摘要
表儿茶素(EC)是一种类黄酮,存在于包括可可、黑巧克力、浆果和茶在内的各种食物中,最近有报道称,它可以促进正常饮食的老年老鼠的健康和生存。鉴于白藜芦醇、绿茶提取物和姜黄素等广受欢迎的抗衰老天然药物未能延长标准食料喂养小鼠的寿命,这一发现被认为是发现天然化合物延长寿命领域的一个新发现。然而,EC的抗衰老机制尚不完全清楚,因此阻碍了这种天然化合物在提高人类健康寿命方面的潜在应用。在本文中,我们首先综述了含有大量乳脂的主要膳食来源以及近年来关于乳脂在人和啮齿动物体内的吸收、代谢和分布的研究。这篇综述着重于EC在培养细胞、动物和人类中的抗衰老作用,以及其延长寿命的可能的生理、细胞和分子机制。
关键词: 表儿茶素,饮食摄入,寿命,抗衰老,动物,人类,EC,生物活性分子。
[1]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[2]
Si, H.; Liu, D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem., 2014, 25(6), 581-591.
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.001] [PMID: 24742470]
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.001] [PMID: 24742470]
[3]
Pearson, K.J.; Baur, J.A.; Lewis, K.N.; Peshkin, L.; Price, N.L.; Labinskyy, N.; Swindell, W.R.; Kamara, D.; Minor, R.K.; Perez, E.; Jamieson, H.A.; Zhang, Y.; Dunn, S.R.; Sharma, K.; Pleshko, N.; Woollett, L.A.; Csiszar, A.; Ikeno, Y.; Le Couteur, D.; Elliott, P.J.; Becker, K.G.; Navas, P.; Ingram, D.K.; Wolf, N.S.; Ungvari, Z.; Sinclair, D.A.; de Cabo, R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab., 2008, 8(2), 157-168.
[http://dx.doi.org/10.1016/j.cmet.2008.06.011] [PMID: 18599363]
[http://dx.doi.org/10.1016/j.cmet.2008.06.011] [PMID: 18599363]
[4]
Miller, R.A.; Harrison, D.E.; Astle, C.M.; Baur, J.A.; Boyd, A.R.; de Cabo, R.; Fernandez, E.; Flurkey, K.; Javors, M.A.; Nelson, J.F.; Orihuela, C.J.; Pletcher, S.; Sharp, Z.D.; Sinclair, D.; Starnes, J.W.; Wilkinson, J.E.; Nadon, N.L.; Strong, R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2011, 66(2), 191-201.
[http://dx.doi.org/10.1093/gerona/glq178] [PMID: 20974732]
[http://dx.doi.org/10.1093/gerona/glq178] [PMID: 20974732]
[5]
Strong, R.; Miller, R.A.; Astle, C.M.; Baur, J.A.; de Cabo, R.; Fernandez, E.; Guo, W.; Javors, M.; Kirkland, J.L.; Nelson, J.F.; Sinclair, D.A.; Teter, B.; Williams, D.; Zaveri, N.; Nadon, N.L.; Harrison, D.E. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(1), 6-16.
[http://dx.doi.org/10.1093/gerona/gls070] [PMID: 22451473]
[http://dx.doi.org/10.1093/gerona/gls070] [PMID: 22451473]
[6]
Nadon, N.L.; Strong, R.; Miller, R.A.; Harrison, D.E. NIA interventions testing program: investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine, 2017, 21, 3-4.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.038] [PMID: 27923560]
[http://dx.doi.org/10.1016/j.ebiom.2016.11.038] [PMID: 27923560]
[7]
Si, H.; Fu, Z.; Babu, P.V.; Zhen, W.; Leroith, T.; Meaney, M.P.; Voelker, K.A.; Jia, Z.; Grange, R.W.; Liu, D. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. J. Nutr., 2011, 141(6), 1095-1100.
[http://dx.doi.org/10.3945/jn.110.134270] [PMID: 21525262]
[http://dx.doi.org/10.3945/jn.110.134270] [PMID: 21525262]
[8]
Si, H.; Wang, X.; Zhang, L.; Parnell, L.D.; Admed, B.; LeRoith, T.; Ansah, T.A.; Zhang, L.; Li, J.; Ordovás, J.M.; Si, H.; Liu, D.; Lai, C.Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB J., 2019, 33(1), 965-977.
[http://dx.doi.org/10.1096/fj.201800554RR] [PMID: 30096038]
[http://dx.doi.org/10.1096/fj.201800554RR] [PMID: 30096038]
[9]
Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. 2014. USDA database for the flavonoid content of selected foods,Release 2.0 and 3.1. US Department of Agriculture,Beltsville, MD, USA, 2014., Available at. http://www.ars.usda.gov/nutrientdata/flav (Accessed date: September2019.
[10]
Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem., 2002, 50(8), 2432-2438.
[http://dx.doi.org/10.1021/jf011097r] [PMID: 11929309]
[http://dx.doi.org/10.1021/jf011097r] [PMID: 11929309]
[11]
Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, 72(1-2), 35-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[12]
Danila, A.M.; Kotani, A.; Hakamata, H.; Kusu, F. Determination of rutin, catechin, epicatechin, and epicatechin gallate in buckwheat Fagopyrum esculentum Moench by micro-high-performance liquid chromatography with electrochemical detection. J. Agric. Food Chem., 2007, 55(4), 1139-1143.
[http://dx.doi.org/10.1021/jf062815i] [PMID: 17253718]
[http://dx.doi.org/10.1021/jf062815i] [PMID: 17253718]
[13]
Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 2003, 51(3), 571-581.
[http://dx.doi.org/10.1021/jf020926l] [PMID: 12537425]
[http://dx.doi.org/10.1021/jf020926l] [PMID: 12537425]
[14]
de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem., 2000, 48(11), 5331-5337.
[http://dx.doi.org/10.1021/jf000549h] [PMID: 11087482]
[http://dx.doi.org/10.1021/jf000549h] [PMID: 11087482]
[15]
Cifuentes-Gomez, T.; Rodriguez-Mateos, A.; Gonzalez-Salvador, I.; Alañon, M.E.; Spencer, J.P. Factors affecting the absorption, metabolism, and excretion of cocoa flavanols in humans. J. Agric. Food Chem., 2015, 63(35), 7615-7623.
[http://dx.doi.org/10.1021/acs.jafc.5b00443] [PMID: 25711140]
[http://dx.doi.org/10.1021/acs.jafc.5b00443] [PMID: 25711140]
[16]
Dower, J.I.; Geleijnse, J.M.; Hollman, P.Ch.; Soedamah-Muthu, S.S.; Kromhout, D. Dietary epicatechin intake and 25-y risk of cardiovascular mortality: the Zutphen Elderly Study. Am. J. Clin. Nutr., 2016, 104(1), 58-64.
[http://dx.doi.org/10.3945/ajcn.115.128819] [PMID: 27225434]
[http://dx.doi.org/10.3945/ajcn.115.128819] [PMID: 27225434]
[17]
Bonaccio, M.; Cerletti, C.; Iacoviello, L.; de Gaetano, G. Mediterranean diet and low-grade subclinical inflammation: the Moli-sani study. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(1), 18-24.
[http://dx.doi.org/10.2174/1871530314666141020112146] [PMID: 25329200]
[http://dx.doi.org/10.2174/1871530314666141020112146] [PMID: 25329200]
[18]
Kirakosyan, A.; Kaufman, P.; Warber, S.; Zick, S.; Aaronson, K.; Bolling, S.; Chul Chang, S. Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol. Plant., 2004, 121(2), 182-186.
[http://dx.doi.org/10.1111/j.1399-3054.2004.00332.x] [PMID: 15153184]
[http://dx.doi.org/10.1111/j.1399-3054.2004.00332.x] [PMID: 15153184]
[19]
Chakravarthy, B.K.; Gode, K.D. Isolation of (-)-Epicatechin from Pterocarpus marsupium and its Pharmacological Actions. Planta Med., 1985, 51(1), 56-59.
[http://dx.doi.org/10.1055/s-2007-969393] [PMID: 17340403]
[http://dx.doi.org/10.1055/s-2007-969393] [PMID: 17340403]
[20]
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
[http://dx.doi.org/10.1016/j.lfs.2003.09.047] [PMID: 14969719]
[http://dx.doi.org/10.1016/j.lfs.2003.09.047] [PMID: 14969719]
[21]
Ottaviani, J.I.; Borges, G.; Momma, T.Y.; Spencer, J.P.; Keen, C.L.; Crozier, A.; Schroeter, H. The metabolome of [2-(14)C](-)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci. Rep., 2016, 6, 29034.
[http://dx.doi.org/10.1038/srep29034] [PMID: 27363516]
[http://dx.doi.org/10.1038/srep29034] [PMID: 27363516]
[22]
Natsume, M.; Osakabe, N.; Oyama, M.; Sasaki, M.; Baba, S.; Nakamura, Y.; Osawa, T.; Terao, J. Structures of (-)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (-)-epicatechin: differences between human and rat. Free Radic. Biol. Med., 2003, 34(7), 840-849.
[http://dx.doi.org/10.1016/S0891-5849(02)01434-X] [PMID: 12654472]
[http://dx.doi.org/10.1016/S0891-5849(02)01434-X] [PMID: 12654472]
[23]
Rodriguez-Mateos, A.; Cifuentes-Gomez, T.; Gonzalez-Salvador, I.; Ottaviani, J.I.; Schroeter, H.; Kelm, M.; Heiss, C.; Spencer, J.P. Influence of age on the absorption, metabolism, and excretion of cocoa flavanols in healthy subjects. Mol. Nutr. Food Res., 2015, 59(8), 1504-1512.
[http://dx.doi.org/10.1002/mnfr.201500091] [PMID: 25981347]
[http://dx.doi.org/10.1002/mnfr.201500091] [PMID: 25981347]
[24]
Maurya, P.K.; Prakash, S. Intracellular uptake of (-)epicatechin by human erythrocytes as a function of human age. Phytother. Res., 2011, 25(6), 944-946.
[http://dx.doi.org/10.1002/ptr.3343] [PMID: 21626601]
[http://dx.doi.org/10.1002/ptr.3343] [PMID: 21626601]
[25]
Sansone, R.; Ottaviani, J.I.; Rodriguez-Mateos, A.; Heinen, Y.; Noske, D.; Spencer, J.P.; Crozier, A.; Merx, M.W.; Kelm, M.; Schroeter, H.; Heiss, C. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies. Am. J. Clin. Nutr., 2017, 105(2), 352-360.
[http://dx.doi.org/10.3945/ajcn.116.140046] [PMID: 28003203]
[http://dx.doi.org/10.3945/ajcn.116.140046] [PMID: 28003203]
[26]
Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem., 2019, 69(7), 19-30.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.009] [PMID: 31048206]
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.009] [PMID: 31048206]
[27]
Schantz, M.; Erk, T.; Richling, E. Metabolism of green tea catechins by the human small intestine. Biotechnol. J., 2010, 5(10), 1050-1059.
[http://dx.doi.org/10.1002/biot.201000214] [PMID: 20931601]
[http://dx.doi.org/10.1002/biot.201000214] [PMID: 20931601]
[28]
Borges, G.; van der Hooft, J.J.J.; Crozier, A. A comprehensive evaluation of the [2-14C](-)-epicatechin metabolome in rats. Free Radic. Biol. Med., 2016, 99, 128-138.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.001] [PMID: 27495388]
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.001] [PMID: 27495388]
[29]
Urpi-Sarda, M.; Monagas, M.; Khan, N.; Lamuela-Raventos, R.M.; Santos-Buelga, C.; Sacanella, E.; Castell, M.; Permanyer, J.; Andres-Lacueva, C. Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal. Bioanal. Chem., 2009, 394(6), 1545-1556.
[http://dx.doi.org/10.1007/s00216-009-2676-1] [PMID: 19333587]
[http://dx.doi.org/10.1007/s00216-009-2676-1] [PMID: 19333587]
[30]
Borges, G.; Ottaviani, J.I.; van der Hooft, J.J.J.; Schroeter, H.; Crozier, A. Absorption, metabolism, distribution and excretion of (-)-epicatechin: a review of recent findings. Mol. Aspects Med., 2018, 61, 18-30.
[http://dx.doi.org/10.1016/j.mam.2017.11.002] [PMID: 29126853]
[http://dx.doi.org/10.1016/j.mam.2017.11.002] [PMID: 29126853]
[31]
Kurlbaum, M.; Mülek, M.; Högger, P. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes. PLoS One, 2013, 8(4)e63197
[http://dx.doi.org/10.1371/journal.pone.0063197] [PMID: 23646194]
[http://dx.doi.org/10.1371/journal.pone.0063197] [PMID: 23646194]
[32]
Wang, J.; Ferruzzi, M.G.; Ho, L.; Blount, J.; Janle, E.M.; Gong, B.; Pan, Y.; Gowda, G.A.; Raftery, D.; Arrieta-Cruz, I.; Sharma, V.; Cooper, B.; Lobo, J.; Simon, J.E.; Zhang, C.; Cheng, A.; Qian, X.; Ono, K.; Teplow, D.B.; Pavlides, C.; Dixon, R.A.; Pasinetti, G.M. Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J. Neurosci., 2012, 32(15), 5144-5150.
[http://dx.doi.org/10.1523/JNEUROSCI.6437-11.2012] [PMID: 22496560]
[http://dx.doi.org/10.1523/JNEUROSCI.6437-11.2012] [PMID: 22496560]
[33]
Goodrich, K.M.; Dorenkott, M.R.; Ye, L.; O’Keefe, S.F.; Hulver, M.W.; Neilson, A.P. Dietary supplementation with cocoa flavanols does not alter colon tissue profiles of native flavanols and their microbial metabolites established during habitual dietary exposure in C57BL/6J mice. J. Agric. Food Chem., 2014, 62(46), 11190-11199.
[http://dx.doi.org/10.1021/jf503838q] [PMID: 25336378]
[http://dx.doi.org/10.1021/jf503838q] [PMID: 25336378]
[34]
Baiges, I.; Arola, L. COCOA (Theobroma cacao) polyphenol-rich extract increases the chronological lifespan of Saccharomyces cerevisiae. J. Frailty Aging, 2016, 5(3), 186-190.
[PMID: 29240368]
[PMID: 29240368]
[35]
Northcott, J.M.; Czubryt, M.P.; Wigle, J.T. Vascular senescence and ageing: a role for the MEOX proteins in promoting endothelial dysfunction. Can. J. Physiol. Pharmacol., 2017, 95(10), 1067-1077.
[http://dx.doi.org/10.1139/cjpp-2017-0149] [PMID: 28727928]
[http://dx.doi.org/10.1139/cjpp-2017-0149] [PMID: 28727928]
[36]
Ramirez-Sanchez, I.; Mansour, C.; Navarrete-Yañez, V.; Ayala-Hernandez, M.; Guevara, G.; Castillo, C.; Loredo, M.; Bustamante, M.; Ceballos, G.; Villarreal, F.J. (-)-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food Funct., 2018, 9(9), 4802-4813.
[http://dx.doi.org/10.1039/C8FO00483H] [PMID: 30129961]
[http://dx.doi.org/10.1039/C8FO00483H] [PMID: 30129961]
[37]
Ramirez-Sanchez, I.; Maya, L.; Ceballos, G.; Villarreal, F. (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension, 2010, 55(6), 1398-1405.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.147892 ] [PMID: 20404222]
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.147892 ] [PMID: 20404222]
[38]
López-Lluch, G.; Irusta, P.M.; Navas, P.; de Cabo, R. Mitochondrial biogenesis and healthy aging. Exp. Gerontol., 2008, 43(9), 813-819.
[http://dx.doi.org/10.1016/j.exger.2008.06.014] [PMID: 18662766]
[http://dx.doi.org/10.1016/j.exger.2008.06.014] [PMID: 18662766]
[39]
Moreno-Ulloa, A.; Miranda-Cervantes, A.; Licea-Navarro, A.; Mansour, C.; Beltrán-Partida, E.; Donis-Maturano, L.; Delgado De la Herrán, H.C.; Villarreal, F.; Álvarez-Delgado, C. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur. J. Pharmacol., 2018, 822, 95-107.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.014] [PMID: 29355558]
[http://dx.doi.org/10.1016/j.ejphar.2018.01.014] [PMID: 29355558]
[40]
Proshkina, E.; Lashmanova, E.; Dobrovolskaya, E.; Zemskaya, N.; Kudryavtseva, A.; Shaposhnikov, M.; Moskalev, A. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Front. Pharmacol., 2016, 7, 505.
[http://dx.doi.org/10.3389/fphar.2016.00505] [PMID: 28066251]
[http://dx.doi.org/10.3389/fphar.2016.00505] [PMID: 28066251]
[41]
Bahadorani, S.; Hilliker, A.J. Cocoa confers life span extension in Drosophila melanogaster. Nutr. Res., 2008, 28(6), 377-382.
[http://dx.doi.org/10.1016/j.nutres.2008.03.018] [PMID: 19083435]
[http://dx.doi.org/10.1016/j.nutres.2008.03.018] [PMID: 19083435]
[42]
Sunagawa, T.; Shimizu, T.; Kanda, T.; Tagashira, M.; Sami, M.; Shirasawa, T. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med., 2011, 77(2), 122-127.
[http://dx.doi.org/10.1055/s-0030-1250204] [PMID: 20717869]
[http://dx.doi.org/10.1055/s-0030-1250204] [PMID: 20717869]
[43]
Ruzaidi, A.M.M.; Abbe, M.M.J.; Amin, I.; Nawalyahl, A.G.; Muhajirl, H. Protective effect of polyphenol-rich extract prepared from Malaysian cocoa (Theobroma cacao) on glucose levels and lipid profiles in streptozotocin-induced diabetic rats. J. Sci. Food Agric., 2008, 88(8), 1442-1447.
[http://dx.doi.org/10.1002/jsfa.3236]
[http://dx.doi.org/10.1002/jsfa.3236]
[44]
Bisson, J.F.; Nejdi, A.; Rozan, P.; Hidalgo, S.; Lalonde, R.; Messaoudi, M. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. Br. J. Nutr., 2008, 100(1), 94-101.
[http://dx.doi.org/10.1017/S0007114507886375] [PMID: 18179729]
[http://dx.doi.org/10.1017/S0007114507886375] [PMID: 18179729]
[45]
Madhavadas, S.; Kapgal, V.K.; Kutty, B.M.; Subramanian, S. The neuroprotective effect of dark chocolate in monosodium glutamate-induced nontransgenic alzheimer disease model rats: biochemical, behavioral, and histological studies. J. Diet. Suppl., 2016, 13(4), 449-460.
[http://dx.doi.org/10.3109/19390211.2015.1108946] [PMID: 26673833]
[http://dx.doi.org/10.3109/19390211.2015.1108946] [PMID: 26673833]
[46]
Bayard, V.; Chamorro, F.; Motta, J.; Hollenberg, N.K. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int. J. Med. Sci., 2007, 4(1), 53-58.
[http://dx.doi.org/10.7150/ijms.4.53] [PMID: 17299579]
[http://dx.doi.org/10.7150/ijms.4.53] [PMID: 17299579]
[47]
Hollenberg, N.K.; Martinez, G.; McCullough, M.; Meinking, T.; Passan, D.; Preston, M.; Rivera, A.; Taplin, D.; Vicaria-Clement, M. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension, 1997, 29(1 Pt 2), 171-176.
[http://dx.doi.org/10.1161/01.HYP.29.1.171] [PMID: 9039098]
[http://dx.doi.org/10.1161/01.HYP.29.1.171] [PMID: 9039098]
[48]
Hollenberg, N.K.; Fisher, N.D. Is it the dark in dark chocolate? Circulation, 2007, 116(21), 2360-2362.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.73-8070] [PMID: 18025400]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.73-8070] [PMID: 18025400]
[49]
Kirschbaum, J. Effect on human longevity of added dietary chocolate. Nutrition, 1998, 14(11-12), 869.
[http://dx.doi.org/10.1016/s0899-9007(98)00116-6] [PMID: 9834932]
[http://dx.doi.org/10.1016/s0899-9007(98)00116-6] [PMID: 9834932]
[50]
Strandberg, T.E.; Strandberg, A.Y.; Pitkälä, K.; Salomaa, V.V.; Tilvis, R.S.; Miettinen, T.A. Chocolate, well-being and health among elderly men. Eur. J. Clin. Nutr., 2008, 62(2), 247-253.
[http://dx.doi.org/10.1038/sj.ejcn.1602707] [PMID: 17327862]
[http://dx.doi.org/10.1038/sj.ejcn.1602707] [PMID: 17327862]
[51]
Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.; Bocale, R.; Lechiara, M.C.; Marini, C.; Ferri, C.; Desideri, G. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study--a randomized controlled trial. Am. J. Clin. Nutr., 2015, 101(3), 538-548.
[http://dx.doi.org/10.3945/ajcn.114.092189] [PMID: 25733639]
[http://dx.doi.org/10.3945/ajcn.114.092189] [PMID: 25733639]
[52]
Munguia, L.; Rubio-Gayosso, I.; Ramirez-Sanchez, I.; Ortiz, A.; Hidalgo, I.; Gonzalez, C.; Meaney, E.; Villarreal, F.; Najera, N.; Ceballos, G. High flavonoid cocoa supplement ameliorates plasma oxidative stress and inflammation levels while improving mobility and quality of life in older subjects: a double blind randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(10), 1620-1627.
[http://dx.doi.org/10.1093/gerona/glz107] [PMID: 31056655]
[http://dx.doi.org/10.1093/gerona/glz107] [PMID: 31056655]
[53]
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J. Nutr., 2015, 145(7), 1459-1463.
[http://dx.doi.org/10.3945/jn.115.211888] [PMID: 25972527]
[http://dx.doi.org/10.3945/jn.115.211888] [PMID: 25972527]
[54]
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Zock, P.L.; Kromhout, D.; Hollman, P.C. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am. J. Clin. Nutr., 2015, 101(5), 914-921.
[http://dx.doi.org/10.3945/ajcn.114.098590] [PMID: 25934864]
[http://dx.doi.org/10.3945/ajcn.114.098590] [PMID: 25934864]
[55]
Esser, D.; Geleijnse, J.M.; Matualatupauw, J.C.; Dower, J.I.; Kromhout, D.; Hollman, P.C.H.; Afman, L.A. Pure flavonoid epicatechin and whole genome gene expression profiles in circulating immune cells in adults with elevated blood pressure: A randomised double-blind, placebo-controlled, crossover trial. PLoS One, 2018, 13(4)e0194229
[http://dx.doi.org/10.1371/journal.pone.0194229] [PMID: 29672527]
[http://dx.doi.org/10.1371/journal.pone.0194229] [PMID: 29672527]
[56]
Kirch, N.; Berk, L.; Liegl, Y.; Adelsbach, M.; Zimmermann, B.F.; Stehle, P.; Stoffel-Wagner, B.; Ludwig, N.; Schieber, A.; Helfrich, H.P.; Ellinger, S. A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study. Am. J. Clin. Nutr., 2018, 107(6), 948-956.
[http://dx.doi.org/10.1093/ajcn/nqy066] [PMID: 29868915]
[http://dx.doi.org/10.1093/ajcn/nqy066] [PMID: 29868915]
[57]
Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M.; Rondanelli, M. Mediterranean way of drinking and longevity. Crit. Rev. Food Sci. Nutr., 2016, 56(4), 635-640.
[http://dx.doi.org/10.1080/10408398.2012.747484] [PMID: 25207479]
[http://dx.doi.org/10.1080/10408398.2012.747484] [PMID: 25207479]
[58]
Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr., 2017, 68(6), 750-756.
[http://dx.doi.org/10.1080/09637486.2017.1285870] [PMID: 28276907]
[http://dx.doi.org/10.1080/09637486.2017.1285870] [PMID: 28276907]
[59]
Messerli, F.H. Chocolate consumption, cognitive function, and Nobel laureates. N. Engl. J. Med., 2012, 367(16), 1562-1564.
[http://dx.doi.org/10.1056/NEJMon1211064] [PMID: 23050509]
[http://dx.doi.org/10.1056/NEJMon1211064] [PMID: 23050509]
[60]
Meier, B.P.; Noll, S.W.; Molokwu, O.J. The sweet life: the effect of mindful chocolate consumption on mood. Appetite, 2017, 108, 21-27.
[http://dx.doi.org/10.1016/j.appet.2016.09.018] [PMID: 27642035]
[http://dx.doi.org/10.1016/j.appet.2016.09.018] [PMID: 27642035]
[61]
Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial ageing: from endothelial dysfunction to vascular calcification. J. Intern. Med., 2017, 281(5), 471-482.
[http://dx.doi.org/10.1111/joim.12605] [PMID: 28345303]
[http://dx.doi.org/10.1111/joim.12605] [PMID: 28345303]
[62]
Ding, E.L.; Hutfless, S.M.; Ding, X.; Girotra, S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr. Metab. (Lond.), 2006, 3, 2.
[http://dx.doi.org/10.1186/1743-7075-3-2] [PMID: 16390538]
[http://dx.doi.org/10.1186/1743-7075-3-2] [PMID: 16390538]
[63]
Djoussé, L.; Hopkins, P.N.; Arnett, D.K.; Pankow, J.S.; Borecki, I.; North, K.E.; Curtis Ellison, R. Chocolate consumption is inversely associated with calcified atherosclerotic plaque in the coronary arteries: the NHLBI Family Heart Study. Clin. Nutr., 2011, 30(1), 38-43.
[http://dx.doi.org/10.1016/j.clnu.2010.06.011] [PMID: 20655129]
[http://dx.doi.org/10.1016/j.clnu.2010.06.011] [PMID: 20655129]
[64]
Petyaev, I.M.; Klochkov, V.A.; Chalyk, N.E.; Pristensky, D.V.; Chernyshova, M.P.; Kyle, N.H.; Bashmakov, Y.K. Markers of hypoxia and oxidative stress in aging volunteers ingesting lycosomal formulation of dark chocolate containing astaxanthin. J. Nutr. Health Aging, 2018, 22(9), 1092-1098.
[http://dx.doi.org/10.1007/s12603-018-1063-z] [PMID: 30379308]
[http://dx.doi.org/10.1007/s12603-018-1063-z] [PMID: 30379308]
[65]
Okamoto, T.; Kobayashi, R.; Natsume, M.; Nakazato, K. Habitual cocoa intake reduces arterial stiffness in postmenopausal women regardless of intake frequency: a randomized parallel-group study. Clin. Interv. Aging, 2016, 11, 1645-1652.
[http://dx.doi.org/10.2147/CIA.S118152] [PMID: 27881914]
[http://dx.doi.org/10.2147/CIA.S118152] [PMID: 27881914]
[66]
Balzer, J.; Rassaf, T.; Heiss, C.; Kleinbongard, P.; Lauer, T.; Merx, M.; Heussen, N.; Gross, H.B.; Keen, C.L.; Schroeter, H.; Kelm, M. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J. Am. Coll. Cardiol., 2008, 51(22), 2141-2149.
[http://dx.doi.org/10.1016/j.jacc.2008.01.059] [PMID: 18510961]
[http://dx.doi.org/10.1016/j.jacc.2008.01.059] [PMID: 18510961]
[67]
Heiss, C.; Sansone, R.; Karimi, H.; Krabbe, M.; Schuler, D.; Rodriguez-Mateos, A.; Kraemer, T.; Cortese-Krott, M.M.; Kuhnle, G.G.; Spencer, J.P.; Schroeter, H.; Merx, M.W.; Kelm, M. FLAVIOLA Consortium. European Union 7th Framework Program. Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age (Dordr.), 2015, 37(3), 9794.
[http://dx.doi.org/10.1007/s11357-015-9794-9] [PMID: 26013912]
[http://dx.doi.org/10.1007/s11357-015-9794-9] [PMID: 26013912]
[68]
Prince, P.S. A biochemical, electrocardiographic, electrophoretic, histopathological and in vitro study on the protective effects of (-)epicatechin in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol., 2011, 671(1-3), 95-101.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.036] [PMID: 21958876]
[http://dx.doi.org/10.1016/j.ejphar.2011.09.036] [PMID: 21958876]
[69]
Kumar, N.; Kant, R.; Maurya, P.K. Concentration-dependent effect of (-) epicatechin in hypertensive patients. Phytother. Res., 2010, 24(10), 1433-1436.
[http://dx.doi.org/10.1002/ptr.3119] [PMID: 20127878]
[http://dx.doi.org/10.1002/ptr.3119] [PMID: 20127878]
[70]
Esiri, M.M. Ageing and the brain. J. Pathol., 2007, 211(2), 181-187.
[http://dx.doi.org/10.1002/path.2089] [PMID: 17200950]
[http://dx.doi.org/10.1002/path.2089] [PMID: 17200950]
[71]
Anderton, B.H. Ageing of the brain. Mech. Ageing Dev., 2002, 123(7), 811-817.
[http://dx.doi.org/10.1016/S0047-6374(01)00426-2] [PMID: 11869738]
[http://dx.doi.org/10.1016/S0047-6374(01)00426-2] [PMID: 11869738]
[72]
Stringer, T.P.; Guerrieri, D.; Vivar, C.; van Praag, H. Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice. Transl. Psychiatry, 2015, 5(1)e493
[http://dx.doi.org/10.1038/tp.2014.135] [PMID: 255622843 ]
[http://dx.doi.org/10.1038/tp.2014.135] [PMID: 255622843 ]
[73]
Crichton, G.E.; Elias, M.F.; Alkerwi, A. Chocolate intake is associated with better cognitive function: the maine-syracuse longitudinal study. Appetite, 2016, 100, 126-132.
[http://dx.doi.org/10.1016/j.appet.2016.02.010] [PMID: 26873453]
[http://dx.doi.org/10.1016/j.appet.2016.02.010] [PMID: 26873453]
[74]
Sokolov, A.N.; Pavlova, M.A.; Klosterhalfen, S.; Enck, P. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci. Biobehav. Rev., 2013, 37(10 Pt 2), 2445-2453.
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.013] [PMID: 23810791]
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.013] [PMID: 23810791]
[75]
Wang, J.; Varghese, M.; Ono, K.; Yamada, M.; Levine, S.; Tzavaras, N.; Gong, B.; Hurst, W.J.; Blitzer, R.D.; Pasinetti, G.M. Cocoa extracts reduce oligomerization of amyloid-β: implications for cognitive improvement in Alzheimer’s disease. J. Alzheimers Dis., 2014, 41(2), 643-650.
[http://dx.doi.org/10.3233/JAD-132231] [PMID: 24957018]
[http://dx.doi.org/10.3233/JAD-132231] [PMID: 24957018]
[76]
Cimini, A.; Gentile, R.; D’Angelo, B.; Benedetti, E.; Cristiano, L.; Avantaggiati, M.L.; Giordano, A.; Ferri, C.; Desideri, G. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J. Cell. Biochem., 2013, 114(10), 2209-2220.
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]
[77]
Neshatdoust, S.; Saunders, C.; Castle, S.M.; Vauzour, D.; Williams, C.; Butler, L.; Lovegrove, J.A.; Spencer, J.P. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr. Healthy Aging, 2016, 4(1), 81-93.
[http://dx.doi.org/10.3233/NHA-1615] [PMID: 28035345]
[http://dx.doi.org/10.3233/NHA-1615] [PMID: 28035345]
[78]
Cunha, C.; Brambilla, R.; Thomas, K.L. A simple role for BDNF in learning and memory? Front. Mol. Neurosci., 2010, 3, 1.
[http://dx.doi.org/10.3389/neuro.02.001.2010] [PMID: 20162032]
[http://dx.doi.org/10.3389/neuro.02.001.2010] [PMID: 20162032]
[79]
Nair, K.S. Aging muscle. Am. J. Clin. Nutr., 2005, 81(5), 953-963.
[http://dx.doi.org/10.1093/ajcn/81.5.953] [PMID: 15883415]
[http://dx.doi.org/10.1093/ajcn/81.5.953] [PMID: 15883415]
[80]
Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J. Appl. Physiol., 1997, 83(5), 1581-1587.
[http://dx.doi.org/10.1152/jappl.1997.83.5.1581] [PMID: 9375323]
[http://dx.doi.org/10.1152/jappl.1997.83.5.1581] [PMID: 9375323]
[81]
Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen-Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5618-5623.
[http://dx.doi.org/10.1073/pnas.0501559102 ] [PMID: 15800038]
[http://dx.doi.org/10.1073/pnas.0501559102 ] [PMID: 15800038]
[82]
Gutierrez-Salmean, G.; Ciaraldi, T.P.; Nogueira, L.; Barboza, J.; Taub, P.R.; Hogan, M.C.; Henry, R.R.; Meaney, E.; Villarreal, F.; Ceballos, G.; Ramirez-Sanchez, I. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. J. Nutr. Biochem., 2014, 25(1), 91-94.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.007 ] [PMID: 24314870]
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.007 ] [PMID: 24314870]
[83]
Moreno-Ulloa, A.; Nogueira, L.; Rodriguez, A.; Barboza, J.; Hogan, M.C.; Ceballos, G.; Villarreal, F.; Ramirez-Sanchez, I. Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (-)-epicatechin in senile mice. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(11), 1370-1378.
[http://dx.doi.org/10.1093/gerona/glu131] [PMID: 25143004]
[http://dx.doi.org/10.1093/gerona/glu131] [PMID: 25143004]
[84]
Mafi, F.; Biglari, S.; Ghardashi Afousi, A.; Gaeini, A.A. Improvement in skeletal muscle strength and plasma levels of follistatin and myostatin induced by an 8-week resistance training and epicatechin supplementation in sarcopenic older adults. J. Aging Phys. Act., 2019, 27(3), 384-391.
[http://dx.doi.org/10.1123/japa.2017-0389] [PMID: 30299198]
[http://dx.doi.org/10.1123/japa.2017-0389] [PMID: 30299198]
[85]
Mangiola, F.; Nicoletti, A.; Gasbarrini, A.; Ponziani, F.R. Gut microbiota and aging. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7404-7413.
[http://dx.doi.org/10.26355/eurrev_201811_16280] [PMID: 30468488]
[http://dx.doi.org/10.26355/eurrev_201811_16280] [PMID: 30468488]
[86]
O’Toole, P.W.; Jeffery, I.B. Gut microbiota and aging. Science, 2015, 350(6265), 1214-1215.
[http://dx.doi.org/10.1126/science.aac8469] [PMID: 26785481]
[http://dx.doi.org/10.1126/science.aac8469] [PMID: 26785481]
[87]
Ticinesi, A.; Lauretani, F.; Milani, C.; Nouvenne, A.; Tana, C.; Del Rio, D.; Maggio, M.; Ventura, M.; Meschi, T. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients, 2017, 9(12), 1303.
[http://dx.doi.org/10.3390/nu9121303] [PMID: 29189738]
[http://dx.doi.org/10.3390/nu9121303] [PMID: 29189738]
[88]
Dinan, T.G.; Cryan, J.F. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol., 2017, 595(2), 489-503.
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[89]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int., 2015, 2015905215
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[90]
Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 2013, 24(8), 1415-1422.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[91]
Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr., 2011, 93(1), 62-72.
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[92]
Jang, S.; Sun, J.; Chen, P.; Lakshman, S.; Molokin, A.; Harnly, J.M.; Vinyard, B.T.; Urban, J.F., Jr; Davis, C.D.; Solano-Aguilar, G. Flavanol-enriched cocoa powder alters the intestinal microbiota, tissue and fluid metabolite profiles, and intestinal gene expression in pigs. J. Nutr., 2016, 146(4), 673-680.
[http://dx.doi.org/10.3945/jn.115.222968] [PMID: 26936136]
[http://dx.doi.org/10.3945/jn.115.222968] [PMID: 26936136]
[93]
Espley, R.V.; Butts, C.A.; Laing, W.A.; Martell, S.; Smith, H.; McGhie, T.K.; Zhang, J.; Paturi, G.; Hedderley, D.; Bovy, A.; Schouten, H.J.; Putterill, J.; Allan, A.C.; Hellens, R.P. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr., 2014, 144(2), 146-154.
[http://dx.doi.org/10.3945/jn.113.182659] [PMID: 24353343]
[http://dx.doi.org/10.3945/jn.113.182659] [PMID: 24353343]
[94]
Kim, J.E.; Song, D.; Kim, J.; Choi, J.; Kim, J.R.; Yoon, H.S.; Bae, J.S.; Han, M.; Lee, S.; Hong, J.S.; Song, D.; Kim, S.J.; Son, M.J.; Choi, S.W.; Chung, J.H.; Kim, T.A.; Lee, K.W. Oral supplementation with cocoa extract reduces uvb-induced wrinkles in hairless mouse skin. J. Invest. Dermatol., 2016, 136(5), 1012-1021.
[http://dx.doi.org/10.1016/j.jid.2015.11.032] [PMID: 26854493]
[http://dx.doi.org/10.1016/j.jid.2015.11.032] [PMID: 26854493]
[95]
Yoon, H.S.; Kim, J.R.; Park, G.Y.; Kim, J.E.; Lee, D.H.; Lee, K.W.; Chung, J.H. Cocoa flavanol supplementation influences skin conditions of photo-aged women: a 24-week double-blind, randomized, controlled trial. J. Nutr., 2016, 146(1), 46-50.
[http://dx.doi.org/10.3945/jn.115.217711] [PMID: 26581682]
[http://dx.doi.org/10.3945/jn.115.217711] [PMID: 26581682]
[96]
Heinrich, U.; Neukam, K.; Tronnier, H.; Sies, H.; Stahl, W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J. Nutr., 2006, 136(6), 1565-1569.
[http://dx.doi.org/10.1093/jn/136.6.1565] [PMID: 16702322]
[http://dx.doi.org/10.1093/jn/136.6.1565] [PMID: 16702322]
[97]
Williams, S.; Tamburic, S.; Lally, C. Eating chocolate can significantly protect the skin from UV light. J. Cosmet. Dermatol., 2009, 8(3), 169-173.
[http://dx.doi.org/10.1111/j.1473-2165.2009.00448.x] [PMID: 19735513]
[http://dx.doi.org/10.1111/j.1473-2165.2009.00448.x] [PMID: 19735513]
[98]
Cole, M.A.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J. Cell Commun. Signal., 2018, 12(1), 35-43.
[http://dx.doi.org/10.1007/s12079-018-0459-1] [PMID: 29455303]
[http://dx.doi.org/10.1007/s12079-018-0459-1] [PMID: 29455303]
[99]
Capel, F.; Rimbert, V.; Lioger, D.; Diot, A.; Rousset, P.; Mirand, P.P.; Boirie, Y.; Morio, B.; Mosoni, L. Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech. Ageing Dev., 2005, 126(4), 505-511.
[http://dx.doi.org/10.1016/j.mad.2004.11.001] [PMID: 15722109]
[http://dx.doi.org/10.1016/j.mad.2004.11.001] [PMID: 15722109]
[100]
Ou, H.L.; Schumacher, B. DNA damage responses and p53 in the aging process. Blood, 2018, 131(5), 488-495.
[http://dx.doi.org/10.1182/blood-2017-07-746396] [PMID: 29141944]
[http://dx.doi.org/10.1182/blood-2017-07-746396] [PMID: 29141944]
[101]
Shimura, T.; Koyama, M.; Aono, D.; Kunugita, N. Epicatechin as a promising agent to countermeasure radiation exposure by mitigating mitochondrial damage in human fibroblasts and mouse hematopoietic cells. FASEB J., 2019, 33(6), 6867-6876.
[http://dx.doi.org/10.1096/fj.201802246RR] [PMID: 30840834]
[http://dx.doi.org/10.1096/fj.201802246RR] [PMID: 30840834]
[102]
Zhang, M.; Vervoort, L.; Moalin, M.; Mommers, A.; Douny, C.; den Hartog, G.J.M.; Haenen, G.R.M.M. The chemical reactivity of (-)-epicatechin quinone mainly resides in its B-ring. Free Radic. Biol. Med., 2018, 124, 31-39.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.087] [PMID: 29859347]
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.087] [PMID: 29859347]
[103]
Chung, J.Y.; Park, J.O.; Phyu, H.; Dong, Z.; Yang, C.S. Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (-)-epigallocatechin-3-gallate and theaflavin-3,3′-digallate. FASEB J., 2001, 15(11), 2022-2024.
[http://dx.doi.org/10.1096/fj.01-0031fje] [PMID: 11511526]
[http://dx.doi.org/10.1096/fj.01-0031fje] [PMID: 11511526]
[104]
Shin, Y.S.; Shin, H.A.; Kang, S.U.; Kim, J.H.; Oh, Y.T.; Park, K.H.; Kim, C.H. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study. PLoS One, 2013, 8(7)e69151
[http://dx.doi.org/10.1371/journal.pone.0069151] [PMID: 23874895]
[http://dx.doi.org/10.1371/journal.pone.0069151] [PMID: 23874895]
[105]
Wei, F.; Yan, J.; Tang, D. Extracellular signal-regulated kinases modulate DNA damage response - a contributing factor to using MEK inhibitors in cancer therapy. Curr. Med. Chem., 2011, 18(35), 5476-5482.
[http://dx.doi.org/10.2174/092986711798194388] [PMID: 22087839]
[http://dx.doi.org/10.2174/092986711798194388] [PMID: 22087839]
[106]
Potapova, O.; Basu, S.; Mercola, D.; Holbrook, N.J. Protective role for c-Jun in the cellular response to DNA damage. J. Biol. Chem., 2001, 276(30), 28546-28553.
[http://dx.doi.org/10.1074/jbc.M102075200] [PMID: 11352915]
[http://dx.doi.org/10.1074/jbc.M102075200] [PMID: 11352915]
[107]
Wood, C.D.; Thornton, T.M.; Sabio, G.; Davis, R.A.; Rincon, M. Nuclear localization of p38 MAPK in response to DNA damage. Int. J. Biol. Sci., 2009, 5(5), 428-437.
[http://dx.doi.org/10.7150/ijbs.5.428] [PMID: 19564926]
[http://dx.doi.org/10.7150/ijbs.5.428] [PMID: 19564926]
[108]
Sasako, T.; Ueki, K. Aging-related frailty and sarcopenia. Frailty/sarcopenia and insulin/IGF-1 signaling. Clin. Calcium, 2018, 28(9), 1221-1228.
[http://dx.doi.org/clica180912211228 ] [PMID: 30146508]
[http://dx.doi.org/clica180912211228 ] [PMID: 30146508]
[109]
Ruiz, R.; Pérez-Villegas, E.M.; Manuel Carrión, Á. AMPK function in aging process. Curr. Drug Targets, 2016, 17(8), 932-941.
[http://dx.doi.org/10.2174/1389450116666151102095825] [PMID: 26521771]
[http://dx.doi.org/10.2174/1389450116666151102095825] [PMID: 26521771]
[110]
Tokede, O.A.; Ellison, C.R.; Pankow, J.S.; North, K.E.; Hunt, S.C.; Kraja, A.T.; Arnett, D.K.; Djoussé, L. Chocolate consumption and prevalence of metabolic syndrome in the NHLBI family heart study. ESPEN J., 2012, 7(4), e139-e143.
[http://dx.doi.org/10.1016/j.clnme.2012.04.002] [PMID: 25126517]
[http://dx.doi.org/10.1016/j.clnme.2012.04.002] [PMID: 25126517]
[111]
Bitner, B.F.; Ray, J.D.; Kener, K.B.; Herring, J.A.; Tueller, J.A.; Johnson, D.K.; Tellez Freitas, C.M.; Fausnacht, D.W.; Allen, M.E.; Thomson, A.H.; Weber, K.S.; McMillan, R.P.; Hulver, M.W.; Brown, D.A.; Tessem, J.S.; Neilson, A.P. Common gut microbial metabolites of dietary flavonoids exert potent protective activities in β-cells and skeletal muscle cells. J. Nutr. Biochem., 2018, 62, 95-107.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.004] [PMID: 30286378]
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.004] [PMID: 30286378]