Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

位于单CpG二核苷酸的宫颈癌CXCL13基因启动子超甲基化促进细胞迁移

卷 20, 期 5, 2020

页: [355 - 363] 页: 9

弟呕挨: 10.2174/1568009620666200102123635

价格: $65

摘要

背景: 趋化因子13 (CXCL13)及其趋化因子受体5 (CXCR5)参与各种癌症的发病。然而,它们在宫颈癌(CC)中的作用仍然未知。 目的: 讨趋化因子13 (CXCL13)及其受体在宫颈癌中的作用。 方法: 分析CXCL13/CXCR5及CXCR5+CD8+ T细胞在宫颈癌、宫颈上皮内瘤变(CIN)、正常宫颈上皮(NCE)组织及宫颈癌细胞系中的表达及浸润情况,并分析其临床意义。体外,我们利用CXCL13过表达和DNA甲基转移酶抑制(通过S110)研究其生物学功能和调控CXCL13表达的潜在机制。肿瘤生长和肝转移也评估在异种皮下种植模型。 结果: CXCR5+CD8+ T细胞浸润明显降低。CXCL13下调与FIGO分期、淋巴结转移、间质浸润深度、病理分级显著相关。CXCL13过表达抑制了CC细胞的迁移。CXCL13的下调与CC细胞系的高甲基化和原发性肿瘤活检相关。此外,CXCL13启动子元件中HIF-1a转录因子基序处的CpG二核苷酸在CC细胞中持续甲基化并与HIF-1a相关。在异种移植模型中,过表达CXCL13和S110显著抑制肿瘤生长和肝转移;而低表达则增加了CC患者的死亡风险。 结论: DNA甲基化依赖性CXCL13下调可能促进宫颈癌的发生和进展。

关键词: 宫颈癌

图形摘要

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Wu, Z.; Qin, Y.; Yu, L.; Lin, C.; Wang, H.; Cui, J.; Liu, B.; Liao, Y.; Warren, D.; Zhang, X.; Chen, W. Association between human papillomavirus (HPV) 16, HPV18, and other HR-HPV viral load and the histological classification of cervical lesions: Results from a large-scale cross-sectional study. J. Med. Virol., 2017, 89(3), 535-541.
[http://dx.doi.org/10.1002/jmv.24645] [PMID: 27464021]
[3]
Ellingsen, C.; Walenta, S.; Hompland, T.; Mueller-Klieser, W.; Rofstad, E.K. The microenvironment of cervical carcinoma xenografts: Associations with lymph node metastasis and its assessment by DCE-MRI. Transl. Oncol., 2013, 6(5), 607-617.
[http://dx.doi.org/10.1593/tlo.13313] [PMID: 24151541]
[4]
Karhausen, J.; Furuta, G.T.; Tomaszewski, J.E.; Johnson, R.S.; Colgan, S.P.; Haase, V.H. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest., 2004, 114(8), 1098-1106.
[http://dx.doi.org/10.1172/JCI200421086] [PMID: 15489957]
[5]
Zlotnik, A.; Burkhardt, A.M.; Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol., 2011, 11(9), 597-606.
[http://dx.doi.org/10.1038/nri3049] [PMID: 21866172]
[6]
Aust, G.; Sittig, D.; Becherer, L.; Anderegg, U.; Schütz, A.; Lamesch, P.; Schmücking, E. The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur. J. Endocrinol., 2004, 150(2), 225-234.
[http://dx.doi.org/10.1530/eje.0.1500225] [PMID: 14763921]
[7]
Ammirante, M.; Shalapour, S.; Kang, Y.; Jamieson, C.A.; Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14776-14781.
[http://dx.doi.org/10.1073/pnas.1416498111] [PMID: 25267627]
[8]
Sambandam, Y.; Sundaram, K.; Liu, A.; Kirkwood, K.L.; Ries, W.L.; Reddy, S.V. CXCL13 activation of c-Myc induces RANK ligand expression in stromal/preosteoblast cells in the oral squamous cell carcinoma tumor-bone microenvironment. Oncogene, 2013, 32(1), 97-105.
[http://dx.doi.org/10.1038/onc.2012.24] [PMID: 22330139]
[9]
Qi, X.W.; Xia, S.H.; Yin, Y.; Jin, L.F.; Pu, Y.; Hua, D.; Wu, H.R. Expression features of CXCR5 and its ligand, CXCL13 associated with poor prognosis of advanced colorectal cancer. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(13), 1916-1924.
[PMID: 25010623]
[10]
Singh, R.; Gupta, P.; Kloecker, G.H.; Singh, S.; Lillard, J.W., Jr Expression and clinical significance of CXCR5/CXCL13 in human non‑small cell lung carcinoma. Int. J. Oncol., 2014, 45(6), 2232-2240.
[http://dx.doi.org/10.3892/ijo.2014.2688] [PMID: 25271023]
[11]
Razis, E.; Kalogeras, K.T.; Kotoula, V.; Eleftheraki, A.G.; Nikitas, N.; Kronenwett, R.; Timotheadou, E.; Christodoulou, C.; Pectasides, D.; Gogas, H.; Wirtz, R.M.; Makatsoris, T.; Bafaloukos, D.; Aravantinos, G.; Televantou, D.; Pavlidis, N.; Fountzilas, G. Improved outcome of high-risk early HER2 positive breast cancer with high CXCL13-CXCR5 messenger RNA expression. Clin. Breast Cancer, 2012, 12(3), 183-193.
[http://dx.doi.org/10.1016/j.clbc.2012.03.006] [PMID: 22607768]
[12]
Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell, 2010, 40(2), 294-309.
[http://dx.doi.org/10.1016/j.molcel.2010.09.022] [PMID: 20965423]
[13]
Nanduri, J.; Semenza, G.L.; Prabhakar, N.R. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(6), L1096-L1100.
[http://dx.doi.org/10.1152/ajplung.00325.2017] [PMID: 28839104]
[14]
Karouzakis, E.; Rengel, Y.; Jüngel, A.; Kolling, C.; Gay, R.E.; Michel, B.A.; Tak, P.P.; Gay, S.; Neidhart, M.; Ospelt, C. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun., 2011, 12(8), 643-652.
[http://dx.doi.org/10.1038/gene.2011.45] [PMID: 21753787]
[15]
Ma, D.; Chang, L.Y.; Zhao, S.; Zhao, J.J.; Xiong, Y.J.; Cao, F.Y.; Yuan, L.; Zhang, Q.; Wang, X.Y.; Geng, M.L.; Zheng, H.Y.; Li, O. KLF5 promotes cervical cancer proliferation, migration and invasion in a manner partly dependent on TNFRSF11a expression. Sci. Rep., 2017, 7(1), 15683.
[http://dx.doi.org/10.1038/s41598-017-15979-1] [PMID: 29146991]
[16]
Wang, W.; Zhang, L.; Zhang, X.; Xue, R.; Li, L.; Zhao, W.; Fu, Q.; Mi, W.; Li, Y. Lentiviral-mediated overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus ameliorates LPS-induced cognitive impairment in mice. Front. Pharmacol., 2016, 7, 384.
[http://dx.doi.org/10.3389/fphar.2016.00384] [PMID: 27803668]
[17]
Coral, S.; Parisi, G.; Nicolay, H.J.; Colizzi, F.; Danielli, R.; Fratta, E.; Covre, A.; Taverna, P.; Sigalotti, L.; Maio, M. Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide. Cancer Immunol. Immunother., 2013, 62(3), 605-614.
[http://dx.doi.org/10.1007/s00262-012-1365-7] [PMID: 23138873]
[18]
Chuang, J.C.; Warner, S.L.; Vollmer, D.; Vankayalapati, H.; Redkar, S.; Bearss, D.J.; Qiu, X.; Yoo, C.B.; Jones, P.A. S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol. Cancer Ther., 2010, 9(5), 1443-1450.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1048] [PMID: 20442312]
[19]
He, R.; Hou, S.; Liu, C.; Zhang, A.; Bai, Q.; Han, M.; Yang, Y.; Wei, G.; Shen, T.; Yang, X.; Xu, L.; Chen, X.; Hao, Y.; Wang, P.; Zhu, C.; Ou, J.; Liang, H.; Ni, T.; Zhang, X.; Zhou, X.; Deng, K.; Chen, Y.; Luo, Y.; Xu, J.; Qi, H.; Wu, Y.; Ye, L. Erratum: Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature, 2016, 540(7633), 7663, 470.
[20]
He, Q.F.; Xu, Y.; Li, J.; Huang, Z.M.; Li, X.H.; Wang, X. CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Brief. Funct. Genomics, 2019, 18(2), 99-106.
[http://dx.doi.org/10.1093/bfgp/ely006] [PMID: 29554204]
[21]
Chen, D.S.; Irving, B.A.; Hodi, F.S. Molecular pathways: Next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin. Cancer Res., 2012, 18(24), 6580-6587.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1362] [PMID: 23087408]
[22]
Jones, G.W.; Hill, D.G.; Jones, S.A. Understanding immune cells in tertiary lymphoid organ development: It is all starting to come together. Front. Immunol., 2016, 7, 401.
[http://dx.doi.org/10.3389/fimmu.2016.00401] [PMID: 27752256]
[23]
Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet., 2002, 3(6), 415-428.
[http://dx.doi.org/10.1038/nrg816] [PMID: 12042769]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy