Review Article

蛋白质相互作用域:结构特征和药物发现应用(第二部分)

卷 28, 期 5, 2021

发表于: 14 January, 2020

页: [854 - 892] 页: 39

弟呕挨: 10.2174/0929867327666200114114142

价格: $65

摘要

背景:蛋白质呈现一个由几个域组成的模块化组织。除了发挥催化作用的域外,还有许多其他的域对于招募相互作用者至关重要。后一种结构域被定义为“PID”(蛋白相互作用结构域),负责信号转导和一系列正常生理和疾病相关通路的关键结果。用小分子和多肽靶向这些PID能够调节它们的相互作用网络,可能是发现新疗法的有价值的途径。 目的:这项工作是最近一篇描述PID能够识别翻译后修饰肽段的综述的延续。相反,第二部分涉及的是与含有标准氨基酸的简单肽序列相互作用的PID。 方法:通过广泛搜索不同的在线数据库(包括PDB(蛋白质数据库)、Pfam(蛋白质家族)和SMART(简单模块化结构研究工具),我们获得了不同领域亚家族及其相互作用组的关键结构信息。Pubmed也被搜索以探索与该主题相关的最新文献。 结果和结论:PID是多方面的:它们有各种不同的结构特征,可以识别几个共识序列。pid可能与不同疾病的发病和进展有关,如癌症或病毒感染,并在个性化医疗领域得到应用。目前,许多研究工作都集中在肽类/拟肽类抑制剂上,但在提高已鉴定化合物的药物相似性和相互作用亲和力方面,还需要做更多的工作。

关键词: 蛋白质相互作用域,蛋白质-蛋白质相互作用,结构,药物发现,配体,抑制剂,肽,小分子

[1]
Mayer, B.J. Protein-protein interactions in signaling cascades. Mol. Biotechnol., 1999, 13(3), 201-213.
[http://dx.doi.org/10.1385/MB:13:3:201] [PMID: 10934533]
[2]
Pawson, T.; Raina, M.; Nash, P. Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett., 2002, 513(1), 2-10.
[http://dx.doi.org/10.1016/S0014-5793(01)03292-6] [PMID: 11911873]
[3]
Pawson, T. Protein modules and signalling networks. Nature, 1995, 373(6515), 573-580.
[http://dx.doi.org/10.1038/373573a0] [PMID: 7531822]
[4]
Pawson, T.; Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science, 2003, 300(5618), 445-452.
[http://dx.doi.org/10.1126/science.1083653] [PMID: 12702867]
[5]
Liu, B.A.; Engelmann, B.W.; Nash, P.D. High-throughput analysis of peptide-binding modules. Proteomics, 2012, 12(10), 1527-1546.
[http://dx.doi.org/10.1002/pmic.201100599] [PMID: 22610655]
[6]
Zarrinpar, A.; Bhattacharyya, R.P.; Lim, W.A. The structure and function of proline recognition domains. Sci. STKE, 2003, 2003(179), RE8.
[http://dx.doi.org/10.1126/stke.2003.179.re8] [PMID: 12709533]
[7]
Polo, S. Confalonieri, S.; Salcini, A.E.; Di Fiore, P.P. EH and UIM: endocytosis and more. Sci. STKE, 2003, 2003(213), re17.
[http://dx.doi.org/10.1126/stke.2132003re17] [PMID: 14679291]
[8]
Montesinos, M.L.; Castellano-Muñoz, M.; García-Junco-Clemente, P.; Fernández-Chacón, R. Recycling and EH domain proteins at the synapse. Brain Res. Brain Res. Rev., 2005, 49(2), 416-428.
[http://dx.doi.org/10.1016/j.brainresrev.2005.06.002] [PMID: 16054223]
[9]
Chi, C.N.; Bach, A.; Strømgaard, K.; Gianni, S.; Jemth, P. Ligand binding by PDZ domains. Biofactors, 2012, 38(5), 338-348.
[http://dx.doi.org/10.1002/biof.1031] [PMID: 22674855]
[10]
Brown, S.; Coghill, I.D.; McGrath, M.J.; Robinson, P.A. Role of LIM domains in mediating signaling protein interactions. IUBMB Life, 2001, 51(6), 359-364.
[http://dx.doi.org/10.1080/152165401753366113] [PMID: 11758803]
[11]
Korenbaum, E.; Rivero, F. Calponin homology domains at a glance. J. Cell Sci., 2002, 115(Pt 18), 3543-3545.
[http://dx.doi.org/10.1242/jcs.00003] [PMID: 12186940]
[12]
Dalgarno, D.C.; Botfield, M.C.; Rickles, R.J. SH3 domains and drug design: ligands, structure, and biological function. Biopolymers, 1997, 43(5), 383-400.
[http://dx.doi.org/10.1002/(SICI)10970282(1997)43:5< 383:AID-BIP4>3.0.CO;2-R] [PMID: 9566119]
[13]
Renfranz, P.J.; Beckerle, M.C. Doing (F/L)PPPPs: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr. Opin. Cell Biol., 2002, 14(1), 88-103.
[http://dx.doi.org/10.1016/S0955-0674(01)00299-X] [PMID: 11792550]
[14]
Peterson, F.C.; Volkman, B.F. Diversity of polyproline recognition by EVH1 domains. Front. Biosci., 2009, 14, 833-846.
[http://dx.doi.org/10.2741/3281] [PMID: 19273103]
[15]
Nishizawa, K.; Freund, C.; Li, J.; Wagner, G.; Reinherz, E.L. Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation. Proc. Natl. Acad. Sci. USA, 1998, 95(25), 14897-14902.
[http://dx.doi.org/10.1073/pnas.95.25.14897] [PMID: 9843987]
[16]
Hurley, J.H.; Lee, S.; Prag, G. Ubiquitin-binding domains. Biochem. J., 2006, 399(3), 361-372.
[http://dx.doi.org/10.1042/BJ20061138] [PMID: 17034365]
[17]
Sang, M.; Ma, L.; Sang, M.; Zhou, X.; Gao, W.; Geng, C. LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins. Mol. Biol. Rep., 2014, 41(2), 1067-1073.
[http://dx.doi.org/10.1007/s11033-013-2952-1] [PMID: 24379077]
[18]
Bañuelos, S.; Saraste, M.; Djinović Carugo, K. Structural comparisons of calponin homology domains: implications for actin binding. Structure, 1998, 6(11), 1419-1431.
[http://dx.doi.org/10.1016/S0969-2126(98)00141-5] [PMID: 9817844]
[19]
Confalonieri, S.; Di Fiore, P.P. The Eps15 homology (EH) domain. FEBS Lett., 2002, 513(1), 24-29.
[http://dx.doi.org/10.1016/S0014-5793(01)03241-0] [PMID: 11911876]
[20]
Qiao, F.; Bowie, J.U. The many faces of SAM. Sci. STKE, 2005, 2005(286), re7.
[http://dx.doi.org/10.1126/stke.2862005re7 ] [PMID: 15928333]
[21]
Haura, E.B. From modules to medicine: How modular domains and their associated networks can enable personalized medicine? FEBS Lett., 2012, 586(17), 2580-2585.
[http://dx.doi.org/10.1016/j.febslet.2012.04.036] [PMID: 22575759]
[22]
Taylor, I.W.; Linding, R.; Warde-Farley, D.; Liu, Y.; Pesquita, C.; Faria, D.; Bull, S.; Pawson, T.; Morris, Q.; Wrana, J.L. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol., 2009, 27(2), 199-204.
[http://dx.doi.org/10.1038/nbt.1522] [PMID: 19182785]
[23]
Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction domains and post-translational modifications: structural features and drug discovery applications. Curr. Med. Chem., 2020, 27(37), 6306-6355.
[http://dx.doi.org/10.2174/0929867326666190620101637] [PMID: 31250750]
[24]
Machida, K.; Eschrich, S.; Li, J.; Bai, Y.; Koomen, J.; Mayer, B.J.; Haura, E.B. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling. PLoS One, 2010, 5(10)e13470
[http://dx.doi.org/10.1371/journal.pone.0013470] [PMID: 20976048]
[25]
Opitz, R.; Müller, M.; Reuter, C.; Barone, M.; Soicke, A.; Roske, Y.; Piotukh, K.; Huy, P.; Beerbaum, M.; Wiesner, B.; Beyermann, M.; Schmieder, P.; Freund, C.; Volkmer, R.; Oschkinat, H.; Schmalz, H.G.; Kühne, R. A modular toolkit to inhibit proline-rich motif-mediated protein-protein interactions. Proc. Natl. Acad. Sci. USA, 2015, 112(16), 5011-5016.
[http://dx.doi.org/10.1073/pnas.1422054112] [PMID: 25848013]
[26]
Buday, L.; Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell, 1993, 73(3), 611-620.
[http://dx.doi.org/10.1016/0092-8674(93)90146-H] [PMID: 8490966]
[27]
Ball, L.J.; Jarchau, T.; Oschkinat, H.; Walter, U. EVH1 domains: structure, function and interactions. FEBS Lett., 2002, 513(1), 45-52.
[http://dx.doi.org/10.1016/S0014-5793(01)03291-4] [PMID: 11911879]
[28]
Sudol, M.; Sliwa, K.; Russo, T. Functions of WW domains in the nucleus. FEBS Lett., 2001, 490(3), 190-195.
[http://dx.doi.org/10.1016/S0014-5793(01)02122-6] [PMID: 11223034]
[29]
Kay, B.K.; Williamson, M.P.; Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J., 2000, 14(2), 231-241.
[http://dx.doi.org/10.1096/fasebj.14.2.231] [PMID: 10657980]
[30]
Kurochkina, N.; Guha, U. SH3 domains: modules of protein-protein interactions. Biophys. Rev., 2013, 5(1), 29-39.
[http://dx.doi.org/10.1007/s12551-012-0081-z] [PMID: 28510178]
[31]
Mayer, B.J. SH3 domains: complexity in moderation. J. Cell Sci., 2001, 114(Pt 7), 1253-1263.
[PMID: 11256992]
[32]
Gmeiner, W.H.; Horita, D.A. Implications of SH3 domain structure and dynamics for protein regulation and drug design. Cell Biochem. Biophys., 2001, 35(2), 127-140.
[http://dx.doi.org/10.1385/CBB:35:2:127] [PMID: 11892788]
[33]
Carducci, M.; Perfetto, L.; Briganti, L.; Paoluzi, S.; Costa, S.; Zerweck, J.; Schutkowski, M.; Castagnoli, L.; Cesareni, G. The protein interaction network mediated by human SH3 domains. Biotechnol. Adv., 2012, 30(1), 4-15.
[http://dx.doi.org/10.1016/j.biotechadv.2011.06.012] [PMID: 21740962]
[34]
Saksela, K.; Permi, P. SH3 domain ligand binding: what’s the consensus and where’s the specificity? FEBS Lett., 2012, 586(17), 2609-2614.
[http://dx.doi.org/10.1016/j.febslet.2012.04.042] [PMID: 22710157]
[35]
Aitio, O.; Hellman, M.; Kesti, T.; Kleino, I.; Samuilova, O.; Pääkkönen, K.; Tossavainen, H.; Saksela, K.; Permi, P. Structural basis of PxxDY motif recognition in SH3 binding. J. Mol. Biol., 2008, 382(1), 167-178.
[http://dx.doi.org/10.1016/j.jmb.2008.07.008] [PMID: 18644376]
[36]
Lim, W.A. Reading between the lines: SH3 recognition of an intact protein. Structure, 1996, 4(6), 657-659.
[http://dx.doi.org/10.1016/S0969-2126(96)00071-8] [PMID: 8805558]
[37]
Teyra, J.; Sidhu, S.S.; Kim, P.M. Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains. FEBS Lett., 2012, 586(17), 2631-2637.
[http://dx.doi.org/10.1016/j.febslet.2012.05.043] [PMID: 22691579]
[38]
Kaneko, T.; Li, L.; Li, S.S. The SH3 domain--a family of versatile peptide- and protein-recognition module. Front. Biosci., 2008, 13, 4938-4952.
[http://dx.doi.org/10.2741/3053] [PMID: 18508559]
[39]
Dikic, I. CIN85/CMS family of adaptor molecules. FEBS Lett., 2002, 529(1), 110-115.
[http://dx.doi.org/10.1016/S0014-5793(02)03188-5] [PMID: 12354621]
[40]
Schnoor, M.; Stradal, T.E.; Rottner, K. Cortactin: cell functions of a multifaceted actin-binding protein. Trends Cell Biol., 2018, 28(2), 79-98.
[http://dx.doi.org/10.1016/j.tcb.2017.10.009] [PMID: 29162307]
[41]
Liu, S.K.; Smith, C.A.; Arnold, R.; Kiefer, F.; McGlade, C.J. The adaptor protein Gads (Grb2-related adaptor downstream of Shc) is implicated in coupling hemopoietic progenitor kinase-1 to the activated TCR. J. Immunol., 2000, 165(3), 1417-1426.
[http://dx.doi.org/10.4049/jimmunol.165.3.1417] [PMID: 10903746]
[42]
Camara-Artigas, A.; Ortiz-Salmeron, E.; Andujar-Sánchez, M.; Bacarizo, J.; Martin-Garcia, J.M. The role of water molecules in the binding of class I and II peptides to the SH3 domain of the Fyn tyrosine kinase. Acta Crystallogr. F Struct. Biol. Commun., 2016, 72(Pt 9), 707-712.
[http://dx.doi.org/10.1107/S2053230X16012310] [PMID: 27599862]
[43]
Nguyen, J.T.; Porter, M.; Amoui, M.; Miller, W.T.; Zuckermann, R.N.; Lim, W.A. Improving SH3 domain ligand selectivity using a non-natural scaffold. Chem. Biol., 2000, 7(7), 463-473.
[http://dx.doi.org/10.1016/S1074-5521(00)00130-7] [PMID: 10903934]
[44]
Han, S.; Liu, Q.; Wang, F.; Yuan, Z. Targeting the SH3 domain of human osteoclast-stimulating factor with rationally designed peptoid inhibitors. J. Pept. Sci., 2016, 22(8), 533-539.
[http://dx.doi.org/10.1002/psc.2901] [PMID: 27443979]
[45]
Smithgall, T.E. SH2 and SH3 domains: potential targets for anti-cancer drug design. J. Pharmacol. Toxicol. Methods, 1995, 34(3), 125-132.
[http://dx.doi.org/10.1016/1056-8719(95)00082-7] [PMID: 8573762]
[46]
Vohidov, F.; Knudsen, S.E.; Leonard, P.G.; Ohata, J.; Wheadon, M.J.; Popp, B.V.; Ladbury, J.E.; Ball, Z.T. Potent and selective inhibition of SH3 domains with dirhodium metalloinhibitors. Chem. Sci. (Camb.), 2015, 6(8), 4778-4783.
[http://dx.doi.org/10.1039/C5SC01602A] [PMID: 29142714]
[47]
Oneyama, C.; Nakano, H.; Sharma, S.V. UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug. Oncogene, 2002, 21(13), 2037-2050.
[http://dx.doi.org/10.1038/sj.onc.1205271] [PMID: 11960376]
[48]
Oneyama, C.; Agatsuma, T.; Kanda, Y.; Nakano, H.; Sharma, S.V.; Nakano, S.; Narazaki, F.; Tatsuta, K. Synthetic inhibitors of proline-rich ligand-mediated protein-protein interaction: potent analogs of UCS15A. Chem. Biol., 2003, 10(5), 443-451.
[http://dx.doi.org/10.1016/S1074-5521(03)00101-7] [PMID: 12770826]
[49]
Grover, P.; Shi, H.; Baumgartner, M.; Camacho, C.J.; Smithgall, T.E. Fluorescence polarization screening assays for small molecule allosteric modulators of ABL kinase function. PLoS One, 2015, 10(7)e0133590
[http://dx.doi.org/10.1371/journal.pone.0133590] [PMID: 26222440]
[50]
Chen, S.; Brier, S.; Smithgall, T.E.; Engen, J.R. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Protein Sci., 2007, 16(4), 572-581.
[http://dx.doi.org/10.1110/ps.062631007] [PMID: 17327393]
[51]
Inglis, S.R.; Stojkoski, C.; Branson, K.M.; Cawthray, J.F.; Fritz, D.; Wiadrowski, E.; Pyke, S.M.; Booker, G.W. Identification and specificity studies of small-molecule ligands for SH3 protein domains. J. Med. Chem., 2004, 47(22), 5405-5417.
[http://dx.doi.org/10.1021/jm049533z] [PMID: 15481978]
[52]
Naisbitt, S.; Kim, E.; Tu, J.C.; Xiao, B.; Sala, C.; Valtschanoff, J.; Weinberg, R.J.; Worley, P.F.; Sheng, M. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron, 1999, 23(3), 569-582.
[http://dx.doi.org/10.1016/S0896-6273(00)80809-0] [PMID: 10433268]
[53]
Brakeman, P.R.; Lanahan, A.A.; O’Brien, R.; Roche, K.; Barnes, C.A.; Huganir, R.L.; Worley, P.F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature, 1997, 386(6622), 284-288.
[http://dx.doi.org/10.1038/386284a0] [PMID: 9069287]
[54]
Tu, J.C.; Xiao, B.; Yuan, J.P.; Lanahan, A.A.; Leoffert, K.; Li, M.; Linden, D.J.; Worley, P.F. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron, 1998, 21(4), 717-726.
[http://dx.doi.org/10.1016/S0896-6273(00)80589-9] [PMID: 9808459]
[55]
Fedorov, A.A.; Fedorov, E.; Gertler, F.; Almo, S.C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Biol., 1999, 6(7), 661-665.
[http://dx.doi.org/10.1038/10717] [PMID: 10404224]
[56]
Beneken, J.; Tu, J.C.; Xiao, B.; Nuriya, M.; Yuan, J.P.; Worley, P.F.; Leahy, D.J. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron, 2000, 26(1), 143-154.
[http://dx.doi.org/10.1016/S0896-6273(00)81145-9] [PMID: 10798399]
[57]
Peterson, F.C.; Deng, Q.; Zettl, M.; Prehoda, K.E.; Lim, W.A.; Way, M.; Volkman, B.F. Multiple WASP-interacting protein recognition motifs are required for a functional interaction with N-WASP. J. Biol. Chem., 2007, 282(11), 8446-8453.
[http://dx.doi.org/10.1074/jbc.M609902200] [PMID: 17229736]
[58]
Zimmermann, J.; Jarchau, T.; Waltr, U.; Oschkinat, H.; Ball, L.J. Letter to the Editor: H-1, C-13 and N-15 resonance assignment of the human Spred2 EVH1 domain. In: J. Biomol. NMR; , 2004; 29, pp. (3)435-436.
[http://dx.doi.org/10.1023/b:jnmr.0000032526.17586.8c] [PMID: 15213456]
[59]
Le Clainche, C.; Carlier, M.F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev., 2008, 88(2), 489-513.
[http://dx.doi.org/10.1152/physrev.00021.2007] [PMID: 18391171]
[60]
Gertler, F.; Condeelis, J. Metastasis: tumor cells becoming MENAcing. Trends Cell Biol., 2011, 21(2), 81-90.
[http://dx.doi.org/10.1016/j.tcb.2010.10.001] [PMID: 21071226]
[61]
Hunke, C.; Hirsch, T.; Eichler, J. Structure-based synthetic mimicry of discontinuous protein binding sites: inhibitors of the interaction of Mena EVH1 domain with proline-rich ligands. ChemBioChem, 2006, 7(8), 1258-1264.
[http://dx.doi.org/10.1002/cbic.200500465] [PMID: 16810654]
[62]
Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov., 2014, 13(2), 105-121.
[http://dx.doi.org/10.1038/nrd4163] [PMID: 24481311]
[63]
Kofler, M.M.; Freund, C. The GYF domain. FEBS J., 2006, 273(2), 245-256.
[http://dx.doi.org/10.1111/j.1742-4658.2005.05078.x] [PMID: 16403013]
[64]
Ash, M.R.; Faelber, K.; Kosslick, D.; Albert, G.I.; Roske, Y.; Kofler, M.; Schuemann, M.; Krause, E.; Freund, C. Conserved beta-hairpin recognition by the GYF domains of Smy2 and GIGYF2 in mRNA surveillance and vesicular transport complexes. Structure, 2010, 18(8), 944-954.
[http://dx.doi.org/10.1016/j.str.2010.04.020] [PMID: 20696395]
[65]
Georgiev, A.; Sjöström, M.; Wieslander, A. Binding specificities of the GYF domains from two Saccharomyces cerevisiae paralogs. Protein Eng. Des. Sel., 2007, 20(9), 443-452.
[http://dx.doi.org/10.1093/protein/gzm041] [PMID: 17804396]
[66]
Freund, C.; Dötsch, V.; Nishizawa, K.; Reinherz, E.L.; Wagner, G. The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences. Nat. Struct. Biol., 1999, 6(7), 656-660.
[http://dx.doi.org/10.1038/10712] [PMID: 10404223]
[67]
Freund, C.; Schmalz, H-G.; Sticht, J.; Kuhne, R. Proteinprotein interactions as new drug targets; Klussmann E., S.J., Ed.; Springer, Berlin; , 2008, 186, pp. 408-422.
[http://dx.doi.org/10.1007/978-3-540-72843-6]
[68]
Ruiz-Martinez, J.; Krebs, C.E.; Makarov, V.; Gorostidi, A.; Martí-Massó, J.F.; Paisán-Ruiz, C. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J. Hum. Genet., 2015, 60(10), 637-640.
[http://dx.doi.org/10.1038/jhg.2015.69] [PMID: 26134514 ]
[69]
Kofler, M.; Motzny, K.; Beyermann, M.; Freund, C. Novel interaction partners of the CD2BP2-GYF domain. J. Biol. Chem., 2005, 280(39), 33397-33402.
[http://dx.doi.org/10.1074/jbc.M503989200] [PMID: 16000308]
[70]
Uryga-Polowy, V.; Kosslick, D.; Freund, C.; Rademann, J. Resin-bound aminofluorescein for C-terminal labeling of peptides: high-affinity polarization probes binding to polyproline-specific GYF domains. ChemBioChem, 2008, 9(15), 2452-2462.
[http://dx.doi.org/10.1002/cbic.200800329] [PMID: 18803191]
[71]
Freund, C.; Kühne, R.; Yang, H.; Park, S.; Reinherz, E.L.; Wagner, G. Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. EMBO J., 2002, 21(22), 5985-5995.
[http://dx.doi.org/10.1093/emboj/cdf602] [PMID: 12426371]
[72]
Pornillos, O.; Alam, S.L.; Davis, D.R.; Sundquist, W.I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat. Struct. Biol., 2002, 9(11), 812-817.
[http://dx.doi.org/10.1038/nsb856] [PMID: 12379843]
[73]
Pornillos, O.; Alam, S.L.; Rich, R.L.; Myszka, D.G.; Davis, D.R.; Sundquist, W.I. Structure and functional interactions of the Tsg101 UEV domain. EMBO J., 2002, 21(10), 2397-2406.
[http://dx.doi.org/10.1093/emboj/21.10.2397] [PMID: 12006492]
[74]
Yang, X.; Lennard, K.R.; He, C.; Walker, M.C.; Ball, A.T.; Doigneaux, C.; Tavassoli, A.; van der Donk, W.A. A lanthipeptide library used to identify a protein-protein interaction inhibitor. Nat. Chem. Biol., 2018, 14(4), 375-380.
[http://dx.doi.org/10.1038/s41589-018-0008-5] [PMID: 29507389]
[75]
Im, Y.J.; Kuo, L.; Ren, X.; Burgos, P.V.; Zhao, X.Z.; Liu, F.; Burke, T.R. Jr.; Bonifacino, J.S.; Freed, E.O.; Hurley, J.H. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure, 2010, 18(11), 1536-1547.
[http://dx.doi.org/10.1016/j.str.2010.08.010] [PMID: 21070952]
[76]
Anang, S.; Kaushik, N.; Hingane, S.; Kumari, A.; Gupta, J.; Asthana, S. Shalimar; Nayak, B.; Ranjith-Kumar, C.T.; Surjit, M. Potent inhibition of hepatitis E virus release by a cyclic peptide inhibitor of the interaction between viral open reading frame 3 protein and host tumor susceptibility gene 101. J. Virol., 2018, 92(20), e00684-e00718.
[http://dx.doi.org/10.1128/JVI.00684-18] [PMID: 30068652]
[77]
Srivastava, V.; Verma, P.K. The plant LIM proteins: unlocking the hidden attractions. Planta, 2017, 246(3), 365-375.
[http://dx.doi.org/10.1007/s00425-017-2715-7] [PMID: 28624850]
[78]
Smith, M.A.; Hoffman, L.M.; Beckerle, M.C. LIM proteins in actin cytoskeleton mechanoresponse. Trends Cell Biol., 2014, 24(10), 575-583.
[http://dx.doi.org/10.1016/j.tcb.2014.04.009] [PMID: 24933506]
[79]
Kadrmas, J.L.; Beckerle, M.C. The LIM domain: from the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol., 2004, 5(11), 920-931.
[http://dx.doi.org/10.1038/nrm1499] [PMID: 15520811]
[80]
Dawid, I.B.; Breen, J.J.; Toyama, R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet., 1998, 14(4), 156-162.
[http://dx.doi.org/10.1016/S0168-9525(98)01424-3] [PMID: 9594664]
[81]
Deane, J.E.; Mackay, J.P.; Kwan, A.H.; Sum, E.Y.; Visvader, J.E.; Matthews, J.M. Structural basis for the recognition of ldb1 by the N-terminal LIM domains of LMO2 and LMO4. EMBO J., 2003, 22(9), 2224-2233.
[http://dx.doi.org/10.1093/emboj/cdg196] [PMID: 12727888]
[82]
Järvinen, P.M.; Laiho, M. LIM-domain proteins in transforming growth factor β-induced epithelial-to-mesenchymal transition and myofibroblast differentiation. Cell. Signal., 2012, 24(4), 819-825.
[http://dx.doi.org/10.1016/j.cellsig.2011.12.004] [PMID: 22182513]
[83]
Sala, S.; Ampe, C. An emerging link between LIM domain proteins and nuclear receptors. Cell. Mol. Life Sci., 2018, 75(11), 1959-1971.
[http://dx.doi.org/10.1007/s00018-018-2774-3] [PMID: 29428964]
[84]
Zheng, Q.; Zhao, Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol. Cell, 2007, 99(9), 489-502.
[http://dx.doi.org/10.1042/BC20060126] [PMID: 17696879]
[85]
Li, A.; Ponten, F.; dos Remedios, C.G. The interactome of LIM domain proteins: the contributions of LIM domain proteins to heart failure and heart development. Proteomics, 2012, 12(2), 203-225.
[http://dx.doi.org/10.1002/pmic.201100492] [PMID: 22253135]
[86]
Matthews, J.M.; Lester, K.; Joseph, S.; Curtis, D.J. LIM-domain-only proteins in cancer. Nat. Rev. Cancer, 2013, 13(2), 111-122.
[http://dx.doi.org/10.1038/nrc3418] [PMID: 23303138]
[87]
Tran, M.K.; Kurakula, K.; Koenis, D.S.; de Vries, C.J. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. Biochim. Biophys. Acta, 2016, 1863(2), 219-228.
[http://dx.doi.org/10.1016/j.bbamcr.2015.11.002] [PMID: 26548523]
[88]
Liang, Y.; Bradford, W.H.; Zhang, J.; Sheikh, F. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys. Rev., 2018, 10(4), 1073-1085.
[http://dx.doi.org/10.1007/s12551-018-0434-3] [PMID: 29926425]
[89]
Grunewald, T.G.; Butt, E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol. Cancer, 2008, 7, 31.
[http://dx.doi.org/10.1186/1476-4598-7-31] [PMID: 18419822]
[90]
Prunier, C.; Prudent, R.; Kapur, R.; Sadoul, K.; Lafanechère, L. LIM kinases: cofilin and beyond. Oncotarget, 2017, 8(25), 41749-41763.
[http://dx.doi.org/10.18632/oncotarget.16978] [PMID: 28445157]
[91]
Nam, C.H.; Lobato, M.N.; Appert, A.; Drynan, L.F.; Tanaka, T.; Rabbitts, T.H. An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions. Oncogene, 2008, 27(36), 4962-4968.
[http://dx.doi.org/10.1038/onc.2008.130] [PMID: 18438427]
[92]
Appert, A.; Nam, C.H.; Lobato, N.; Priego, E.; Miguel, R.N.; Blundell, T.; Drynan, L.; Sewell, H.; Tanaka, T.; Rabbitts, T. Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res., 2009, 69(11), 4784-4790.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4774] [PMID: 19487290]
[93]
Harrison, B.A.; Almstead, Z.Y.; Burgoon, H.; Gardyan, M.; Goodwin, N.C.; Healy, J.; Liu, Y.; Mabon, R.; Marinelli, B.; Samala, L.; Zhang, Y.; Stouch, T.R.; Whitlock, N.A.; Gopinathan, S.; McKnight, B.; Wang, S.; Patel, N.; Wilson, A.G.E.; Hamman, B.D.; Rice, D.S.; Rawlins, D.B. Discovery and development of LX7101, a dual LIM-kinase and ROCK inhibitor for the treatment of glaucoma. ACS Med. Chem. Lett., 2014, 6(1), 84-88.
[http://dx.doi.org/10.1021/ml500367g] [PMID: 25589936]
[94]
Stradal, T.; Kranewitter, W.; Winder, S.J.; Gimona, M. CH domains revisited. FEBS Lett., 1998, 431(2), 134-137.
[http://dx.doi.org/10.1016/S0014-5793(98)00751-0] [PMID: 9708889]
[95]
Bramham, J.; Hodgkinson, J.L.; Smith, B.O.; Uhrín, D.; Barlow, P.N.; Winder, S.J. Solution structure of the calponin CH domain and fitting to the 3D-helical reconstruction of F-actin:calponin. Structure, 2002, 10(2), 249-258.
[http://dx.doi.org/10.1016/S0969-2126(02)00703-7] [PMID: 11839310]
[96]
Lorenz, S.; Vakonakis, I.; Lowe, E.D.; Campbell, I.D.; Noble, M.E.M.; Hoellerer, M.K. Structural analysis of the interactions between paxillin LD motifs and alpha-parvin. Structure, 2008, 16(10), 1521-1531.
[http://dx.doi.org/10.1016/j.str.2008.08.007] [PMID: 18940607]
[97]
Sjöblom, B.; Ylänne, J.; Djinović-Carugo, K. Novel structural insights into F-actin-binding and novel functions of calponin homology domains. Curr. Opin. Struct. Biol., 2008, 18(6), 702-708.
[http://dx.doi.org/10.1016/j.sbi.2008.10.003] [PMID: 18952167]
[98]
Galkin, V.E.; Orlova, A.; Cherepanova, O.; Lebart, M.C.; Egelman, E.H. High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1494-1498.
[http://dx.doi.org/10.1073/pnas.0708667105] [PMID: 18234857]
[99]
Klein, M.G.; Shi, W.; Ramagopal, U.; Tseng, Y.; Wirtz, D.; Kovar, D.R.; Staiger, C.J.; Almo, S.C. Structure of the actin crosslinking core of fimbrin. Structure, 2004, 12(6), 999-1013.
[http://dx.doi.org/10.1016/j.str.2004.04.010] [PMID: 15274920]
[100]
Gimona, M.; Winder, S.J. The calponin homology (CH) domain; Protein Science Encyclopedia, 2008.
[http://dx.doi.org/10.1002/9783527610754.pp02]
[101]
Beggs, A.H.; Hoffman, E.P.; Snyder, J.R.; Arahata, K.; Specht, L.; Shapiro, F.; Angelini, C.; Sugita, H.; Kunkel, L.M. Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am. J. Hum. Genet., 1991, 49(1), 54-67.
[PMID: 2063877]
[102]
Roberts, R.G.; Gardner, R.J.; Bobrow, M. Searching for the 1 in 2,400,000: a review of dystrophin gene point mutations. Hum. Mutat., 1994, 4(1), 1-11.
[http://dx.doi.org/10.1002/humu.1380040102] [PMID: 7951253]
[103]
Robertson, S.P.; Twigg, S.R.; Sutherland-Smith, A.J.; Biancalana, V.; Gorlin, R.J.; Horn, D.; Kenwrick, S.J.; Kim, C.A.; Morava, E.; Newbury-Ecob, R.; Orstavik, K.H.; Quarrell, O.W.; Schwartz, C.E.; Shears, D.J.; Suri, M.; Kendrick-Jones, J.; Wilkie, A.O. OPD-spectrum disorders clinical collaborative group. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat. Genet., 2003, 33(4), 487-491.
[http://dx.doi.org/10.1038/ng1119] [PMID: 12612583]
[104]
Hassoun, H.; Vassiliadis, J.N.; Murray, J.; Njolstad, P.R.; Rogus, J.J.; Ballas, S.K.; Schaffer, F.; Jarolim, P.; Brabec, V.; Palek, J. Characterization of the underlying molecular defect in hereditary spherocytosis associated with spectrin deficiency. Blood, 1997, 90(1), 398-406.
[PMID: 9207476]
[105]
Kim, S.; Cullis, D.N.; Feig, L.A.; Baleja, J.D. Solution structure of the Reps1 EH domain and characterization of its binding to NPF target sequences. Biochemistry, 2001, 40(23), 6776-6785.
[http://dx.doi.org/10.1021/bi002700m] [PMID: 11389591]
[106]
Naslavsky, N.; Caplan, S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol., 2011, 21(2), 122-131.
[http://dx.doi.org/10.1016/j.tcb.2010.10.003] [PMID: 21067929]
[107]
Ioannou, M.S.; Marat, A.L. The role of EHD proteins at the neuronal synapse. Sci. Signal., 2012, 5(221), jc1.
[http://dx.doi.org/10.1126/scisignal.2002989] [PMID: 22534130]
[108]
Miliaras, N.B.; Wendland, B. EH proteins: multivalent regulators of endocytosis (and other pathways). Cell Biochem. Biophys., 2004, 41(2), 295-318.
[http://dx.doi.org/10.1385/CBB:41:2:295] [PMID: 15475615]
[109]
de Beer, T.; Hoofnagle, A.N.; Enmon, J.L.; Bowers, R.C.; Yamabhai, M.; Kay, B.K.; Overduin, M. Molecular mechanism of NPF recognition by EH domains. Nat. Struct. Biol., 2000, 7(11), 1018-1022.
[http://dx.doi.org/10.1038/80924] [PMID: 11062555]
[110]
de Beer, T.; Carter, R.E.; Lobel-Rice, K.E.; Sorkin, A.; Overduin, M. Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. Science, 1998, 281(5381), 1357-1360.
[http://dx.doi.org/10.1126/science.281.5381.1357] [PMID: 9721102]
[111]
Kamens, A.J.; Mientkiewicz, K.M.; Eisert, R.J.; Walz, J.A.; Mace, C.R.; Kritzer, J.A. Thioether-stapled macrocyclic inhibitors of the EH domain of EHD1. Bioorg. Med. Chem., 2018, 26(6), 1206-1211.
[http://dx.doi.org/10.1016/j.bmc.2017.09.007] [PMID: 28951093]
[112]
Kamens, A.J.; Eisert, R.J.; Corlin, T.; Baleja, J.D.; Kritzer, J.A. Structured cyclic peptides that bind the EH domain of EHD1. Biochemistry, 2014, 53(29), 4758-4760.
[http://dx.doi.org/10.1021/bi500744q] [PMID: 25014215]
[113]
Khan, Z.; Lafon, M. PDZ domain-mediated protein interactions: therapeutic targets in neurological disorders. Curr. Med. Chem., 2014, 21(23), 2632-2641.
[http://dx.doi.org/10.2174/0929867321666140303145312] [PMID: 24606518]
[114]
Fanning, A.S.; Anderson, J.M. Protein-protein interactions: PDZ domain networks. Curr. Biol., 1996, 6(11), 1385-1388.
[http://dx.doi.org/10.1016/S0960-9822(96)00737-3] [PMID: 8939589]
[115]
Ranganathan, R.; Ross, E.M. PDZ domain proteins: scaffolds for signaling complexes. Curr. Biol., 1997, 7(12), R770-R773.
[http://dx.doi.org/10.1016/S0960-9822(06)00401-5] [PMID: 9382826]
[116]
Hata, Y.; Nakanishi, H.; Takai, Y. Synaptic PDZ domain-containing proteins. Neurosci. Res., 1998, 32(1), 1-7.
[http://dx.doi.org/10.1016/S0168-0102(98)00069-8] [PMID: 9831248]
[117]
Fan, J.S.; Zhang, M. Signaling complex organization by PDZ domain proteins. Neurosignals, 2002, 11(6), 315-321.
[http://dx.doi.org/10.1159/000068256] [PMID: 12566920]
[118]
Jeleń, F.; Oleksy, A.; Smietana, K.; Otlewski, J. PDZ domains - common players in the cell signaling. Acta Biochim. Pol., 2003, 50(4), 985-1017.
[http://dx.doi.org/10.18388/abp.2003_3628] [PMID: 14739991]
[119]
Lee, H-J.; Zheng, J.J. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun. Signal., 2010, 8, 8.
[http://dx.doi.org/10.1186/1478-811X-8-8] [PMID: 20509869]
[120]
Saras, J.; Heldin, C.H. PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem. Sci., 1996, 21(12), 455-458.
[http://dx.doi.org/10.1016/S0968-0004(96)30044-3] [PMID: 9009824]
[121]
Kim, E.; Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci., 2004, 5(10), 771-781.
[http://dx.doi.org/10.1038/nrn1517] [PMID: 15378037]
[122]
Garner, C.C.; Nash, J.; Huganir, R.L. PDZ domains in synapse assembly and signalling. Trends Cell Biol., 2000, 10(7), 274-280.
[http://dx.doi.org/10.1016/S0962-8924(00)01783-9] [PMID: 10856930]
[123]
Ponting, C.P.; Phillips, C.; Davies, K.E.; Blake, D.J. PDZ domains: targeting signalling molecules to sub-membranous sites. BioEssays, 1997, 19(6), 469-479.
[http://dx.doi.org/10.1002/bies.950190606] [PMID: 9204764]
[124]
Ivarsson, Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett., 2012, 586(17), 2638-2647.
[http://dx.doi.org/10.1016/j.febslet.2012.04.015] [PMID: 22576124]
[125]
Harris, B.Z.; Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci., 2001, 114(Pt 18), 3219-3231.
[http://dx.doi.org/10.1126/stke.2003.179.re7] [PMID: 11591811]
[126]
Nourry, C.; Grant, S.G.; Borg, J-P. PDZ domain proteins: plug and play! Sci. STKE, 2003, 2003(179), RE7.
[http://dx.doi.org/10.1126/stke.2003.179.re7] [PMID: 12709532]
[127]
Zhang, M.; Wang, W. Organization of signaling complexes by PDZ-domain scaffold proteins. Acc. Chem. Res., 2003, 36(7), 530-538.
[http://dx.doi.org/10.1021/ar020210b] [PMID: 12859214]
[128]
Ivanov, A.S.; Gnedenko, O.V.; Molnar, A.A.; Mezentsev, Y.V.; Lisitsa, A.V.; Archakov, A.I. Protein-protein interactions as new targets for drug design: virtual and experimental approaches. J. Bioinform. Comput. Biol., 2007, 5(2B), 579-592.
[http://dx.doi.org/10.1142/S0219720007002825] [PMID: 17636863]
[129]
Fanning, A.S.; Lye, M.F.; Anderson, J.M.; Lavie, A. Domain swapping within PDZ2 is responsible for dimerization of ZO proteins. J. Biol. Chem., 2007, 282(52), 37710-37716.
[http://dx.doi.org/10.1074/jbc.M707255200] [PMID: 17928286]
[130]
Grillo-Bosch, D.; Choquet, D.; Sainlos, M. Inhibition of PDZ domain-mediated interactions. Drug Discov. Today. Technol., 2013, 10(4), e531-e540.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.003] [PMID: 24451645]
[131]
Hori, K.; Ajioka, K.; Goda, N.; Shindo, A.; Takagishi, M.; Tenno, T.; Hiroaki, H. Discovery of potent disheveled/Dvl inhibitors using virtual screening optimized with NMR-based docking performance index. Front. Pharmacol., 2018, 9, 983.
[http://dx.doi.org/10.3389/fphar.2018.00983] [PMID: 30233369]
[132]
Shan, J.; Zhang, X.; Bao, J.; Cassell, R.; Zheng, J.J. Synthesis of potent dishevelled PDZ domain inhibitors guided by virtual screening and NMR studies. Chem. Biol. Drug Des., 2012, 79(4), 376-383.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01295.x] [PMID: 22172211]
[133]
Thorsen, T.S.; Madsen, K.L.; Rebola, N.; Rathje, M.; Anggono, V.; Bach, A.; Moreira, I.S.; Stuhr-Hansen, N.; Dyhring, T.; Peters, D.; Beuming, T.; Huganir, R.; Weinstein, H.; Mulle, C.; Strømgaard, K.; Rønn, L.C.B.; Gether, U. Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 413-418.
[http://dx.doi.org/10.1073/pnas.0902225107] [PMID: 20018661]
[134]
Saupe, J.; Roske, Y.; Schillinger, C.; Kamdem, N.; Radetzki, S.; Diehl, A.; Oschkinat, H.; Krause, G.; Heinemann, U.; Rademann, J. Discovery, structure-activity relationship studies, and crystal structure of nonpeptide inhibitors bound to the Shank3 PDZ domain. ChemMedChem, 2011, 6(8), 1411-1422.
[http://dx.doi.org/10.1002/cmdc.201100094] [PMID: 21626699]
[135]
Bach, A.; Clausen, B.H.; Møller, M.; Vestergaard, B.; Chi, C.N.; Round, A.; Sørensen, P.L.; Nissen, K.B.; Kastrup, J.S.; Gajhede, M.; Jemth, P.; Kristensen, A.S.; Lundström, P.; Lambertsen, K.L.; Strømgaard, K. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3317-3322.
[http://dx.doi.org/10.1073/pnas.1113761109] [PMID: 22343531]
[136]
Bach, A.; Chi, C.N.; Pang, G.F.; Olsen, L.; Kristensen, A.S.; Jemth, P.; Strømgaard, K. Design and synthesis of highly potent and plasma-stable dimeric inhibitors of the PSD-95-NMDA receptor interaction. Angew. Chem. Int. Ed. Engl., 2009, 48(51), 9685-9689.
[http://dx.doi.org/10.1002/anie.200904741] [PMID: 19937879]
[137]
Caillet-Saguy, C.; Maisonneuve, P.; Delhommel, F.; Terrien, E.; Babault, N.; Lafon, M.; Cordier, F.; Wolff, N. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. Prog. Biophys. Mol. Biol., 2015, 119(1), 53-59.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.02.007] [PMID: 25748547]
[138]
Babault, N.; Cordier, F.; Lafage, M.; Cockburn, J.; Haouz, A.; Prehaud, C.; Rey, F.A.; Delepierre, M.; Buc, H.; Lafon, M.; Wolff, N. Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death. Structure, 2011, 19(10), 1518-1524.
[http://dx.doi.org/10.1016/j.str.2011.07.007] [PMID: 22000519]
[139]
Hammond, M.C.; Harris, B.Z.; Lim, W.A.; Bartlett, P.A. Beta strand peptidomimetics as potent PDZ domain ligands. Chem. Biol., 2006, 13(12), 1247-1251.
[http://dx.doi.org/10.1016/j.chembiol.2006.11.010] [PMID: 17185220]
[140]
Piserchio, A.; Salinas, G.D.; Li, T.; Marshall, J.; Spaller, M.R.; Mierke, D.F. Targeting specific PDZ domains of PSD-95; structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Chem. Biol., 2004, 11(4), 469-473.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.013] [PMID: 15123241]
[141]
Patra, C.R.; Rupasinghe, C.N.; Dutta, S.K.; Bhattacharya, S.; Wang, E.; Spaller, M.R.; Mukhopadhyay, D. Chemically modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer. ACS Chem. Biol., 2012, 7(4), 770-779.
[http://dx.doi.org/10.1021/cb200536r] [PMID: 22292614]
[142]
Vincenzi, M.; Mercurio, F.A.; Leone, M. Sam domains in multiple diseases. Curr. Med. Chem., 2020, 27(3), 450-476.
[http://dx.doi.org/10.2174/0929867325666181009114445] [PMID: 30306850]
[143]
Kim, C.A.; Bowie, J.U. SAM domains: uniform structure, diversity of function. Trends Biochem. Sci., 2003, 28(12), 625-628.
[http://dx.doi.org/10.1016/j.tibs.2003.11.001] [PMID: 14659692]
[144]
Knight, M.J.; Leettola, C.; Gingery, M.; Li, H.; Bowie, J.U. A human sterile alpha motif domain polymerizome. Protein Sci., 2011, 20(10), 1697-1706.
[http://dx.doi.org/10.1002/pro.703] [PMID: 21805519]
[145]
Neira, J.L.; Díaz-García, C.; Prieto, M.; Coutinho, A. The C-terminal SAM domain of p73 binds to the N terminus of MDM2. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(4), 760-770.
[http://dx.doi.org/10.1016/j.bbagen.2019.01.019] [PMID: 30735716]
[146]
Mercurio, F.A.; Leone, M. The sam domain of EphA2 receptor and its relevance to cancer: a novel challenge for drug discovery? Curr. Med. Chem., 2016, 23(42), 4718-4734.
[http://dx.doi.org/10.2174/0929867323666161101100722] [PMID: 27804871]
[147]
Kukuk, L.; Dingley, A.J.; Granzin, J.; Nagel-Steger, L.; Thiagarajan-Rosenkranz, P.; Ciupka, D.; Hänel, K.; Batra-Safferling, R.; Pacheco, V.; Stoldt, M.; Pfeffer, K.; Beer-Hammer, S.; Willbold, D.; Koenig, B.W. Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association. Sci. Rep., 2019, 9(1), 54.
[http://dx.doi.org/10.1038/s41598-018-37185-3] [PMID: 30631134]
[148]
Kong, J.; Wang, M.M.; He, S.Y.; Peng, X.; Qin, X.H. Structural characterization and directed modification of Sus scrofa SAMHD1 reveal the mechanism underlying deoxynucleotide regulation. FEBS J., 2019, 286(19), 3844-3857.
[http://dx.doi.org/10.1111/febs.14943] [PMID: 31152619]
[149]
Leone, M.; Cellitti, J.; Pellecchia, M. NMR studies of a heterotypic Sam-Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor. Biochemistry, 2008, 47(48), 12721-12728.
[http://dx.doi.org/10.1021/bi801713f] [PMID: 18991394]
[150]
Mercurio, F.A.; Marasco, D.; Pirone, L.; Pedone, E.M.; Pellecchia, M.; Leone, M. Solution structure of the first Sam domain of Odin and binding studies with the EphA2 receptor. Biochemistry, 2012, 51(10), 2136-2145.
[http://dx.doi.org/10.1021/bi300141h] [PMID: 22332920]
[151]
Mercurio, F.A.; Marasco, D.; Pirone, L.; Scognamiglio, P.L.; Pedone, E.M.; Pellecchia, M.; Leone, M. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights. ChemBioChem, 2013, 14(1), 100-106.
[http://dx.doi.org/10.1002/cbic.201200592] [PMID: 23239578]
[152]
Wang, Y.; Shang, Y.; Li, J.; Chen, W.; Li, G.; Wan, J.; Liu, W.; Zhang, M. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. eLife, 2018, 7e35677
[http://dx.doi.org/10.7554/eLife.35677] [PMID: 29749928]
[153]
Kim, C.A.; Sawaya, M.R.; Cascio, D.; Kim, W.; Bowie, J.U. Structural organization of a sex-comb-on-midleg/polyhomeotic copolymer. J. Biol. Chem., 2005, 280(30), 27769-27775.
[http://dx.doi.org/10.1074/jbc.M503055200] [PMID: 15905166]
[154]
Rajakulendran, T.; Sahmi, M.; Kurinov, I.; Tyers, M.; Therrien, M.; Sicheri, F. CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 2836-2841.
[http://dx.doi.org/10.1073/pnas.0709705105] [PMID: 18287031]
[155]
Stafford, R.L.; Hinde, E.; Knight, M.J.; Pennella, M.A.; Ear, J.; Digman, M.A.; Gratton, E.; Bowie, J.U. Tandem SAM domain structure of human Caskin1: a presynaptic, self-assembling scaffold for CASK. Structure, 2011, 19(12), 1826-1836.
[http://dx.doi.org/10.1016/j.str.2011.09.018] [PMID: 22153505]
[156]
Leettola, C.N.; Knight, M.J.; Cascio, D.; Hoffman, S.; Bowie, J.U. Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3. BMC Struct. Biol., 2014, 14, 17.
[http://dx.doi.org/10.1186/1472-6807-14-17] [PMID: 24998259]
[157]
Thanos, C.D.; Goodwill, K.E.; Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science, 1999, 283(5403), 833-836.
[http://dx.doi.org/10.1126/science.283.5403.833] [PMID: 9933164]
[158]
Zhuang, G.; Hunter, S.; Hwang, Y.; Chen, J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J. Biol. Chem., 2007, 282(4), 2683-2694.
[http://dx.doi.org/10.1074/jbc.M608509200] [PMID: 17135240]
[159]
Kim, J.; Lee, H.; Kim, Y.; Yoo, S.; Park, E.; Park, S. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol. Cell. Biol., 2010, 30(7), 1582-1592.
[http://dx.doi.org/10.1128/MCB.01605-09] [PMID: 20100865]
[160]
Lee, H.J.; Hota, P.K.; Chugha, P.; Guo, H.; Miao, H.; Zhang, L.; Kim, S.J.; Stetzik, L.; Wang, B.C.; Buck, M. NMR structure of a heterodimeric SAM:SAM complex: characterization and manipulation of EphA2 binding reveal new cellular functions of SHIP2. Structure, 2012, 20(1), 41-55.
[http://dx.doi.org/10.1016/j.str.2011.11.013] [PMID: 22244754]
[161]
Mercurio, F.A.; Scognamiglio, P.L.; Di Natale, C.; Marasco, D.; Pellecchia, M.; Leone, M. CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam. Biopolymers, 2014, 101(11), 1088-1098.
[http://dx.doi.org/10.1002/bip.22512] [PMID: 24889333]
[162]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Saviano, M.; Leone, M. Peptide fragments of odin-sam1: conformational analysis and interaction studies with EphA2-sam. ChemBioChem, 2015, 16(11), 1629-1636.
[http://dx.doi.org/10.1002/cbic.201500197] [PMID: 26120079]
[163]
Mercurio, F.A.; Marasco, D.; Di Natale, C.; Pirone, L.; Costantini, S.; Pedone, E.M.; Leone, M. Targeting EphA2-Sam and its interactome: design and evaluation of helical peptides enriched in charged residues. ChemBioChem, 2016, 17(22), 2179-2188.
[http://dx.doi.org/10.1002/cbic.201600413] [PMID: 27763725]
[164]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Iannitti, R.; Marasco, D.; Pedone, E.M.; Palumbo, R.; Leone, M. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors. Sci. Rep., 2017, 7(1), 17474.
[http://dx.doi.org/10.1038/s41598-017-17684-5] [PMID: 29234063]
[165]
Mercurio, F.A.; Pirone, L.; Di Natale, C.; Marasco, D.; Pedone, E.M.; Leone, M. Sam domain-based stapled peptides: Structural analysis and interaction studies with the Sam domains from the EphA2 receptor and the lipid phosphatase Ship2. Bioorg. Chem., 2018, 80, 602-610.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.013] [PMID: 30036816]
[166]
Mercurio, F.A.; Di Natale, C.; Pirone, L.; Marasco, D.; Calce, E.; Vincenzi, M.; Pedone, E.M.; De Luca, S.; Leone, M. Design and analysis of EphA2-SAM peptide ligands: a multi-disciplinary screening approach. Bioorg. Chem., 2019, 84, 434-443.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.009] [PMID: 30576907]
[167]
Fraley, T.S.; Tran, T.C.; Corgan, A.M.; Nash, C.A.; Hao, J.; Critchley, D.R.; Greenwood, J.A. Phosphoinositide binding inhibits alpha-actinin bundling activity. J. Biol. Chem., 2003, 278(26), 24039-24045.
[http://dx.doi.org/10.1074/jbc.M213288200] [PMID: 12716899]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy