation of Fas/Fas ligand-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res., 2000, 60(22), 6537-6543.
[PMID: 11103825]
[18]
Fukushi, S.; Yoshino, H.; Yoshizawa, A.; Kashiwakura, I. p53-independent structure-activity relationships of 3-ring mesogenic compounds’ activity as cytotoxic effects against human non-small cell lung cancer lines. BMC Cancer, 2016, 16, 521.
[http://dx.doi.org/10.1186/s12885-016-2585-6] [PMID: 27456853]
[19]
Yoshino, H.; Konno, H.; Ogura, K.; Sato, Y.; Kashiwakura, I. Relationship between the regulation of caspase-8-mediated apoptosis and radioresistance in human THP-1-derived macrophages. Int. J. Mol. Sci., 2018, 19(10) E3154
[http://dx.doi.org/10.3390/ijms19103154] [PMID: 30322167]
[20]
Yoshino, H.; Kumai, Y.; Kashiwakura, I. Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Mol. Med. Rep., 2017, 15(5), 2867-2872.
[http://dx.doi.org/10.3892/mmr.2017.6298] [PMID: 28447729]
[21]
Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Obeid, M.; Ortiz, C.; Criollo, A.; Mignot, G.; Maiuri, M.C.; Ullrich, E.; Saulnier, P.; Yang, H.; Amigorena, S.; Ryffel, B.; Barrat, F.J.; Saftig, P.; Levi, F.; Lidereau, R.; Nogues, C.; Mira, J.P.; Chompret, A.; Joulin, V.; Clavel-Chapelon, F.; Bourhis, J.; André, F.; Delaloge, S.; Tursz, T.; Kroemer, G.; Zitvogel, L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med., 2007, 13(9), 1050-1059.
[http://dx.doi.org/10.1038/nm1622] [PMID: 17704786]
[22]
Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; Huang, X.; Gajewski, T.F.; Chen, Z.J.; Fu, Y.X.; Weichselbaum, R.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 2014, 41(5), 843-852.
[http://dx.doi.org/10.1016/j.immuni.2014.10.019] [PMID: 25517616]
[23]
Yoshino, H.; Saitoh, T.; Kozakai, M.; Kashiwakura, I. Effects of ionizing radiation on retinoic acid-inducible gene-I-like receptors. Biomed. Rep., 2015, 3(1), 59-62.
[http://dx.doi.org/10.3892/br.2014.377] [PMID: 25469248]
[24]
Duewell, P.; Steger, A.; Lohr, H.; Bourhis, H.; Hoelz, H.; Kirchleitner, S.V.; Stieg, M.R.; Grassmann, S.; Kobold, S.; Siveke, J.T.; Endres, S.; Schnurr, M. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8(+) T cells. Cell Death Differ., 2014, 21(12), 1825-1837.
[http://dx.doi.org/10.1038/cdd.2014.96] [PMID: 25012502]
[25]
Chakraborty, M.; Abrams, S.I.; Camphausen, K.; Liu, K.; Scott, T.; Coleman, C.N.; Hodge, J.W. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol., 2003, 170(12), 6338-6347.
[http://dx.doi.org/10.4049/jimmunol.170.12.6338] [PMID: 12794167]
[26]
Chakraborty, M.; Abrams, S.I.; Coleman, C.N.; Camphausen, K.; Schlom, J.; Hodge, J.W. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res., 2004, 64(12), 4328-4337.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0073] [PMID: 15205348]
[27]
Fukazawa, T.; Fujiwara, T.; Morimoto, Y.; Shao, J.; Nishizaki, M.; Kadowaki, Y.; Hizuta, A.; Owen-Schaub, L.B.; Roth, J.A.; Tanaka, N. Differential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild-type p53 gene transfer in human cancer cells. Oncogene, 1999, 18(13), 2189-2199.
[http://dx.doi.org/10.1038/sj.onc.1202561] [PMID: 10327065]
[28]
Liu, W.; Lin, Y.T.; Yan, X.L.; Ding, Y.L.; Wu, Y.L.; Chen, W.N.; Lin, X. Hepatitis B virus core protein inhibits Fas-mediated apoptosis of hepatoma cells via regulation of mFas/FasL and sFas expression. FASEB J., 2015, 29(3), 1113-1123.
[http://dx.doi.org/10.1096/fj.14-263822] [PMID: 25466893]
[29]
Mohamed, M.S.; Bishr, M.K.; Almutairi, F.M.; Ali, A.G. Inhibitors of apoptosis: clinical implications in cancer. Apoptosis, 2017, 22(12), 1487-1509.
[http://dx.doi.org/10.1007/s10495-017-1429-4] [PMID: 29067538]
[30]
Liu, W.H.; Hsiao, H.W.; Tsou, W.I.; Lai, M.Z. Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO J., 2007, 26(6), 1660-1669.
[http://dx.doi.org/10.1038/sj.emboj.7601611] [PMID: 17318174]
[31]
Bilim, V.; Yuuki, K.; Itoi, T.; Muto, A.; Kato, T.; Nagaoka, A.; Motoyama, T.; Tomita, Y. Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis. Br. J. Cancer, 2008, 98(5), 941-949.
[http://dx.doi.org/10.1038/sj.bjc.6604268] [PMID: 18283311]
[32]
Hekim, N.; Cetin, Z.; Nikitaki, Z.; Cort, A.; Saygili, E.I. Radiation triggering immune response and inflammation. Cancer Lett., 2015, 368(2), 156-163.
[http://dx.doi.org/10.1016/j.canlet.2015.04.016] [PMID: 25911239]
[33]
Takahashi, M.; Inanami, O.; Kubota, N.; Tsujitani, M.; Yasui, H.; Ogura, A.; Kuwabara, M. Enhancement of cell death by TNF α-related apoptosis-inducing ligand (TRAIL) in human lung carcinoma A549 cells exposed to x rays under hypoxia. J. Radiat. Res. (Tokyo), 2007, 48(6), 461-468.
[http://dx.doi.org/10.1269/jrr.07028] [PMID: 17895594]
[34]
Cacan, E.; Greer, S.F.; Garnett-Benson, C. Radiation-induced modulation of immunogenic genes in tumor cells is regulated by both histone deacetylases and DNA methyltransferases. Int. J. Oncol., 2015, 47(6), 2264-2275.
[http://dx.doi.org/10.3892/ijo.2015.3192] [PMID: 26458736]
[35]
Knight, J.C.; Scharf, E.L.; Mao-Draayer, Y. Fas activation increases neural progenitor cell survival. J. Neurosci. Res., 2010, 88(4), 746-757.
[PMID: 19830835]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy