Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Anticancer Potential and Molecular Targets of Pristimerin: A Mini- Review

Author(s): Bashir A. Yousef, Hozeifa M. Hassan, Lu-Yong Zhang and Zhen-Zhou Jiang

Volume 17, Issue 2, 2017

Page: [100 - 108] Pages: 9

DOI: 10.2174/1568009616666160112105824

Price: $65

Abstract

Pristimerin, a natural triterpenoid isolated form Celastrus and Maytenus spp, has been shown to possess a variety of biological and pharmacological effects. Recently, pristimerin has attracted more attention, especially for its potential anticancer activities. The anticancer activities of pristimerin have been illustrated in various cancer cell lines and animal models. It has been found to inhibit in vitro and in vivo proliferation, survival, angiogenesis and metastasis of tumor cells. These activities have been attributed to its modulation of various molecular targets such as cyclins, apoptosis- related proteins, proteasome activity, reactive oxygen species, as well as NF-κB, AKT/mTOR and MAPK/ERK pathways. This mini-review discussed the cellular impact and animal studies of pristimerin treatment, with more attention on the various molecular targets of pristimerin.

Keywords: Antitumor agents, natural compounds, NF-κB, pharmacological effects, pristimerin.

Next »
Graphical Abstract

[1]
Rates, S.M. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[2]
Shah, U.; Shah, R.; Acharya, S.; Acharya, N. Novel anticancer agents from plant sources. Chin. J. Nat. Med., 2013, 11(1), 16-23.
[3]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[4]
Phillips, D.R.; Rasbery, J.M.; Bartel, B.; Matsuda, S.P. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol., 2006, 9(3), 305-314.
[5]
Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci., 2008, 65(19), 2979-2999.
[6]
Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[7]
Petronelli, A.; Pannitteri, G.; Testa, U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs, 2009, 20(10), 880-892.
[8]
Brinker, A.M.; Ma, J.; Lipsky, P.E.; Raskin, I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry, 2007, 68(6), 732-766.
[9]
Tang, W.H.; Bai, S.T.; Tong, L.; Duan, W.J.; Su, J.W.; Chen, J.X.; Xie, Y. Chemical constituents from Celastrus aculeatus Merr. Biochem. Syst. Ecol., 2014, 54, 78-82.
[10]
Luo, D.Q.; Wang, H.; Tian, X.; Shao, H.J.; Liu, J.K. Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag. Sci., 2005, 61(1), 85-90.
[11]
Coppede, J.; Pina, E.; Paz, T.; Fachin, A.; Marins, M.; Bertoni, B.; França, S.; Pereira, A. Cell cultures of Maytenus ilicifolia Mart. are richer sources of quinone-methide triterpenoids than plant roots in natura. Plant Cell Tissue Organ Cult., 2014, 118(1), 33-43.
[12]
Murayama, T.; Eizuru, Y.; Yamada, R.; Sadanari, H.; Matsubara, K.; Rukung, G.; Tolo, F.M.; Mungai, G.M.; Kofi-Tsekpo, M. Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl. & Zeyh.). Antivir. Chem. Chemother., 2007, 18(3), 133-139.
[13]
Mena-Rejón, G.J.; Pérez-Espadas, A.R.; Moo-Puc, R.E.; Cedillo-Rivera, R.; Bazzocchi, I.L.; Jiménez-Diaz, I.A.; Quijano, L. Antigiardial Activity of Triterpenoids from Root Bark of Hippocratea excelsa. J. Nat. Prod., 2007, 70(5), 863-865.
[14]
Gonzalez, J.G. delle Monache, G.; delle Monache, F.; Marini-Bettolo, G.B. Chuchuhuasha - a drug used in folk medicine in the Amazonian and Andean areas. A chemical study of Maytenus laevis. J. Ethnopharmacol., 1982, 5(1), 73-77.
[15]
Shirota, O.; Morita, H.; Takeya, K.; Itokawa, H.; Iitaka, Y. Cytotoxic Aromatic Triterpenes from Maytenus ilicifolia and Maytenus chuchuhuasca. J. Nat. Prod., 1994, 57(12), 1675-1681.
[16]
Gullo, F.P.; Sardi, J.C.; Santos, V.A.; Sangalli-Leite, F.; Pitangui, N.S.; Rossi, S.A.; de Paula, E.; Silva, A.C. Soares, L.A.; Silva, J.F.; Oliveira, H.C.; Furlan, M.; Silva, D.H.; Bolzani, V.S.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal activity of maytenin and pristimerin. Evid. Based Complement. Alternat. Med., 2012, 340787(10), 22.
[17]
Figueiredo, J.N.; Raz, B.; Sequin, U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J. Nat. Prod., 1998, 61(6), 718-723.
[18]
Jeller, A.H.; Silva, D.H.; Lião, L.M.; Bolzani, V.D.; Furlan, M. Antioxidant phenolic and quinonemethide triterpenes from Cheiloclinium Cognatum. Phytochemistry, 2004, 65(13), 1977-1982.
[19]
Carvalho, P.R.; Silva, D.H.; Bolzani, V.S.; Furlan, M. Antioxidant Quinonemethide Triterpenes from Salacia campestris. Chem. Biodivers., 2005, 2(3), 367-372.
[20]
Dos Santos, V.A.; Dos Santos, D.P.; Castro-Gamboa, I.; Zanoni, M.V.; Furlan, M. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae). Molecules, 2010, 15(10), 6956-6973.
[21]
Sassa, H.; Kogure, K.; Takaishi, Y.; Terada, H. Structural basis of potent antiperoxidation activity of the triterpene celastrol in mitochondria: effect of negative membrane surface charge on lipid peroxidation. Free Radic. Biol. Med., 1994, 17(3), 201-207.
[22]
Gao, J.M.; Wu, W.J.; Zhang, J.W.; Konishi, Y. The dihydro-β-agarofuran sesquiterpenoids. Nat. Prod. Rep., 2007, 24(5), 1153-1189.
[23]
Kim, H.J.; Park, G.M.; Kim, J.K. Anti-inflammatory effect of pristimerin on lipopolysaccharide-induced inflammatory responses in murine macrophages. Arch. Pharm. Res., 2013, 36(4), 495-500.
[24]
Dirsch, V.M.; Kiemer, A.K.; Wagner, H.; Vollmar, A.M. The triterpenoid quinonemethide pristimerin inhibits induction of inducible nitric oxide synthase in murine macrophages. Eur. J. Pharmacol., 1997, 336(2-3), 211-217.
[25]
King, A.R.; Dotsey, E.Y.; Lodola, A.; Jung, K.M.; Ghomian, A.; Qiu, Y.; Fu, J.; Mor, M.; Piomelli, D. Discovery of potent and reversible monoacylglycerol lipase inhibitors. Chem. Biol., 2009, 16(10), 1045-1052.
[26]
Yan, Y.Y.; Bai, J.P.; Xie, Y.; Yu, J.Z.; Ma, C.G. The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol. Lett., 2013, 5(1), 242-248.
[27]
Wang, Y.; Zhou, Y.; Zhou, H.; Jia, G.; Liu, J.; Han, B.; Cheng, Z.; Jiang, H.; Pan, S.; Sun, B. Pristimerin causes G1 arrest, induces apoptosis, and enhances the chemosensitivity to gemcitabine in pancreatic cancer cells. PLoS One, 2012, 7(8), e43826.
[28]
Liu, Y.B.; Gao, X.; Deeb, D.; Brigolin, C.; Zhang, Y.; Shaw, J.; Pindolia, K.; Gautam, S.C. Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int. J. Oncol., 2014, 45(4), 1735-1741.
[29]
Guo, Y.; Zhang, W.; Yan, Y.Y.; Ma, C.G.; Wang, X.; Wang, C.; Zhao, J.L. Triterpenoid pristimerin induced HepG2 cells apoptosis through ROS-mediated mitochondrial dysfunction. J. BUON, 2013, 18(2), 477-485.
[30]
Byun, J.Y.; Kim, M.J.; Eum, D.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Hyun, J.W.; Lee, Y.S.; Lee, J.S.; Yoon, M.Y.; Lee, S.J. Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol. Pharmacol., 2009, 76(4), 734-744.
[31]
Eum, D.Y.; Byun, J.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Lee, J.H.; Chung, H.Y.; An, S.; Suh, Y.; Kim, M.J.; Lee, S.J. Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anticancer Drugs, 2011, 22(8), 763-773.
[32]
Tiedemann, R.E.; Schmidt, J.; Keats, J.J.; Shi, C.X.; Zhu, Y.X.; Palmer, S.E.; Mao, X.; Schimmer, A.D.; Stewart, A.K. Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood, 2009, 113(17), 4027-4037.
[33]
Lu, Z.; Jin, Y.; Chen, C.; Li, J.; Cao, Q.; Pan, J. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-kappaB signaling and depleting Bcr-Abl. Mol. Cancer, 2010, 9(112), 1476-4598.
[34]
Wu, C.C.; Chan, M.L.; Chen, W.Y.; Tsai, C.Y.; Chang, F.R.; Wu, Y.C. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol. Cancer Ther., 2005, 4(8), 1277-1285.
[35]
Lee, J.S.; Yoon, I.S.; Lee, M.S.; Cha, E.Y.; Thuong, P.T.; Diep, T.T.; Kim, J.R. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells. Biol. Pharm. Bull., 2013, 36(2), 316-325.
[36]
Wei, W.; Wu, S.; Wang, X.; Sun, C.K.; Yang, X.; Yan, X.; Chua, M.S.; So, S. Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget, 2014, 5(14), 5819-5831.
[37]
Gray, P.J., Jr; Prince, T.; Cheng, J.; Stevenson, M.A.; Calderwood, S.K. Targeting the oncogene and kinome chaperone CDC37. Nat. Rev. Cancer, 2008, 8(7), 491-495.
[38]
Yerlikaya, A.; Yontem, M. The significance of ubiquitin proteasome pathway in cancer development. Rec. Pat. Anticancer Drug Discov., 2013, 8(3), 298-309.
[39]
Ding, F.; Xiao, H.; Wang, M.; Xie, X.; Hu, F. The role of the ubiquitin-proteasome pathway in cancer development and treatment. Front. Biosci., 2014, 19, 886-895.
[40]
Frezza, M.; Schmitt, S.; Dou, Q.P. Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr. Top. Med. Chem., 2011, 11(23), 2888-2905.
[41]
Shen, M.; Schmitt, S.; Buac, D.; Dou, Q.P. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin. Ther. Targets, 2013, 17(9), 1091-1108.
[42]
Daniel, K.G.; Gupta, P.; Harbach, R.H.; Guida, W.C.; Dou, Q.P. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem. Pharmacol., 2004, 67(6), 1139-1151.
[43]
Dou, Q.P.; Smith, D.M.; Daniel, K.G.; Kazi, A. Interruption of tumor cell cycle progression through proteasome inhibition: implications for cancer therapy. Prog. Cell Cycle Res., 2003, 5, 441-446.
[44]
Yang, H.; Landis-Piwowar, K.R.; Lu, D.; Yuan, P.; Li, L.; Reddy, G.P.; Yuan, X.; Dou, Q.P. Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J. Cell. Biochem., 2008, 103(1), 234-244.
[45]
Mu, X.M.; Shi, W.; Sun, L.X.; Li, H.; Wang, Y.R.; Jiang, Z.Z.; Zhang, L.Y. Pristimerin inhibits breast cancer cell migration by up- regulating regulator of G protein signaling 4 expression. Asian Pac. J. Cancer Prev., 2012, 13(4), 1097-1104.
[46]
Liu, Y.B.; Gao, X.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Pristimerin Induces Apoptosis in Prostate Cancer Cells by Down-regulating Bcl-2 through ROS-dependent Ubiquitin-proteasomal Degradation Pathway. J. Carcinog. Mutagen., 2013. (Suppl 6): 005.
[47]
Breitschopf, K.; Haendeler, J.; Malchow, P.; Zeiher, A.M.; Dimmeler, S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol. Cell. Biol., 2000, 20(5), 1886-1896.
[48]
Chanvorachote, P.; Nimmannit, U.; Stehlik, C.; Wang, L.; Jiang, B.H.; Ongpipatanakul, B.; Rojanasakul, Y. Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res., 2006, 66(12), 6353-6360.
[49]
Ling, Y.H.; Liebes, L.; Zou, Y.; Perez-Soler, R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem., 2003, 278(36), 33714-33723.
[50]
Fribley, A.; Zeng, Q.; Wang, C.Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol. Cell. Biol., 2004, 24(22), 9695-9704.
[51]
Minami, T.; Adachi, M.; Kawamura, R.; Zhang, Y.; Shinomura, Y.; Imai, K. Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Clin. Cancer Res., 2005, 11(14), 5248-5256.
[52]
Llobet, D.; Llobet, D.; Eritja, N.; Encinas, M.; Sorolla, A.; Yeramian, A.; Schoenenberger, J.A.; Llombart-Cussac, A.; Marti, R.M.; Matias-Guiu, X.; Dolcet, X. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs, 2008, 19(2), 115-124.
[53]
DiDonato, J.A.; Mercurio, F.; Karin, M. NF-kappaB and the link between inflammation and cancer. Immunol. Rev., 2012, 246(1), 379-400.
[54]
Vendramini-Costa, D.B.; Carvalho, J.E. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des., 2012, 18(26), 3831-3852.
[55]
Baud, V.; Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov., 2009, 8(1), 33-40.
[56]
Sethi, G.; Sung, B.; Aggarwal, B.B. Nuclear factor-kappaB activation: from bench to bedside. Exp. Biol. Med., 2008, 233(1), 21-31.
[57]
Deeb, D.; Gao, X.; Liu, Y.B.; Pindolia, K.; Gautam, S.C. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-kappaB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int. J. Oncol., 2014, 44(5), 1707-1715.
[58]
Gao, X.; Liu, Y.; Deeb, D.; Arbab, A.S.; Gautam, S.C. Anticancer activity of pristimerin in ovarian carcinoma cells is mediated through the inhibition of prosurvival Akt/NF-kappaB/mTOR signaling. J. Exp. Ther. Oncol., 2014, 10(4), 275-283.
[59]
Hui, B.; Yao, X.; Zhou, Q.; Wu, Z.; Sheng, P.; Zhang, L. Pristimerin, a natural anti-tumor triterpenoid, inhibits LPS-induced TNF-alpha and IL-8 production through down-regulation of ROS-related classical NF-kappaB pathway in THP-1 cells. Int. Immunopharmacol., 2014, 21(2), 501-508.
[60]
Deeb, D.; Gao, X.; Liu, Y.; Pindolia, K.; Gautam, S.C. Inhibition of hTERT/telomerase contributes to the antitumor activity of pristimerin in pancreatic ductal adenocarcinoma cells. Oncol. Rep., 2015, 34(1), 518-524.
[61]
Arlt, A.; Gehrz, A.; Muerkoster, S.; Vorndamm, J.; Kruse, M.L.; Folsch, U.R.; Schafer, H. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003, 22(21), 3243-3251.
[62]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[63]
Fleury, C.; Mignotte, B.; Vayssiere, J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 2002, 84(2-3), 131-141.
[64]
Ozben, T. Oxidative stress and apoptosis: impact on cancer therapy. J. Pharm. Sci., 2007, 96(9), 2181-2196.
[65]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[66]
Chan, W.H.; Wu, C.C.; Yu, J.S. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J. Cell. Biochem., 2003, 90(2), 327-338.
[67]
Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[68]
Kuwabara, M.; Asanuma, T.; Niwa, K.; Inanami, O. Regulation of cell survival and death signals induced by oxidative stress. J. Clin. Biochem. Nutr., 2008, 43(2), 51-57.
[69]
Storz, P. Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol., 2007, 17(1), 13-18.
[70]
Zhang, R.; Humphreys, I.; Sahu, R.P.; Shi, Y.; Srivastava, S.K. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis, 2008, 13(12), 1465-1478.
[71]
Haridas, V.; Higuchi, M.; Jayatilake, G.S.; Bailey, D.; Mujoo, K.; Blake, M.E.; Arntzen, C.J.; Gutterman, J.U. Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5821-5826.
[72]
Machida, K.; Hayashi, Y.; Osada, H. A Novel Adenine Nucleotide Translocase Inhibitor, MT-21, Induces Cytochrome c Release by a Mitochondrial Permeability Transition-independent Mechanism. J. Biol. Chem., 2002, 277(34), 31243-31248.
[73]
Chan, S.L.; Lee, M.C.; Tan, K.O.; Yang, L.K.; Lee, A.S.Y.
Flotow, H.; Fu, N.Y.; Butler, M.S.; Soejarto, D.D.; Buss, A.D.; Yu, V.C. Identification of Chelerythrine as an Inhibitor of BclXL Function. J. Biol. Chem., 2003, 278(23), 20453-20456.
[74]
Costa, P.M.; Ferreira, P.M.; Bolzani Vda, S.; Furlan, M.; de Freitas Formenton Macedo Dos Santos, V.A.; Corsino, J.; de Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; Pessoa, C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol. In Vitro, 2008, 22(4), 854-863.
[75]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(4), 770-776.
[76]
Henry-Mowatt, J.; Dive, C.; Martinou, J.C.; James, D. Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene, 2004, 23(16), 2850-2860.
[77]
Kuwana, T.; Newmeyer, D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003, 15(6), 691-699.
[78]
Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci., 2009, 122(4), 437-441.
[79]
Ditsworth, D.; Zong, W.X.; Thompson, C.B. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J. Biol. Chem., 2007, 282(24), 17845-17854.
[80]
Mathews, M.T.; Berk, B.C. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler. Thromb. Vasc. Biol., 2008, 28(4), 711-717.
[81]
Mendelsohn, J.; Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19(56), 6550-6565.
[82]
Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int., 2014, 852748(10)
[83]
Lindsey, S.; Langhans, S.A. Epidermal growth factor signaling in transformed cells. Int. Rev. Cell Mol. Biol., 2015, 314, 1-41.
[84]
Grant, S.; Qiao, L.; Dent, P. Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front. Biosci., 2002, 1(7), d376-d389.
[85]
Kadioglu, O.; Cao, J.; Saeed, M.E.; Greten, H.J.; Efferth, T. Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals. Target. Oncol., 2015, 10(3), 337-353.
[86]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[87]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 8(84), 1263-1284.
[88]
De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets, 2012, 16(Suppl. 2), S17-S27.
[89]
Gollob, J.A.; Wilhelm, S.; Carter, C.; Kelley, S.L. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ ERK signal transduction pathway. Semin. Oncol., 2006, 33(4), 392-406.
[90]
Steelman, L.S.; Pohnert, S.C.; Shelton, J.G.; Franklin, R.A.; Bertrand, F.E.; McCubrey, J.A. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 2004, 18(2), 189-218.
[91]
Mu, X.; Shi, W.; Sun, L.; Li, H.; Jiang, Z.; Zhang, L. Pristimerin, a triterpenoid, inhibits tumor angiogenesis by targeting VEGFR2 activation. Molecules, 2012, 17(6), 6854-6868.
[92]
Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C. Gonzalez-Baron. M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004, 30(2), 193-204.
[93]
Bauer, T.M.; Patel, M.R.; Infante, J.R. Targeting Targeting PI3 kinase in cancer. Pharmacol. Ther., 2015, 146, 53-60.
[94]
Moschetta, M.; Reale, A.; Marasco, C.; Vacca, A.; Carratu, M.R. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br. J. Pharmacol., 2014, 171(16), 3801-3813.
[95]
Morgensztern, D.; McLeod, H.L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs, 2005, 16(8), 797-803.
[96]
Chiang, C.T.; Way, T.D.; Tsai, S.J.; Lin, J.K. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett., 2007, 581(30), 5735-5742.
[97]
Yoon, S.; Lee, M.Y.; Park, S.W.; Moon, J.S.; Koh, Y.K.; Ahn, Y.H.; Park, B.W.; Kim, K.S. Up-regulation of Acetyl-CoA Carboxylase α and Fatty Acid Synthase by Human Epidermal Growth Factor Receptor 2 at the Translational Level in Breast Cancer Cells. J. Biol. Chem., 2007, 282(36), 26122-26131.
[98]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049.
[99]
Hanahan, D.; Robert, A.W. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[100]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[101]
Herbst, R.S. Therapeutic options to target angiogenesis in human malignancies. Expert Opin. Emerg. Drugs, 2006, 11(4), 635-650.
[102]
Xie, Y.; Wolff, D.W.; Wei, T.; Wang, B.; Deng, C.; Kirui, J.K.; Jiang, H.; Qin, J.; Abel, P.W.; Tu, Y. Breast Cancer Migration and Invasion Depend on Proteasome Degradation of Regulator of G-Protein Signaling 4. Cancer Res., 2009, 69(14), 5743-5751.
[103]
Yadav, V.R.; Sung, B.; Prasad, S.; Kannappan, R.; Cho, S.G.; Liu, M.; Chaturvedi, M.M.; Aggarwal, B.B. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J. Mol. Med. (Berl.), 2010, 88(12), 1243-1253.
[104]
Konopleva, M.; Zhang, W.; Shi, Y.X.; McQueen, T.; Tsao, T.; Abdelrahim, M.; Munsell, M.F.; Johansen, M.; Yu, D.; Madden, Ti.; Safe, S.H.; Hung, M.C.; Andreeff, M. Synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest in HER2-overexpressing breast cancer cells. Mol. Cancer Ther., 2006, 5(2), 317-328.
[105]
Kress, C.L.; Kress, C.L.; Konopleva, M.; Martinez-Garcia, V.; Krajewska, M.; Lefebvre, S.; Hyer, M.L.; McQueen, T.; Andreeff, M.; Reed, J.C.; Zapata, J.M. Triterpenoids display single agent anti-tumor activity in a transgenic mouse model of chronic lymphocytic leukemia and small B cell lymphoma. PLoS One, 2007, 2(2), e559.
[106]
Gao, X.; Zhang, Y.; Wang, Y.; Zhang, Y.; Wang, Y.; Liu, S.; Gao, X. Influence of verapamil on pharmacokinetics of pristimerin in rats. Biomed. Chromatogr., 2015, 10(8)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy