Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Aging and Neuroinflammatory Disorders: New Biomarkers and Therapeutic Targets

Author(s): Caterina M. Gambino, Bruna Lo Sasso, Giulia Bivona, Luisa Agnello and Marcello Ciaccio*

Volume 25, Issue 39, 2019

Page: [4168 - 4174] Pages: 7

DOI: 10.2174/1381612825666191112093034

Price: $65

Abstract

Chronic neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative age-associated disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson’s disease, and dementia.

In particular, persistent low-grade inflammation may disrupt the brain endothelial barrier and cause a significant increase of pro-inflammatory cytokines and immune cells into the cerebral tissue that, in turn, leads to microglia dysfunction and loss of neuroprotective properties.

Nowadays, growing evidence highlights a strong association between persistent peripheral inflammation, as well as metabolic alterations, and neurodegenerative disorder susceptibility. The identification of common pathways involved in the development of these diseases, which modulate the signalling and immune response, is an important goal of ongoing research.

The aim of this review is to elucidate which inflammation-related molecules are robustly associated with the risk of neurodegenerative diseases. Of note, peripheral biomarkers may represent direct measures of pathophysiologic processes common of aging and neuroinflammatory processes. In addition, molecular changes associated with the neurodegenerative process might be present many decades before the disease onset. Therefore, the identification of a comprehensive markers panel, closely related to neuroinflammation, could be helpful for the early diagnosis, and the identification of therapeutic targets to counteract the underlying chronic inflammatory processes.

Keywords: Aging, inflammation, neurodegenerative diseases, biomarkers, therapeutic targets, neuroinflammatory.

[1]
Van Bavel J. The world population explosion: causes, backgrounds and -projections for the future. Facts Views Vis ObGyn 2013; 5(4): 281-91.
[PMID: 24753956]
[2]
WHO. What is healthy ageing? WHO Available at:. http://www who.int/ageing/healthy-ageing/en/
[3]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[4]
Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14: 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[5]
Accardi G, Aprile S, Candore G, et al. Genotypic and phenotypic aspects of longevity: results from a sicilian survey and implication for the prevention and treatment of age-related diseases. Curr Pharm Des 2019; 25(3): 228-35.
[http://dx.doi.org/10.2174/1381612825666190313115233] [PMID: 30864497]
[6]
Peters R. Ageing and the brain. Postgrad Med J 2006; 82(964): 84-8.
[http://dx.doi.org/10.1136/pgmj.2005.036665] [PMID: 16461469]
[7]
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. Alzheimer’s disease neuroimaging initiative. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 2014; 117: 20-40.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.004] [PMID: 24548606]
[8]
Ogama N, Sakurai T, Shimizu A, Toba K. Regional white matter lesions predict falls in patients with amnestic mild cognitive impairment and Alzheimer’s disease. J Am Med Dir Assoc 2014; 15(1): 36-41.
[http://dx.doi.org/10.1016/j.jamda.2013.11.004] [PMID: 24359699]
[9]
Ogama N, Sakurai T, Nakai T, et al. Impact of frontal white matter hyperintensity on instrumental activities of daily living in elderly women with Alzheimer disease and amnestic mild cognitive impairment. PLoS One 2017; 12(3)e0172484
[http://dx.doi.org/10.1371/journal.pone.0172484] [PMID: 28253275]
[10]
Trollor JN, Valenzuela MJ, Aust NZ. Brain ageing in the new millennium. Aust N Z J Psychiatry 2001; 35(6): 788-805.
[http://dx.doi.org/10.1046/j.1440-1614.2001.00969.x] [PMID: 11990890]
[11]
Anderton BH. Ageing of the brain. Mech Ageing Dev 2002; 123(7): 811-7.
[http://dx.doi.org/10.1016/S0047-6374(01)00426-2] [PMID: 11869738]
[12]
Compton J, van Amelsvoort T, Murphy D. HRT and its effect on normal ageing of the brain and dementia. Br J Clin Pharmacol 2001; 52(6): 647-53.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01492.x] [PMID: 11736875]
[13]
Toescu EC, Verkhratsky A, Landfield PW. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 2004; 27(10): 614-20.
[http://dx.doi.org/10.1016/j.tins.2004.07.010] [PMID: 15374673]
[14]
Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci 2004; 27(10): 601-6.
[http://dx.doi.org/10.1016/j.tins.2004.08.004] [PMID: 15374671]
[15]
Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002; 3(3): 216-27.
[http://dx.doi.org/10.1038/nrn752] [PMID: 11994753]
[16]
Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 2002; 962: 318-31.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04077.x] [PMID: 12076984]
[17]
Di Benedetto S, Müller L, Wenger E, Düzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 2017; 75: 114-28.
[http://dx.doi.org/10.1016/j.neubiorev.2017.01.044] [PMID: 28161508]
[18]
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014; 14(7): 463-77.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[19]
Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 2018; 19(10): 610-21.
[http://dx.doi.org/10.1038/s41583-018-0055-7] [PMID: 30206330]
[20]
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: friend or foe? Mol Neurobiol 2017; 54(10): 8071-89.
[http://dx.doi.org/10.1007/s12035-016-0297-1] [PMID: 27889895]
[21]
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem 2016; 139(Suppl. 2): 136-53.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[22]
Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302(5651): 1760-5.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[23]
González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014; 274(1-2): 1-13.
[http://dx.doi.org/10.1016/j.jneuroim.2014.07.012] [PMID: 25091432]
[24]
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8(1): 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[25]
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94: 112-20.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004]
[26]
Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia 2004; 45(2): 208-12.
[http://dx.doi.org/10.1002/glia.10319] [PMID: 14730714]
[27]
Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007; 7(2): 161-7.
[http://dx.doi.org/10.1038/nri2015] [PMID: 17220915]
[28]
Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 2012; 60(4): 251-66.
[http://dx.doi.org/10.1007/s00005-012-0181-2] [PMID: 22710659]
[29]
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11: 98.
[http://dx.doi.org/10.1186/1742-2094-11-98] [PMID: 24889886]
[30]
González-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 1999; 22: 219-40.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.219] [PMID: 10202538]
[31]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[32]
Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 2013; 91(9): 1143-51.
[http://dx.doi.org/10.1002/jnr.23242] [PMID: 23686747]
[33]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[34]
Racchi M, Uberti D, Govoni S, et al. Alzheimer’s disease: new diagnostic and therapeutic tools. Immun Ageing 2008; 5: 7.
[http://dx.doi.org/10.1186/1742-4933-5-7] [PMID: 18700965]
[35]
Vasto S, Candore G, Listì F, et al. Inflammation, genes and zinc in Alzheimer’s disease. Brain Res Brain Res Rev 2008; 58(1): 96-105.
[http://dx.doi.org/10.1016/j.brainresrev.2007.12.001] [PMID: 18190968]
[36]
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[37]
Muayqil T, Camicioli R. Systematic review and meta-analysis of combination therapy with cholinesterase inhibitors and memantine in Alzheimer’s disease and other dementias. Dement Geriatr Cogn Disord Extra 2012; 2(1): 546-72.
[http://dx.doi.org/10.1159/000343479] [PMID: 23277787]
[38]
Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[39]
Marques F, Sousa JC, Sousa N, Palha JA. Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener 2013; 8: 38.
[http://dx.doi.org/10.1186/1750-1326-8-38] [PMID: 24148264]
[40]
Thambisetty M, Simmons A, Hye A, et al. Plasma biomarkers of brain atrophy in Alzheimer’s disease. PLoS One 2011; 6(12)e28527
[http://dx.doi.org/10.1371/journal.pone.0028527] [PMID: 22205954]
[41]
Soares HD, Potter WZ, Pickering E, et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 2012; 69(10): 1310-7.
[http://dx.doi.org/10.1001/archneurol.2012.1070] [PMID: 22801723]
[42]
Agnello L, Bellia C, Scazzone C, et al. Establishing the 99th percentile for high sensitivity cardiac troponin I in healthy blood donors from Southern Italy. Biochem Med (Zagreb) 2019; 29(2)020901
[http://dx.doi.org/10.11613/BM.2019.020901] [PMID: 31223265]
[43]
Agnello L, Bivona G, Lo Sasso B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem 2017; 50(13-14): 797-803.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.04.018] [PMID: 28456545]
[44]
Bellia C, Bivona G, Scazzone C, Ciaccio M. Association between homocysteinemia and metabolic syndrome in patients with cardiovascular disease. Ther Clin Risk Manag 2007; 3(6): 999-1001.
[PMID: 18516267]
[45]
Agnello L, Bellia C, Lo Sasso B, et al. Establishing the upper reference limit of Galectin-3 in healthy blood donors. Biochem Med (Zagreb) 2017; 27(3)030709
[http://dx.doi.org/10.11613/BM.2017.030709] [PMID: 29180917]
[46]
Bivona G, Bellia C, Lo Sasso B, et al. Short-term changes in Gal 3 circulating levels after acute myocardial infarction. Arch Med Res 2016; 47(7): 521-5.
[http://dx.doi.org/10.1016/j.arcmed.2016.12.009] [PMID: 28262193]
[47]
Blennow K, Mattsson N, Schöll M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci 2015; 36(5): 297-309.
[http://dx.doi.org/10.1016/j.tips.2015.03.002] [PMID: 25840462]
[48]
Meredith JE Jr, Sankaranarayanan S, Guss V, et al. Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease. PLoS One 2013; 8(10)e76523
[http://dx.doi.org/10.1371/journal.pone.0076523] [PMID: 24116116]
[49]
Sancesario GM, Bernardini S. Diagnosis of neurodegenerative dementia: where do we stand, now? Ann Transl Med 2018; 6(17): 340.
[http://dx.doi.org/10.21037/atm.2018.08.04] [PMID: 30306079]
[50]
Toledo JB, Shaw LM, Trojanowski JQ. Plasma amyloid beta measurements - a desired but elusive Alzheimer’s disease biomarker. Alzheimers Res Ther 2013; 5(2): 8.
[http://dx.doi.org/10.1186/alzrt162] [PMID: 23470128]
[51]
Siew JJ, Chern Y. Microglial lectins in health and neurological diseases. Front Mol Neurosci 2018; 11: 158.
[http://dx.doi.org/10.3389/fnmol.2018.00158] [PMID: 29867350]
[52]
Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev 2009; 230(1): 9-21.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00789.x] [PMID: 19594626]
[53]
Färber K, Cheung G, Mitchell D, et al. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 2009; 87(3): 644-52.
[http://dx.doi.org/10.1002/jnr.21875] [PMID: 18831010]
[54]
de la Rosa X, Cervera A, Kristoffersen AK, et al. Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 2014; 45(5): 1453-9.
[http://dx.doi.org/10.1161/STROKEAHA.113.004111] [PMID: 24676774]
[55]
Larvie M, Shoup T, Chang WC, et al. Mannose-binding lectin binds to amyloid β protein and modulates inflammation. J Biomed Biotechnol 2012; 2012929803
[http://dx.doi.org/10.1155/2012/929803] [PMID: 22536027]
[56]
Lanzrein AS, Jobst KA, Thiel S, et al. Mannan-binding lectin in human serum, cerebrospinal fluid and brain tissue and its role in Alzheimer’s disease. Neuroreport 1998; 9(7): 1491-5.
[http://dx.doi.org/10.1097/00001756-199805110-00045] [PMID: 9631454]
[57]
Møller-Kristensen M, Ip WK, Shi L, et al. Deficiency of mannose-binding lectin greatly increases susceptibility to postburn infection with Pseudomonas aeruginosa. J Immunol 2006; 176(3): 1769-75.
[http://dx.doi.org/10.4049/jimmunol.176.3.1769] [PMID: 16424207]
[58]
Auriti C, Prencipe G, Caravale B, et al. MBL2 gene polymorphisms increase the risk of adverse neurological outcome in preterm infants: a preliminary prospective study. Pediatr Res 2014; 76(5): 464-9.
[http://dx.doi.org/10.1038/pr.2014.118] [PMID: 25119337]
[59]
Takahashi K, Chang WC, Takahashi M, et al. Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation. Immunobiology 2011; 216(1-2): 96-102.
[http://dx.doi.org/10.1016/j.imbio.2010.02.005] [PMID: 20399528]
[60]
Møller-Kristensen M, Hamblin MR, Thiel S, Jensenius JC, Takahashi K. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice. J Invest Dermatol 2007; 127(6): 1524-31.
[http://dx.doi.org/10.1038/sj.jid.5700748] [PMID: 17363917]
[61]
Sjölander A, Minthon L, Nuytinck L, Vanmechelen E, Blennow K, Nilsson S. Functional mannose-binding lectin haplotype variants are associated with Alzheimer’s disease. J Alzheimers Dis 2013; 35(1): 121-7.
[http://dx.doi.org/10.3233/JAD-122044] [PMID: 23348713]
[62]
Tomaiuolo R, Ruocco A, Salapete C, et al. Activity of mannose-binding lectin in centenarians. Aging Cell 2012; 11(3): 394-400.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00793.x] [PMID: 22239660]
[63]
Kitamura Y, Usami R, Ichihara S, et al. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease. Neurol Res 2017; 39(3): 231-8.
[http://dx.doi.org/10.1080/01616412.2017.1281195] [PMID: 28107809]
[64]
Laughlin GA, McEvoy LK, Barrett-Connor E, Daniels LB, Ix JH. Fetuin-A, a new vascular biomarker of cognitive decline in older adults. Clin Endocrinol (Oxf) 2014; 81(1): 134-40.
[http://dx.doi.org/10.1111/cen.12382] [PMID: 24325554]
[65]
Mori K, Emoto M, Inaba M. Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov 2011; 5(2): 124-46.
[http://dx.doi.org/10.2174/187221411799015372] [PMID: 22074587]
[66]
Jahnen-Dechent W, Heiss A, Schäfer C, Ketteler M. Fetuin-A regulation of calcified matrix metabolism. Circ Res 2011; 108(12): 1494-509.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.234260] [PMID: 21659653]
[67]
Ketteler M, Giachelli C. Novel insights into vascular calcification. Kidney Int Suppl 2006; 105(105): S5-9.
[http://dx.doi.org/10.1038/sj.ki.5001996] [PMID: 17136112]
[68]
Bivona G. Low serum Fetuin A levels and cardiovascular events in end-stage renal disease (ESRD) patients. Res J Med Sci 2008; 2: 200-2.
[69]
Ciaccio M, Bivona G, Di Sciacca R, et al. Changes in serum fetuin-A and inflammatory markers levels in end-stage renal disease (ESRD): effect of a single session haemodialysis. Clin Chem Lab Med 2008; 46(2): 212-4.
[http://dx.doi.org/10.1515/CCLM.2008.041] [PMID: 18076347]
[70]
El-Shehaby AM, Zakaria A, El-Khatib M, Mostafa N. Association of fetuin-A and cardiac calcification and inflammation levels in hemodialysis patients. Scand J Clin Lab Invest 2010; 70(8): 575-82.
[http://dx.doi.org/10.3109/00365513.2010.528445] [PMID: 20964498]
[71]
Jensen MK, Bartz TM, Mukamal KJ, et al. Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the cardiovascular health study. Diabetes Care 2013; 36(5): 1222-8.
[http://dx.doi.org/10.2337/dc12-1591] [PMID: 23250801]
[72]
Tuttolomondo A, Di Raimondo D, Di Sciacca R, et al. Fetuin-A and CD40 L plasma levels in acute ischemic stroke: differences in relation to TOAST subtype and correlation with clinical and laboratory variables. Atherosclerosis 2010; 208(1): 290-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.07.032] [PMID: 19709661]
[73]
Bellia C, Tomaiuolo R, Caruso A, et al. Fetuin-A serum levels are not correlated to kidney function in long-lived subjects. Clin Biochem 2012; 45(9): 637-40.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.02.024] [PMID: 22425942]
[74]
Laughlin GA, Cummins KM, Wassel CL, Daniels LB, Ix JH. The association of fetuin-A with cardiovascular disease mortality in older community-dwelling adults: the Rancho Bernardo study. J Am Coll Cardiol 2012; 59(19): 1688-96.
[http://dx.doi.org/10.1016/j.jacc.2012.01.038] [PMID: 22554599]
[75]
Li W, Zhu S, Li J, et al. A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation. PLoS One 2011; 6(2)e16945
[http://dx.doi.org/10.1371/journal.pone.0016945] [PMID: 21347455]
[76]
Lebreton JP, Joisel F, Raoult JP, Lannuzel B, Rogez JP, Humbert G. Serum concentration of human alpha 2 HS glycoprotein during the inflammatory process: evidence that alpha 2 HS glycoprotein is a negative acute-phase reactant. J Clin Invest 1979; 64(4): 1118-29.
[http://dx.doi.org/10.1172/JCI109551] [PMID: 90057]
[77]
Ombrellino M, Wang H, Yang H, et al. Fetuin, a negative acute phase protein, attenuates TNF synthesis and the innate inflammatory response to carrageenan. Shock 2001; 15(3): 181-5.
[http://dx.doi.org/10.1097/00024382-200115030-00004] [PMID: 11236900]
[78]
Wang H, Li W, Zhu S, et al. Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats. J Cereb Blood Flow Metab 2010; 30(3): 493-504.
[http://dx.doi.org/10.1038/jcbfm.2009.247] [PMID: 19953099]
[79]
Lu B, Wang C, Wang M, et al. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 2014; 10(6): 713-27.
[http://dx.doi.org/10.1586/1744666X.2014.909730] [PMID: 24746113]
[80]
Smith ER, Nilforooshan R, Weaving G, Tabet N. Plasma fetuin-A is associated with the severity of cognitive impairment in mild-to-moderate Alzheimer’s disease. J Alzheimers Dis 2011; 24(2): 327-33.
[http://dx.doi.org/10.3233/JAD-2011-101872] [PMID: 21239851]
[81]
Heinen MC, Babler A, Weis J, et al. Fetuin-A protein distribution in mature inflamed and ischemic brain tissue. PLoS One 2018; 13(11)e0206597
[http://dx.doi.org/10.1371/journal.pone.0206597] [PMID: 30412582]
[82]
Mhyre TR, Boyd JT, Hamill RW, Maguire-Zeiss KA. Parkinson’s disease. Subcell Biochem 2012; 65: 389-455.
[http://dx.doi.org/10.1007/978-94-007-5416-4_16] [PMID: 23225012]
[83]
Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 2011; 26(Suppl. 1): S1-S58.
[http://dx.doi.org/10.1007/s10654-011-9581-6] [PMID: 21626386]
[84]
Rodrigues e Silva AM, Geldsetzer F, Holdorff B, et al. Who was the man who discovered the “Lewy bodies”? Mov Disord 2010; 25(12): 1765-73.
[http://dx.doi.org/10.1002/mds.22956] [PMID: 20669275]
[85]
Kim C, Ho DH, Suk JE, et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 2013; 4: 1562.
[http://dx.doi.org/10.1038/ncomms2534] [PMID: 23463005]
[86]
Rees K, Stowe R, Patel S, et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database Syst Rev 2011; (11): CD008454
[http://dx.doi.org/10.1002/14651858.CD008454.pub2] [PMID: 22071848]
[87]
Berardelli A, Wenning GK, Antonini A, et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 2013; 20(1): 16-34.
[http://dx.doi.org/10.1111/ene.12022] [PMID: 23279440]
[88]
Angot E, Steiner JA, Lema Tomé CM, et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 2012; 7(6)e39465
[http://dx.doi.org/10.1371/journal.pone.0039465] [PMID: 22737239]
[89]
Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with Parkinsonism: a cohort study. Lancet Neurol 2011; 10(3): 230-40.
[http://dx.doi.org/10.1016/S1474-4422(11)70014-X] [PMID: 21317042]
[90]
Devic I, Hwang H, Edgar JS, et al. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 2011; 134(Pt 7)e178
[http://dx.doi.org/10.1093/brain/awr015] [PMID: 21349902]
[91]
El-Agnaf OMA, Salem SA, Paleologou KE, et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 2006; 20(3): 419-25.
[http://dx.doi.org/10.1096/fj.03-1449com] [PMID: 16507759]
[92]
Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Alpha-synuclein oligomers: a new hope. Acta Neuropathol 2017; 134(6): 819-38.
[http://dx.doi.org/10.1007/s00401-017-1755-1] [PMID: 28803412]
[93]
Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009; 8(4): 382-97.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[94]
Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010; 37(3): 510-8.
[http://dx.doi.org/10.1016/j.nbd.2009.11.004] [PMID: 19913097]
[95]
Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 2017; 155: 57-75.
[http://dx.doi.org/10.1016/j.pneurobio.2016.04.006] [PMID: 27107797]
[96]
Qiu X, Xiao Y, Wu J, Gan L, Huang Y, Wang J. C-reactive protein and risk of Parkinson’s disease: a systematic review and meta-analysis. Front Neurol 2019; 10: 384.
[http://dx.doi.org/10.3389/fneur.2019.00384] [PMID: 31057478]
[97]
Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 2016; 73(11): 1316-24.
[http://dx.doi.org/10.1001/jamaneurol.2016.2742] [PMID: 27668667]
[98]
Vivona N, Bivona G, Noto D, et al. C-reactive protein but not soluble CD40 ligand and homocysteine is associated to common atherosclerotic risk factors in a cohort of coronary artery disease patients. Clin Biochem 2009; 42(16-17): 1713-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.08.014] [PMID: 19732763]
[99]
Agnello L, Bellia C, Di Gangi M, et al. Utility of serum procalcitonin and C-reactive protein in severity assessment of community-acquired pneumonia in children. Clin Biochem 2016; 49(1-2): 47-50.
[http://dx.doi.org/10.1016/j.clinbiochem.2015.09.008] [PMID: 26386341]
[100]
Ragy MM, Kamal NN. Linking senile dementia to type 2 diabetes: role of oxidative stress markers, C-reactive protein and tumor necrosis factor-α. Neurol Res 2017; 39(7): 587-95.
[http://dx.doi.org/10.1080/01616412.2017.1312773] [PMID: 28393627]
[101]
Bassani TB, Vital MA, Rauh LK. Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. Arq Neuropsiquiatr 2015; 73(7): 616-23.
[http://dx.doi.org/10.1590/0004-282X20150057] [PMID: 26200058]
[102]
Di Napoli M, Godoy DA, Campi V, et al. C-reactive protein in intracerebral hemorrhage: time course, tissue localization, and prognosis. Neurology 2012; 79(7): 690-9.
[http://dx.doi.org/10.1212/WNL.0b013e318264e3be] [PMID: 22855859]
[103]
Yasojima K, Schwab C, McGeer EG, McGeer PL. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res 2000; 887(1): 80-9.
[http://dx.doi.org/10.1016/S0006-8993(00)02970-X] [PMID: 11134592]
[104]
Juma WM, Lira A, Marzuk A, Marzuk Z, Hakim AM, Thompson CS. C-reactive protein expression in a rodent model of chronic cerebral hypoperfusion. Brain Res 2011; 1414: 85-93.
[http://dx.doi.org/10.1016/j.brainres.2011.07.047] [PMID: 21840509]
[105]
Sartori AC, Vance DE, Slater LZ, Crowe M. The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J Neurosci Nurs 2012; 44(4): 206-17.
[http://dx.doi.org/10.1097/JNN.0b013e3182527690] [PMID: 22743812]
[106]
Kalueff AV, Tuohimaa P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care 2007; 10(1): 12-9.
[http://dx.doi.org/10.1097/MCO.0b013e328010ca18] [PMID: 17143049]
[107]
Annweiler C, Schott AM, Berrut G, et al. Vitamin D and ageing: neurological issues. Neuropsychobiology 2010; 62(3): 139-50.
[http://dx.doi.org/10.1159/000318570] [PMID: 20628264]
[108]
Bivona G, Gambino CM, Iacolino G, Ciaccio M. Vitamin D and the nervous system. Neurol Res 2019; 41(9): 827-35.
[http://dx.doi.org/10.1080/01616412.2019.1622872] [PMID: 31142227]
[109]
Bivona G, Agnello L, Pivetti A, et al. Association between hypovitaminosis D and systemic sclerosis: true or fake? Clin Chim Acta 2016; 458: 115-9.
[http://dx.doi.org/10.1016/j.cca.2016.04.026] [PMID: 27154801]
[110]
Bivona G, Agnello L, Ciaccio M. Vitamin D and immunomodulation: is it time to change the reference values? Ann Clin Lab Sci 2017; 47(4): 508-10.
[PMID: 28801380]
[111]
Bivona G, Agnello L, Ciaccio M. The immunological implication of the new vitamin D metabolism. Cent Eur J Immunol 2018; 43(3): 331-4.
[http://dx.doi.org/10.5114/ceji.2018.80053] [PMID: 30588177]
[112]
Feart C, Helmer C, Merle B, et al. Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults. Alzheimers Dement 2017; 13(11): 1207-16.
[http://dx.doi.org/10.1016/j.jalz.2017.03.003] [PMID: 28522216]
[113]
Sommer I, Griebler U, Kien C, et al. Vitamin D deficiency as a risk factor for dementia: a systematic review and meta-analysis. BMC Geriatr 2017; 17(1): 16.
[http://dx.doi.org/10.1186/s12877-016-0405-0] [PMID: 28086755]
[114]
Zhou Z, Zhou R, Zhang Z, Li K. The association between vitamin D status, vitamin D supplementation, sunlight exposure, and Parkinson’s disease: a systematic review and meta-analysis. Med Sci Monit 2019; 25: 666-74.
[http://dx.doi.org/10.12659/MSM.912840] [PMID: 30672512]
[115]
Calvello R, Cianciulli A, Nicolardi G, et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol 2017; 12(2): 327-39.
[http://dx.doi.org/10.1007/s11481-016-9720-7] [PMID: 27987058]
[116]
Hiller AL, Murchison CF, Lobb BM, O’Connor S, O’Connor M, Quinn JF. A randomized, controlled pilot study of the effects of vitamin D supplementation on balance in Parkinson’s disease: does age matter? PLoS One 2018; 13(9)e0203637
[http://dx.doi.org/10.1371/journal.pone.0203637] [PMID: 30256811]
[117]
Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr 2013; 97(5): 1004-13.
[http://dx.doi.org/10.3945/ajcn.112.051664] [PMID: 23485413]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy