Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Helicobacter pylori Reactivates Human Immunodeficiency Virus-1 in Latently Infected Monocytes with Increased Expression of IL-1β and CXCL8

Author(s): Vidhya Natarajan, Preeti Moar, Urvinder S. Kaur, Vimala Venkatesh, Abhishek Kumar, Rupesh Chaturvedi, D. Himanshu and Ravi Tandon*

Volume 20, Issue 8, 2019

Page: [556 - 568] Pages: 13

DOI: 10.2174/1389202921666191226091138

Price: $65

Abstract

Background: Helicobacter pylori are gram-negative bacteria, which colonize the human stomach. More than 50% of the world’s population is infected by H. pylori. Based on the high prevalence of H. pylori, it is very likely that HIV and H. pylori infection may coexist. However, the molecular events that occur during HIV-H. pylori co-infection remain unclear. Latent HIV reservoirs are the major obstacle in HIV cure despite effective therapy. Here, we explored the effect of H. pylori stimulation on latently HIV-infected monocytic cell line U1.

Methods: High throughput RNA-Seq using Illumina platform was performed to analyse the change in transcriptome between unstimulated and H. pylori-stimulated latently HIV-infected U1 cells. Transcriptome analysis identified potential genes and pathways involved in the reversal of HIV latency using bioinformatic tools that were validated by real-time PCR.

Results: H. pylori stimulation increased the expression of HIV-1 Gag, both at transcription (p<0.001) and protein level. H. pylori stimulation also increased the expression of proinflammatory cytokines IL-1β, CXCL8 and CXCL10 (p<0.0001). Heat-killed H. pylori retained their ability to induce HIV transcription. RNA-Seq analysis revealed 197 significantly upregulated and 101 significantly downregulated genes in H. pylori-stimulated U1 cells. IL-1β and CXCL8 were found to be significantly upregulated using transcriptome analysis, which was consistent with real-time PCR data.

Conclusion: H. pylori reactivate HIV-1 in latently infected monocytes with the upregulation of IL-1β and CXCL8, which are prominent cytokines involved in the majority of inflammatory pathways. Our results warrant future in vivo studies elucidating the effect of H. pylori in HIV latency and pathogenesis.

Keywords: HIV, ART, LRA, Helicobacter pylori, gene expression, infected monocytes.

Graphical Abstract

[1]
Palella, F.J., Jr; Baker, R.K.; Moorman, A.C.; Chmiel, J.S.; Wood, K.C.; Brooks, J.T.; Holmberg, S.D. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J. Acquir. Immune Defic. Syndr., 2006, 43(1), 27-34.
[http://dx.doi.org/10.1097/01.qai.0000233310.90484.16] [PMID: 16878047]
[2]
Mocroft, A.; Brettle, R.; Kirk, O.; Blaxhult, A.; Parkin, J.M.; Antunes, F.; Francioli, P.; D’Arminio Monforte, A.; Fox, Z.; Lundgren, J.D. Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study. AIDS, 2002, 16(12), 1663-1671.
[http://dx.doi.org/10.1097/00002030-200208160-00012] [PMID: 12172088]
[3]
Sackoff, J.E.; Hanna, D.B.; Pfeiffer, M.R.; Torian, L.V. Causes of death among persons with AIDS in the era of highly active antiretroviral therapy: New York City. Ann. Intern. Med., 2006, 145(6), 397-406.
[http://dx.doi.org/10.7326/0003-4819-145-6-200609190-00003] [PMID: 16983127]
[4]
Smit, C.; Geskus, R.; Walker, S.; Sabin, C.; Coutinho, R.; Porter, K.; Prins, M. Effective therapy has altered the spectrum of cause-specific mortality following HIV seroconversion. AIDS, 2006, 20(5), 741-749.
[http://dx.doi.org/10.1097/01.aids.0000216375.99560.a2] [PMID: 16514305]
[5]
Lapadula, G.; Cozzi-Lepri, A.; Marchetti, G.; Antinori, A.; Chiodera, A.; Nicastri, E.; Parruti, G.; Galli, M.; Gori, A.; Monforte, Ad. Risk of clinical progression among patients with immunological nonresponse despite virological suppression after combination antiretroviral treatment. AIDS, 2013, 27(5), 769-779.
[http://dx.doi.org/10.1097/QAD.0b013e32835cb747] [PMID: 23719349]
[6]
Mussini, C.; Lorenzini, P.; Cozzi-Lepri, A.; Lapadula, G.; Marchetti, G.; Nicastri, E.; Cingolani, A.; Lichtner, M.; Antinori, A.; Gori, A.; d’Arminio Monforte, A. CD4/CD8 ratio normalisation and non-AIDS-related events in individuals with HIV who achieve viral load suppression with antiretroviral therapy: an observational cohort study. Lancet HIV, 2015, 2(3), e98-e106.
[http://dx.doi.org/10.1016/S2352-3018(15)00006-5] [PMID: 26424550]
[7]
Perelson, A.S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D.D. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature, 1997, 387(6629), 188-191.
[http://dx.doi.org/10.1038/387188a0] [PMID: 9144290]
[8]
Josefsson, L.; von Stockenstrom, S.; Faria, N.R.; Sinclair, E.; Bacchetti, P.; Killian, M.; Epling, L.; Tan, A.; Ho, T.; Lemey, P.; Shao, W.; Hunt, P.W.; Somsouk, M.; Wylie, W.; Douek, D.C.; Loeb, L.; Custer, J.; Hoh, R.; Poole, L.; Deeks, S.G.; Hecht, F.; Palmer, S. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc. Natl. Acad. Sci. USA, 2013, 110(51), E4987-E4996.
[http://dx.doi.org/10.1073/pnas.1308313110] [PMID: 24277811]
[9]
Kelley, C.F.; Kitchen, C.M.R.; Hunt, P.W.; Rodriguez, B.; Hecht, F.M.; Kitahata, M.; Crane, H.M.; Willig, J.; Mugavero, M.; Saag, M.; Martin, J.N.; Deeks, S.G. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin. Infect. Dis., 2009, 48(6), 787-794.
[http://dx.doi.org/10.1086/597093] [PMID: 19193107]
[10]
Tuboi, S.H.; Brinkhof, M.W.G.; Egger, M.; Stone, R.A.; Braitstein, P.; Nash, D.; Sprinz, E.; Dabis, F.; Harrison, L.H.; Schechter, M. Discordant responses to potent antiretroviral treatment in previously naive HIV-1-infected adults initiating treatment in resource-constrained countries: the antiretroviral therapy in low-income countries (ART-LINC) collaboration. J. Acquir. Immune Defic. Syndr., 2007, 45(1), 52-59.
[http://dx.doi.org/10.1097/QAI.0b013e318042e1c3] [PMID: 17460471]
[11]
Abbas, W.; Tariq, M.; Iqbal, M.; Kumar, A.; Herbein, G. Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses, 2015, 7(4), 1578-1598.
[http://dx.doi.org/10.3390/v7041578] [PMID: 25835530]
[12]
Deeks, S.G. HIV: Shock and kill. Nature, 2012, 487(7408), 439-440.
[http://dx.doi.org/10.1038/487439a] [PMID: 22836995]
[13]
Spivak, A.M.; Planelles, V. Novel latency reversal agents for HIV-1 Cure. Annu. Rev. Med., 2018, 69, 421-436.
[http://dx.doi.org/10.1146/annurev-med-052716-031710] [PMID: 29099677]
[14]
Bashiri, K.; Rezaei, N.; Nasi, M.; Cossarizza, A. The role of latency reversal agents in the cure of HIV: A review of current data. Immunol. Lett., 2018, 196, 135-139.
[http://dx.doi.org/10.1016/j.imlet.2018.02.004] [PMID: 29427743]
[15]
Bullen, C.K.; Laird, G.M.; Durand, C.M.; Siliciano, J.D.; Siliciano, R.F. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med., 2014, 20(4), 425-429.
[http://dx.doi.org/10.1038/nm.3489] [PMID: 24658076]
[16]
Cillo, A.R.; Sobolewski, M.D.; Bosch, R.J.; Fyne, E.; Piatak, M., Jr; Coffin, J.M.; Mellors, J.W. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 7078-7083.
[http://dx.doi.org/10.1073/pnas.1402873111] [PMID: 24706775]
[17]
Spivak, A.M.; Andrade, A.; Eisele, E.; Hoh, R.; Bacchetti, P.; Bumpus, N.N.; Emad, F.; Buckheit, R., III; McCance-Katz, E.F.; Lai, J.; Kennedy, M.; Chander, G.; Siliciano, R.F.; Siliciano, J.D.; Deeks, S.G. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin. Infect. Dis., 2014, 58(6), 883-890.
[http://dx.doi.org/10.1093/cid/cit813] [PMID: 24336828]
[18]
Blazkova, J.; Chun, T-W.; Belay, B.W.; Murray, D.; Justement, J.S.; Funk, E.K.; Nelson, A.; Hallahan, C.W.; Moir, S.; Wender, P.A.; Fauci, A.S. Effect of histone deacetylase inhibitors on HIV production in latently infected, resting CD4(+) T cells from infected individuals receiving effective antiretroviral therapy. J. Infect. Dis., 2012, 206(5), 765-769.
[http://dx.doi.org/10.1093/infdis/jis412] [PMID: 22732922]
[19]
Sagot-Lerolle, N.; Lamine, A.; Chaix, M-L.; Boufassa, F.; Aboulker, J-P.; Costagliola, D.; Goujard, C.; Pallier, C.; Delfraissy, J-F.; Lambotte, O. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS, 2008, 22(10), 1125-1129.
[http://dx.doi.org/10.1097/QAD.0b013e3282fd6ddc] [PMID: 18525257]
[20]
Atherton, J.C. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu. Rev. Pathol., 2006, 1, 63-96.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100125] [PMID: 18039108]
[21]
Koch, M.; Meyer, T.F.; Moss, S.F. Inflammation, immunity, vaccines for Helicobacter pylori infection. Helicobacter, 2013, 18(Suppl. 1), 18-23.
[http://dx.doi.org/10.1111/hel.12073] [PMID: 24011240]
[22]
Kiriya, K.; Watanabe, N.; Nishio, A.; Okazaki, K.; Kido, M.; Saga, K.; Tanaka, J.; Akamatsu, T.; Ohashi, S.; Asada, M.; Fukui, T.; Chiba, T. Essential role of Peyer’s patches in the development of Helicobacter-induced gastritis. Int. Immunol., 2007, 19(4), 435-446.
[http://dx.doi.org/10.1093/intimm/dxm008] [PMID: 17314082]
[23]
Lundgren, A.; Suri-Payer, E.; Enarsson, K.; Svennerholm, A-M.; Lundin, B.S. Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect. Immun., 2003, 71(4), 1755-1762.
[http://dx.doi.org/10.1128/IAI.71.4.1755-1762.2003] [PMID: 12654789]
[24]
Robinson, K.; Kenefeck, R.; Pidgeon, E.L.; Shakib, S.; Patel, S.; Polson, R.J.; Zaitoun, A.M.; Atherton, J.C. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut, 2008, 57(10), 1375-1385.
[http://dx.doi.org/10.1136/gut.2007.137539] [PMID: 18467372]
[25]
Serrano, C.; Wright, S.W.; Bimczok, D.; Shaffer, C.L.; Cover, T.L.; Venegas, A.; Salazar, M.G.; Smythies, L.E.; Harris, P.R.; Smith, P.D. Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children. Mucosal Immunol., 2013, 6(5), 950-959.
[http://dx.doi.org/10.1038/mi.2012.133] [PMID: 23299619]
[26]
Kao, J.Y.; Zhang, M.; Miller, M.J.; Mills, J.C.; Wang, B.; Liu, M.; Eaton, K.A.; Zou, W.; Berndt, B.E.; Cole, T.S.; Takeuchi, T.; Owyang, S.Y.; Luther, J. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology, 2010, 138(3), 1046-1054.
[http://dx.doi.org/10.1053/j.gastro.2009.11.043] [PMID: 19931266]
[27]
Arnold, I.C.; Dehzad, N.; Reuter, S.; Martin, H.; Becher, B.; Taube, C.; Müller, A. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest., 2011, 121(8), 3088-3093.
[http://dx.doi.org/10.1172/JCI45041] [PMID: 21737881]
[28]
Wang, Q.; Yu, C.; Sun, Y. The association between asthma and Helicobacter pylori: a meta-analysis. Helicobacter, 2013, 18(1), 41-53.
[http://dx.doi.org/10.1111/hel.12012] [PMID: 23067334]
[29]
Amberbir, A.; Medhin, G.; Abegaz, W.E.; Hanlon, C.; Robinson, K.; Fogarty, A.; Britton, J.; Venn, A.; Davey, G. Exposure to Helicobacter pylori infection in early childhood and the risk of allergic disease and atopic sensitization: a longitudinal birth cohort study. Clin. Exp. Allergy, 2014, 44(4), 563-571.
[http://dx.doi.org/10.1111/cea.12289] [PMID: 24528371]
[30]
Perry, S.; de Jong, B.C.; Solnick, J.V.; de la Luz Sanchez, M.; Yang, S.; Lin, P.L.; Hansen, L.M.; Talat, N.; Hill, P.C.; Hussain, R.; Adegbola, R.A.; Flynn, J.; Canfield, D.; Parsonnet, J. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS One, 2010, 5(1) e8804
[http://dx.doi.org/10.1371/journal.pone.0008804] [PMID: 20098711]
[31]
Abdollahi, A.; Shoar, S.; Jafari, S.; Emadi-Kochak, H. Seroprevalence of helicobacter pylori in human immunodeficiency virus-positive Patients and it’s correlation with CD4(+) Lymphocyte Count. Niger. Med. J., 2014, 55(1), 67-72.
[http://dx.doi.org/10.4103/0300-1652.128176] [PMID: 24970974]
[32]
Magen, E.; Elbirt, D.; Agmon-Levin, N.; Mishal, J.; Sthoeger, Z. Eradication of Helicobacter pylori can facilitate immune reconstitution in HIV-1-infected immunological non-responders. Int. J. Infect. Dis., 2010, 14(4), e322-e327.
[http://dx.doi.org/10.1016/j.ijid.2009.03.036] [PMID: 19699671]
[33]
Sarfo, F.S.; Eberhardt, K.A.; Dompreh, A.; Kuffour, E.O.; Soltau, M.; Schachscheider, M.; Drexler, J.F.; Eis-Hübinger, A.M.; Häussinger, D.; Oteng-Seifah, E.E.; Bedu-Addo, G.; Phillips, R.O.; Norman, B.; Burchard, G.; Feldt, T. Helicobacter pylori infection is associated with higher CD4 T cell counts and lower HIV-1 viral loads in ART-Naïve HIV-positive patients in Ghana. PLoS One, 2015, 10(11)e0143388
[http://dx.doi.org/10.1371/journal.pone.0143388] [PMID: 26599971]
[34]
Folks, T.M.; Justement, J.; Kinter, A.; Dinarello, C.A.; Fauci, A.S. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science, 1987, 238(4828), 800-802.
[http://dx.doi.org/10.1126/science.3313729] [PMID: 3313729]
[35]
Conlin, V.S.; Curtis, S.B.; Zhao, Y.; Moore, E.D.W.W.; Smith, V.C.; Meloche, R.M.; Finlay, B.B.; Buchan, A.M.J.J. Helicobacter pylori infection targets adherens junction regulatory proteins and results in increased rates of migration in human gastric epithelial cells. Infect. Immun., 2004, 72(9), 5181-5192.
[http://dx.doi.org/10.1128/IAI.72.9.5181-5192.2004] [PMID: 15322013]
[36]
Kassai, K.; Yoshikawa, T.; Yoshida, N.; Hashiramoto, A.; Kondo, M.; Murase, H. Helicobacter pylori water extract induces interleukin-8 production by gastric epithelial cells. Dig. Dis. Sci., 1999, 44(2), 237-242.
[http://dx.doi.org/10.1023/A:1026629812245] [PMID: 10063906]
[37]
Yang, Y.; Wu, J.; Lu, Y. Mechanism of HIV-1-TAT induction of interleukin-1β from human monocytes: involvement of the phospholipase C/protein kinase C signaling cascade. J. Med. Virol., 2010, 82(5), 735-746.
[http://dx.doi.org/10.1002/jmv.21720] [PMID: 20336759]
[38]
De Boo, S.; Kopecka, J.; Brusa, D.; Gazzano, E.; Matera, L.; Ghigo, D.; Bosia, A.; Riganti, C. iNOS activity is necessary for the cytotoxic and immunogenic effects of doxorubicin in human colon cancer cells. Mol. Cancer, 2009, 8, 108.
[http://dx.doi.org/10.1186/1476-4598-8-108] [PMID: 19925669]
[39]
Deng, W.; Yang, W.; Zeng, J.; Abdalla, A.E.; Xie, J. Mycobacterium tuberculosis PPE32 promotes cytokines production and host cell apoptosis through caspase cascade accompanying with enhanced ER stress response. Oncotarget, 2016, 7(41), 67347-67359.
[http://dx.doi.org/10.18632/oncotarget.12030] [PMID: 27634911]
[40]
Clarke, D.L.; Clifford, R.L.; Jindarat, S.; Proud, D.; Pang, L.; Belvisi, M.; Knox, A.J. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein. J. Biol. Chem., 2010, 285(38), 29101-29110.
[http://dx.doi.org/10.1074/jbc.M109.099952] [PMID: 20833730]
[41]
Shin, M.S.; Kang, Y.; Lee, N.; Kim, S.H.; Kang, K.S.; Lazova, R.; Kang, I. U1-small nuclear ribonucleoprotein activates the NLRP3 inflammasome in human monocytes. J. Immunol., 2012, 188(10), 4769-4775.
[http://dx.doi.org/10.4049/jimmunol.1103355] [PMID: 22490866]
[42]
Celardo, I.; Grespi, F.; Antonov, A.; Bernassola, F.; Garabadgiu, A.V.; Melino, G.; Amelio, I. Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis., 2013, 4, e645-e645.
[http://dx.doi.org/10.1038/cddis.2013.175] [PMID: 23703390]
[43]
Fang, C.L.; Yin, L.J.; Sharma, S.; Kierstein, S.; Wu, H.F.; Eid, G.; Haczku, A.; Corrigan, C.J.; Ying, S. Resistin-like molecule-β (RELM-β) targets airways fibroblasts to effect remodelling in asthma: from mouse to man. Clin. Exp. Allergy, 2015, 45(5), 940-952.
[http://dx.doi.org/10.1111/cea.12481] [PMID: 25545115]
[44]
Nakanishi, T.; Imaizumi, K.; Hasegawa, Y.; Kawabe, T.; Hashimoto, N.; Okamoto, M.; Shimokata, K. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol. Immunother., 2006, 55(11), 1320-1329.
[http://dx.doi.org/10.1007/s00262-006-0133-y] [PMID: 16453150]
[45]
Meng, W-J.; Yan, H.; Zhou, B.; Zhang, W.; Kong, X-H.; Wang, R.; Zhan, L.; Li, Y.; Zhou, Z-G.; Sun, X-F. Correlation of SATB1 overexpression with the progression of human rectal cancer. Int. J. Colorectal Dis., 2012, 27(2), 143-150.
[http://dx.doi.org/10.1007/s00384-011-1302-9] [PMID: 21870058]
[46]
Teles, R.M.B.; Krutzik, S.R.; Ochoa, M.T.; Oliveira, R.B.; Sarno, E.N.; Modlin, R.L. Interleukin-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy. Infect. Immun., 2010, 78(11), 4634-4643.
[http://dx.doi.org/10.1128/IAI.00454-10] [PMID: 20713631]
[47]
Sironi, M.; Martinez, F.O.; D’Ambrosio, D.; Gattorno, M.; Polentarutti, N.; Locati, M.; Gregorio, A.; Iellem, A.; Cassatella, M.A.; Van Damme, J.; Sozzani, S.; Martini, A.; Sinigaglia, F.; Vecchi, A.; Mantovani, A. Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J. Leukoc. Biol., 2006, 80(2), 342-349.
[http://dx.doi.org/10.1189/jlb.1005586] [PMID: 16735693]
[48]
Wang, R.; Lu, M.; Zhang, J.; Chen, S.; Luo, X.; Qin, Y.; Chen, H. Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer. J. Exp. Clin. Cancer Res., 2011, 30, 62.
[http://dx.doi.org/10.1186/1756-9966-30-62] [PMID: 21595995]
[49]
Xie, S.; Macedo, P.; Hew, M.; Nassenstein, C.; Lee, K-Y.; Chung, K.F. Expression of transforming growth factor-β (TGF-β) in chronic idiopathic cough. Respir. Res., 2009, 10, 40.
[http://dx.doi.org/10.1186/1465-9921-10-40] [PMID: 19463161]
[50]
Kono, Y.; Nishiuma, T.; Nishimura, Y.; Kotani, Y.; Okada, T.; Nakamura, S.; Yokoyama, M. Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. Am. J. Respir. Cell Mol. Biol., 2007, 37(4), 395-404.
[http://dx.doi.org/10.1165/rcmb.2007-0065OC] [PMID: 17641298]
[51]
Kewcharoenwong, C.; Rinchai, D.; Utispan, K.; Suwannasaen, D.; Bancroft, G.J.; Ato, M.; Lertmemongkolchai, G. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Sci. Rep., 2013, 3, 3363.
[http://dx.doi.org/10.1038/srep03363] [PMID: 24285369]
[52]
Oscarsson, J.; Karched, M.; Thay, B.; Chen, C.; Asikainen, S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol., 2008, 8, 206.
[http://dx.doi.org/10.1186/1471-2180-8-206] [PMID: 19038023]
[53]
Robertson, S.; Diver, L.A.; Alvarez-Madrazo, S.; Livie, C.; Ejaz, A.; Fraser, R.; Connell, J.M.; MacKenzie, S.M.; Davies, E. Regulation of corticosteroidogenic genes by MicroRNAs. Int. J. Endocrinol., 2017, 2017 2021903
[http://dx.doi.org/10.1155/2017/2021903] [PMID: 28852406]
[54]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[55]
Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28, 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[56]
Granowitz, E.V.; Saget, B.M.; Wang, M.Z.; Dinarello, C.A.; Skolnik, P.R. Interleukin 1 induces HIV-1 expression in chronically infected U1 cells: blockade by interleukin 1 receptor antagonist and tumor necrosis factor binding protein type 1. Mol. Med., 1995, 1(6), 667-677.
[http://dx.doi.org/10.1007/BF03401607] [PMID: 8529133]
[57]
Lin, W.W.; Nelson, A.N.; Ryon, J.J.; Moss, W.J.; Griffin, D.E. Plasma cytokines and chemokines in zambian children with measles: innate responses and association with HIV-1 coinfection and in-hospital mortality. J. Infect. Dis., 2017, 215(5), 830-839.
[http://dx.doi.org/10.1093/infdis/jix012] [PMID: 28119485]
[58]
Botero, J.E.; Contreras, A.; Parra, B. Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol. Immunol., 2008, 23(4), 291-298.
[http://dx.doi.org/10.1111/j.1399-302X.2007.00427.x] [PMID: 18582328]
[59]
Devadas, K.; Hardegen, N.J.; Wahl, L.M.; Hewlett, I.K.; Clouse, K.A.; Yamada, K.M.; Dhawan, S. Mechanisms for macrophage-mediated HIV-1 induction. J. Immunol., 2004, 173(11), 6735-6744.
[http://dx.doi.org/10.4049/jimmunol.173.11.6735] [PMID: 15557166]
[60]
Le Douce, V.; Herbein, G.; Rohr, O.; Schwartz, C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology, 2010, 7, 32.
[http://dx.doi.org/10.1186/1742-4690-7-32] [PMID: 20380694]
[61]
Cassol, E.; Cassetta, L.; Rizzi, C.; Alfano, M.; Poli, G. M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J. Immunol., 2009, 182(10), 6237-6246.
[http://dx.doi.org/10.4049/jimmunol.0803447] [PMID: 19414777]
[62]
Poli, G.; Kinter, A.L.; Fauci, A.S. Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected U1 cells: inhibition of inductive effects by the interleukin 1 receptor antagonist. Proc. Natl. Acad. Sci. USA, 1994, 91(1), 108-112.
[http://dx.doi.org/10.1073/pnas.91.1.108] [PMID: 7506410]
[63]
Mamik, M.K.; Ghorpade, A. Chemokine CXCL8 promotes HIV-1 replication in human monocyte-derived macrophages and primary microglia via nuclear factor-κB pathway. PLoS One, 2014, 9(3) e92145
[http://dx.doi.org/10.1371/journal.pone.0092145] [PMID: 24662979]
[64]
Lane, B.R.; King, S.R.; Bock, P.J.; Strieter, R.M.; Coffey, M.J.; Markovitz, D.M. The C-X-C chemokine IP-10 stimulates HIV-1 replication. Virology, 2003, 307(1), 122-134.
[http://dx.doi.org/10.1016/S0042-6822(02)00045-4] [PMID: 12667820]
[65]
Lane, B.R.; Lore, K.; Bock, P.J.; Andersson, J.; Coffey, M.J.; Strieter, R.M.; Markovitz, D.M. Interleukin-8 stimulates human immunodeficiency virus type 1 replication and is a potential new target for antiretroviral therapy. J. Virol., 2001, 75(17), 8195-8202.
[http://dx.doi.org/10.1128/JVI.75.17.8195-8202.2001] [PMID: 11483765]
[66]
Kumar, A.; Cherukumilli, M.; Mahmoudpour, S.H.; Brand, K.; Bandapalli, O.R. ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis. Biochem. Biophys. Res. Commun., 2018, 500(3), 731-737.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.144] [PMID: 29679563]
[67]
Li, Y.; Wang, L.; Pappan, L.; Galliher-Beckley, A.; Shi, J. IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol. Cancer, 2012, 11, 87.
[http://dx.doi.org/10.1186/1476-4598-11-87] [PMID: 23174018]
[68]
Zhao, R.; Zhou, H.; Su, S.B. A critical role for interleukin-1β in the progression of autoimmune diseases. Int. Immunopharmacol., 2013, 17(3), 658-669.
[http://dx.doi.org/10.1016/j.intimp.2013.08.012] [PMID: 24012439]
[69]
Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14), 3720-3732.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[70]
Liu, M.T.; Keirstead, H.S.; Lane, T.E. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J. Immunol., 2001, 167(7), 4091-4097.
[http://dx.doi.org/10.4049/jimmunol.167.7.4091] [PMID: 11564831]
[71]
Lee, J-H.; Kim, B.; Jin, W.J.; Kim, H-H.; Ha, H.; Lee, Z.H. Pathogenic roles of CXCL10 signaling through CXCR3 and TLR4 in macrophages and T cells: relevance for arthritis. Arthritis Res. Ther., 2017, 19(1), 163.
[http://dx.doi.org/10.1186/s13075-017-1353-6] [PMID: 28724396]
[72]
Liu, M.; Guo, S.; Stiles, J.K. The emerging role of CXCL10 in cancer. (Review) Oncol. Lett., 2011, 2(4), 583-589.
[http://dx.doi.org/10.3892/ol.2011.300] [PMID: 22848232]
[73]
Khazali, A.S.; Clark, A.M.; Wells, A. Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy. Br. J. Cancer, 2018, 118(4), 566-576.
[http://dx.doi.org/10.1038/bjc.2017.414] [PMID: 29169181]
[74]
Stroud, J.C.; Oltman, A.; Han, A.; Bates, D.L.; Chen, L. Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50: RelA bound to the HIV-1 LTR. J. Mol. Biol., 2009, 393(1), 98-112.
[http://dx.doi.org/10.1016/j.jmb.2009.08.023] [PMID: 19683540]
[75]
Nabel, G.; Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature, 1987, 326(6114), 711-713.
[http://dx.doi.org/10.1038/326711a0] [PMID: 3031512]
[76]
Gerritsen, M.E.; Williams, A.J.; Neish, A.S.; Moore, S.; Shi, Y.; Collins, T. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 2927-2932.
[http://dx.doi.org/10.1073/pnas.94.7.2927] [PMID: 9096323]
[77]
Bergamini, A.; Bolacchi, F.; Bongiovanni, B.; Colizzi, V.; Cappelli, G.; Uccella, I.; Cepparulo, M.; Capozzi, M.; Mancino, G.; Rocchi, G. Human immunodeficiency virus type 1 infection modulates the interleukin (IL)-1β and IL-6 responses of human macrophages to CD40 ligand stimulation. J. Infect. Dis., 2000, 182(3), 776-784.
[http://dx.doi.org/10.1086/315803] [PMID: 10950771]
[78]
Planès, R.; Serrero, M.; Leghmari, K.; BenMohamed, L.; Bahraoui, E. HIV-1 envelope glycoproteins induce the production of TNF-α and IL-10 in human monocytes by activating calcium pathway. Sci. Rep., 2018, 8(1), 17215.
[http://dx.doi.org/10.1038/s41598-018-35478-1] [PMID: 30464243]
[79]
Chen, P.; Mayne, M.; Power, C.; Nath, A. The Tat protein of HIV-1 induces tumor necrosis factor-α production. Implications for HIV-1-associated neurological diseases. J. Biol. Chem., 1997, 272(36), 22385-22388.
[http://dx.doi.org/10.1074/jbc.272.36.22385] [PMID: 9278385]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy