Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Current Progresses of Functional Nanomaterials for Imaging Diagnosis and Treatment of Melanoma

Author(s): Congcong Zhu, Yunjie Zhu, Huijun Pan, Zhongjian Chen* and Quangang Zhu*

Volume 19, Issue 27, 2019

Page: [2494 - 2506] Pages: 13

DOI: 10.2174/1568026619666191023130524

Price: $65

Abstract

Melanoma is a malignant skin tumor that results in poor disease prognosis due to unsuccessful treatment options. During the early stages of tumor progression, surgery is the primary approach that assures a good outcome. However, in the presence of metastasis, melanoma hasbecome almost immedicable, since the tumors can not be removed and the disease recurs easily in a short period of time. However, in recent years, the combination of nanomedicine and chemotherapeutic drugs has offered promising solutions to the treatment of late-stage melanoma. Extensive studies have demonstrated that nanomaterials and their advanced applications can improve the efficacy of traditional chemotherapeutic drugs in order to overcome the disadvantages, such as drug resistance, low drug delivery rate and reduced targeting to the tumor tissue. In the present review, we summarized the latest progress in imaging diagnosis and treatment of melanoma using functional nanomaterials, including polymers, liposomes, metal nanoparticles, magnetic nanoparticles and carbon-based nanoparticles. These nanoparticles are reported widely in melanoma chemotherapy, gene therapy, immunotherapy, photodynamic therapy, and hyperthermia.

Keywords: Melanoma, Nanomaterials, Imaging, Chemotherapy, Targeted therapy, Biomedicine.

Graphical Abstract

[1]
Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; Lin, C.; Leach, C.; Cannady, R.S.; Cho, H.; Scoppa, S.; Hachey, M.; Kirch, R.; Jemal, A.; Ward, E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin., 2012, 62(4), 220-241.
[http://dx.doi.org/10.3322/caac.21149] [PMID: 22700443]
[2]
El Ghissassi, F.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. A review of human carcinogens--part D: radiation. Lancet Oncol., 2009, 10(8), 751-752.
[http://dx.doi.org/10.1016/S1470-2045(09)70213-X] [PMID: 19655431]
[3]
Farzanefar, S.; Etemadi, R.; Shirkhoda, M.; Mahmoodzadeh, H.; Erfani, M.; Fallahi, B.; Abbasi, M.; Ayati, N.; Hassanzadeh-Rad, A.; Eftekhari, M.; Beiki, D. The value of technetium-99m labeled alpha-melanocyte-stimulating hormone (99mTc-α-MSH) in diagnosis of primary and metastatic lesions of malignant melanoma. Asia Ocean. J. Nucl. Med. Biol., 2018, 6(2), 155-160.
[PMID: 29998149]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[5]
U.S. Department of Health and Human Services; Office of the Surgeon General. In: The surgeon general’s call to action to prevent skin cancer; CreateSpace: California, 2014.
[6]
Bittar, J.M.; Bittar, P.G.; Wan, M.T.; Kovell, R.C.; Guzzo, T.J.; Shin, T.M.; Etzkorn, J.R.; Sobanko, J.F.; Miller, C.J. Systematic review of surgical treatment and outcomes after local surgery of primary cutaneous melanomas of the penis and scrotum. Dermatol. Surg., 2018, 44(9), 1159-1169.
[http://dx.doi.org/10.1097/DSS.0000000000001579] [PMID: 29985865]
[7]
Sasse, A.D.; Sasse, E.C.; Clark, L.G.; Clark, O.A.C.; Clark, O.C. WITHDRAWN: Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst. Rev., 2018, 2CD005413
[http://dx.doi.org/10.1002/14651858.CD005413.pub2] [PMID: 29409139]
[8]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[9]
Napolitano, S.; Brancaccio, G.; Argenziano, G.; Martinelli, E.; Morgillo, F.; Ciardiello, F.; Troiani, T. It is finally time for adjuvant therapy in melanoma. Cancer Treat. Rev., 2018, 69, 101-111.
[http://dx.doi.org/10.1016/j.ctrv.2018.06.003] [PMID: 29957365]
[10]
Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; Larkin, J.G.; Lorigan, P.; Neyns, B.; Blank, C.U.; Petrella, T.M.; Hamid, O.; Su, S.C.; Krepler, C. Ibrahim, Nageatte.; Long, G.V. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol., 2019, 372, 2521-2532.
[11]
Hantel, A.; Gabster, B.; Cheng, J.X.; Golomb, H.; Gajewski, T.F. Severe hemophagocytic lymphohistiocytosis in a melanoma patient treated with ipilimumab + nivolumab. J. Immunother. Cancer, 2018, 6(1), 73.
[http://dx.doi.org/10.1186/s40425-018-0384-0] [PMID: 30012206]
[12]
Barreto, J.A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 2011, 23(12), H18-H40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[13]
Wang, Z.; Li, H.; Tang, F.; Ma, J.; Zhou, X. A facile approach for the preparation of nano-size zinc oxide in water/glycerol with extremely concentrated zinc sources. Nanoscale Res. Lett., 2018, 13(1), 202.
[http://dx.doi.org/10.1186/s11671-018-2616-0]
[14]
Matmin, J.; Affendi, I.; Endud, S. Direct-continuous preparation of nanostructured titania-silica using surfactant-free non-scaffold rice starch template. Nanomaterials (Basel), 2018, 8(7), 514.
[http://dx.doi.org/10.3390/nano8070514]
[15]
Bao, S.; Huang, J.; Liu, X.; Tang, W.; Fang, T. Tissue distribution of Ag and oxidative stress responses in the freshwater snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles. Sci. Total Environ., 2018, 644, 736-746.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.011] [PMID: 29990921]
[16]
Ruiz-de-Angulo, A.; Zabaleta, A.; Gómez-Vallejo, V.; Llop, J.; Mareque-Rivas, J.C. Microdosed lipid-coated (67)Ga-magnetite enhances antigen-specific immunity by image tracked delivery of antigen and CpG to lymph Nodes. ACS Nano, 2016, 10(1), 1602-1618.
[http://dx.doi.org/10.1021/acsnano.5b07253] [PMID: 26678549]
[17]
Mundra, V.; Li, W.; Mahato, R.I. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine (Lond.) , 2015, 10(16), 2613-2633.
[http://dx.doi.org/10.2217/nnm.15.111] [PMID: 26244818]
[18]
Xu, Z.; Wang, Y.; Zhang, L.; Huang, L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano, 2014, 8(4), 3636-3645.
[http://dx.doi.org/10.1021/nn500216y] [PMID: 24580381]
[19]
Zeng, Y.B.; Yu, Z.C.; He, Y.N.; Zhang, T.; Du, L.B.; Dong, Y.M.; Chen, H.W.; Zhang, Y.Y.; Wang, W.Q. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol. Sin., 2018, 39(2), 261-274.
[http://dx.doi.org/10.1038/aps.2017.166] [PMID: 29388568]
[20]
Meir, R.; Shamalov, K.; Betzer, O.; Motiei, M.; Horovitz-Fried, M.; Yehuda, R.; Popovtzer, A.; Popovtzer, R.; Cohen, C.J. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-Cells in vivo with gold nanoparticles and CT imaging. ACS Nano, 2015, 9(6), 6363-6372.
[http://dx.doi.org/10.1021/acsnano.5b01939] [PMID: 26039633]
[21]
Lin, J.; Huang, Z.; Wu, H.; Zhou, W.; Jin, P.; Wei, P.; Zhang, Y.; Zheng, F.; Zhang, J.; Xu, J.; Hu, Y.; Wang, Y.; Li, Y.; Gu, N.; Wen, L. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 2014, 10(11), 2006-2020.
[http://dx.doi.org/10.4161/auto.36293] [PMID: 25484080]
[22]
Mukherjee, P.; Misra, S.K.; Gryka, M.C.; Chang, H.H.; Tiwari, S.; Wilson, W.L.; Scott, J.W.; Bhargava, R.; Pan, D. Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small, 2015, 11(36), 4691-4703.
[http://dx.doi.org/10.1002/smll.201500728] [PMID: 25994248]
[23]
Mi, Y.; Mu, C.; Wolfram, J.; Deng, Z.; Hu, T.Y.; Liu, X.; Blanco, E.; Shen, H.; Ferrari, M.A. Micro/nano composite for combination treatment of melanoma lung metastasis. Adv. Healthc. Mater., 2016, 5(8), 936-946.
[http://dx.doi.org/10.1002/adhm.201500910] [PMID: 26890862]
[24]
Xu, L.; He, X.Y.; Liu, B.Y.; Xu, C.; Ai, S.L.; Zhuo, R.X.; Cheng, S.X. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf. B Biointerfaces, 2018, 171, 24-30.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.008] [PMID: 30005287]
[25]
He, J.; Duan, S.; Yu, X.; Qian, Z.; Zhou, S.; Zhang, Z.; Huang, X.; Huang, Y.; Su, J.; Lai, C.; Meng, J.; Zhou, N.; Lu, X.; Zhao, Y. Folate-modified chitosan nanoparticles containing the IP-10 gene enhance melanoma-specific cytotoxic CD8(+)CD28(+) T lymphocyte responses. Theranostics, 2016, 6(5), 752-761.
[http://dx.doi.org/10.7150/thno.14527] [PMID: 27022421]
[26]
Majumder, P.; Bhunia, S.; Chaudhuri, A. A lipid-based cell penetrating nano-assembly for RNAi-mediated anti-angiogenic cancer therapy. Chem. Commun. (Camb.), 2018, 54(12), 1489-1492.
[http://dx.doi.org/10.1039/C7CC08517F] [PMID: 29359766]
[27]
Latorre, A.; Posch, C.; Garcimartín, Y.; Celli, A.; Sanlorenzo, M.; Vujic, I.; Ma, J.; Zekhtser, M.; Rappersberger, K.; Ortiz-Urda, S.; Somoza, Á. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale, 2014, 6(13), 7436-7442.
[http://dx.doi.org/10.1039/C4NR00019F] [PMID: 24882040]
[28]
Xavier, M.H.; Drummond-Lage, A.P.; Baeta, C.; Rocha, L.; Almeida, A.M.; Wainstein, A.J. Delay in cutaneous melanoma diagnosis: Sequence analyses from suspicion to diagnosis in 211 patients. Medicine (Baltimore), 2016, 95(31)e4396
[http://dx.doi.org/10.1097/MD.0000000000004396] [PMID: 27495055]
[29]
Mar, V.J.; Chamberlain, A.J.; Kelly, J.W.; Murray, W.K.; Thompson, J.F. Clinical practice guidelines for the diagnosis and management of melanoma: melanomas that lack classical clinical features. Med. J. Aust., 2017, 207(8), 348-350.
[http://dx.doi.org/10.5694/mja17.00123] [PMID: 29020893]
[30]
Fernandez-Flores, A.; Cassarino, D.S. Histopathological diagnosis of acral lentiginous melanoma in early stages. Ann. Diagn. Pathol., 2017, 26, 64-69.
[http://dx.doi.org/10.1016/j.anndiagpath.2016.08.005] [PMID: 27601330]
[31]
Fink, K.R.; Fink, J.R. Imaging of brain metastases. Surg. Neurol. Int., 2013, 4(4)(Suppl. 4), S209-S219.
[http://dx.doi.org/10.4103/2152-7806.111298] [PMID: 23717792]
[32]
Giovannini, E.; Lazzeri, P.; Milano, A.; Gaeta, M.C.; Ciarmiello, A. Clinical applications of choline PET/CT in brain tumors. Curr. Pharm. Des., 2015, 21(1), 121-127.
[http://dx.doi.org/10.2174/1381612820666140915120742] [PMID: 25225894]
[33]
Martin, S.S.; Wichmann, J.L.; Weyer, H.; Albrecht, M.H.; D’Angelo, T.; Leithner, D.; Lenga, L.; Booz, C.; Scholtz, J.E.; Bodelle, B.; Vogl, T.J.; Hammerstingl, R. Dual-energy computed tomography in patients with cutaneous malignant melanoma: Comparison of noise-optimized and traditional virtual monoenergetic imaging. Eur. J. Radiol., 2017, 95, 1-8.
[http://dx.doi.org/10.1016/j.ejrad.2017.07.017] [PMID: 28987652]
[34]
Bradbury, M.S.; Pauliah, M.; Zanzonico, P.; Wiesner, U.; Patel, S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(4), 535-553.
[http://dx.doi.org/10.1002/wnan.1380] [PMID: 26663853]
[35]
Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; Strauss, H.W.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med., 2014, 6(260)260ra149
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]
[36]
Ni, D.; Jiang, D.; Ehlerding, E.B.; Huang, P.; Cai, W. Radiolabeling silica-based nanoparticles via coordination chemistry: basic principles, strategies, and applications. Acc. Chem. Res., 2018, 51(3), 778-788.
[http://dx.doi.org/10.1021/acs.accounts.7b00635] [PMID: 29489335]
[37]
Chen, F.; Ma, K.; Zhang, L.; Madajewski, B.; Zanzonico, P.; Sequeira, S.; Gonen, M.; Wiesner, U.; Bradbury, M.S. Target-or-clear zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: A comparison of radiolabeling Strategies. Chem. Mater., 2017, 29(19), 8269-8281.
[http://dx.doi.org/10.1021/acs.chemmater.7b02567] [PMID: 29123332]
[38]
Spira, D.; Bantleon, R.; Wolburg, H.; Schick, F.; Groezinger, G.; Wiskirchen, J.; Wiesinger, B. Labeling Human melanoma cells with SPIO: In vitro observations. Mol. Imaging, 2016, 29(15) pii:1536012115624915
[http://dx.doi.org/10.1177/1536012115624915]
[39]
Fan, Q.; Cheng, K.; Hu, X.; Ma, X.; Zhang, R.; Yang, M.; Lu, X.; Xing, L.; Huang, W.; Gambhir, S.S.; Cheng, Z. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging. J. Am. Chem. Soc., 2014, 136(43), 15185-15194.
[http://dx.doi.org/10.1021/ja505412p] [PMID: 25292385]
[40]
Zhang, B.; Pinsky, B.A.; Ananta, J.S.; Zhao, S.; Arulkumar, S.; Wan, H.; Sahoo, M.K.; Abeynayake, J.; Waggoner, J.J.; Hopes, C.; Tang, M.; Dai, H. Diagnosis of Zika virus infection on a nanotechnology platform. Nat. Med., 2017, 23(5), 548-550.
[http://dx.doi.org/10.1038/nm.4302] [PMID: 28263312]
[41]
Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov., 2016, 15(7), 473-484.
[http://dx.doi.org/10.1038/nrd.2016.32] [PMID: 26965202]
[42]
Rohr, U.P.; Binder, C.; Dieterle, T.; Giusti, F.; Messina, C.G.; Toerien, E.; Moch, H.; Schäfer, H.H. The value of in vitro diagnostic testing in medical practice: A status report. PLoS One, 2016, 11(3)e0149856
[http://dx.doi.org/10.1371/journal.pone.0149856] [PMID: 26942417]
[43]
Ellis, S.R.; Brown, S.H. In Het Panhuis, M.; Blanksby, S.J.; Mitchell, T.W. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog. Lipid Res., 2013, 52(4), 329-353.
[http://dx.doi.org/10.1016/j.plipres.2013.04.005] [PMID: 23623802]
[44]
Bischof, H.; Rehberg, M.; Stryeck, S.; Artinger, K.; Eroglu, E.; Waldeck-Weiermair, M.; Gottschalk, B.; Rost, R.; Deak, A.T.; Niedrist, T.; Vujic, N.; Lindermuth, H.; Prassl, R.; Pelzmann, B.; Groschner, K.; Kratky, D.; Eller, K.; Rosenkranz, A.R.; Madl, T.; Plesnila, N.; Graier, W.F.; Malli, R. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun., 2017, 8(1), 1422.
[http://dx.doi.org/10.1038/s41467-017-01615-z] [PMID: 29127288]
[45]
Krogan, N.J.; Cagney, G.; Yu, H.; Zhong, G.; Guo, X.; Ignatchenko, A.; Li, J.; Pu, S.; Datta, N.; Tikuisis, A.P.; Punna, T.; Peregrín-Alvarez, J.M.; Shales, M.; Zhang, X.; Davey, M.; Robinson, M.D.; Paccanaro, A.; Bray, J.E.; Sheung, A.; Beattie, B.; Richards, D.P.; Canadien, V.; Lalev, A.; Mena, F.; Wong, P.; Starostine, A.; Canete, M.M.; Vlasblom, J.; Wu, S.; Orsi, C.; Collins, S.R.; Chandran, S.; Haw, R.; Rilstone, J.J.; Gandi, K.; Thompson, N.J.; Musso, G.; St Onge, P.; Ghanny, S.; Lam, M.H.; Butland, G.; Altaf-Ul, A.M.; Kanaya, S.; Shilatifard, A.; O’Shea, E.; Weissman, J.S.; Ingles, C.J.; Hughes, T.R.; Parkinson, J.; Gerstein, M.; Wodak, S.J.; Emili, A.; Greenblatt, J.F. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006, 440(7084), 637-643.
[http://dx.doi.org/10.1038/nature04670] [PMID: 16554755]
[46]
Prideaux, B.; Via, L.E.; Zimmerman, M.D.; Eum, S.; Sarathy, J.; O’Brien, P.; Chen, C.; Kaya, F.; Weiner, D.M.; Chen, P.Y.; Song, T.; Lee, M.; Shim, T.S.; Cho, J.S.; Kim, W.; Cho, S.N.; Olivier, K.N.; Barry, C.E., III; Dartois, V. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med., 2015, 21(10), 1223-1227.
[http://dx.doi.org/10.1038/nm.3937] [PMID: 26343800]
[47]
Rejeeth, C.; Pang, X.; Zhang, R.; Xu, W.; Sun, X.; Liu, B.; Lou, J.; Wan, J.; Gu, H.; Yan, Y.; Qian, K. Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core-shell particles. Nano Res., 2018, 11, 68-79.
[http://dx.doi.org/10.1007/s12274-017-1591-6]
[48]
Wu, J.; Wei, X.; Gan, J.; Huang, L.; Shen, T.; Lou, J.; Liu, B.; Zhang, J.X.J.; Qian, K. Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv. Funct. Mater., 2016, 26(22), 4016-4025.
[http://dx.doi.org/10.1002/adfm.201504184] [PMID: 27524958]
[49]
Sun, X.; Wan, J.; Qian, K. Designed microdevices for in vitro diagnostics; Small Methods, 2017, p. 1700196.
[http://dx.doi.org/10.1002/smtd.201700196]
[50]
Sun, X.; Huang, L.; Zhang, R.; Xu, W.; Huang, J.; Gurav, D.D.; Vedarethinam, V.; Chen, R.; Lou, J.; Wang, Q.; Wan, J.; Qian, K. Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci., 2018, 4(2), 223-229.
[http://dx.doi.org/10.1021/acscentsci.7b00546] [PMID: 29532022]
[51]
Martin, S.; Dudek-Peric, A.M.; Garg, A.D.; Roose, H.; Demirsoy, S.; Van Eygen, S.; Mertens, F.; Vangheluwe, P.; Vankelecom, H.; Agostinis, P. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells. Autophagy, 2017, 13(9), 1512-1527.
[http://dx.doi.org/10.1080/15548627.2017.1332550] [PMID: 28722539]
[52]
Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121(7), 2768-2780.
[http://dx.doi.org/10.1172/JCI45600] [PMID: 21670497]
[53]
Sousa, F.; Castro, P.; Fonte, P.; Fonte, P.; Kennedy, P.J.; Neves-Petersen, M.T.; Sarmento, B. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy? Expert Opin. Drug Deliv., 2017, 14, 1163-1176.
[54]
Wakabayashi, R.; Sakuragi, M.; Kozaka, S.; Tahara, Y.; Kamiya, N.; Goto, M. Solid-in-oil peptide nanocarriers for transcutaneous cancer vaccine delivery against melanoma. Mol. Pharm., 2018, 15(3), 955-961.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00894] [PMID: 29397746]
[55]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861]
[56]
Yang, Y.; He, L.; Liu, Y.; Xia, S.; Fang, A.; Xie, Y.; Gan, L.; He, Z.; Tan, X.; Jiang, C.; Tong, A.; Song, X. Promising nanocarriers for PEDF gene targeting delivery to cervical cancer cells mediated by the over-expressing FRα. Sci. Rep., 2016, 6, 32427.
[http://dx.doi.org/10.1038/srep32427] [PMID: 27576898]
[57]
Badea, I. New strategies in melanoma therapy: can nanoparticles overcome chemoresistance? Nanomedicine , 2017, 12(14), 1623-1626.
[http://dx.doi.org/10.2217/nnm-2017-0145]
[58]
Kang, J.H.; Ko, Y.T. Lipid-coated gold nanocomposites for enhanced cancer therapy. Int. J. Nanomedicine, 2015, 10(Spec Iss), 33-45.
[http://dx.doi.org/10.2147/IJN.S88307] [PMID: 26345327]
[59]
Kim, B.S.; Na, Y.G.; Choi, J.H.; Kim, I.; Lee, E.; Kim, S.Y.; Lee, J.Y.; Cho, C.W. The improvement of skin whitening of phenylethyl resorcinol by nanostructured lipid carriers. Nanomaterials (Basel), 2017, 7(9)E241
[http://dx.doi.org/10.3390/nano7090241] [PMID: 28846658]
[60]
Clemente, N.; Ferrara, B.; Gigliotti, C.L.; Boggio, E.; Capucchio, M.T.; Biasibetti, E.; Schiffer, D.; Mellai, M.; Annovazzi, L.; Cangemi, L.; Muntoni, E.; Miglio, G.; Dianzani, U.; Battaglia, L.; Dianzani, C. solid lipid nanoparticles carrying temozolomide for melanoma treatment. preliminary in vitro and in vivo studies. Int. J. Mol. Sci., 2018, 19(2), 255.
[http://dx.doi.org/10.3390/ijms19020255] [PMID: 29364157]
[61]
Zhang, W.; Shi, Y.; Chen, Y.; Hao, J.; Sha, X.; Fang, X. The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials, 2011, 32, 5934-5944.
[http://dx.doi.org/10.2147/IJN.S129266] [PMID: 28615940]
[62]
Zu, Y.; Bi, J.; Yan, H.; Wang, H.; Song, Y.; Zhu, B.W.; Tan, M. Nanostructures derived from starch and chitosan for fluorescence bio-imaging. Nanomaterials (Basel), 2016, 6(7), 130.
[http://dx.doi.org/10.3390/nano6070130] [PMID: 28335258]
[63]
Vivero-Escoto, J.L.; Huxford-Phillips, R.C.; Lin, W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev., 2012, 41(7), 2673-2685.
[http://dx.doi.org/10.1039/c2cs15229k] [PMID: 22234515]
[64]
Guo, S.; Lin, C.M.; Xu, Z.; Miao, L.; Wang, Y.; Huang, L. Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano, 2014, 8, 4996-5009.
[65]
Yang, C.; Wu, T.; Qin, Y.; Qi, Y.; Sun, Y.; Kong, M.; Jiang, X.; Qin, X.; Shen, Y.; Zhang, Z. A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery. Int. J. Nanomedicine, 2018, 13, 1281-1293.
[http://dx.doi.org/10.2147/IJN.S154361] [PMID: 29563787]
[66]
Zatta, K.C.; Frank, L.A.; Reolon, L.A.; Amaral-Machado, L.; Egito, E.S.T.; Gremião, M.P.D.; Pohlmann, A.R.; Guterres, S.S. an inhalable powder formulation based on micro- and nanoparticles containing 5-fluorouracil for the treatment of metastatic melanoma. Nanomaterials (Basel), 2018, 8(2), 75.
[http://dx.doi.org/10.3390/nano8020075] [PMID: 29385692]
[67]
Su, Y.; Hu, J.; Huang, Z.; Huang, Y.; Peng, B.; Xie, N.; Liu, H. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance. Drug Des. Devel. Ther., 2017, 11, 659-668.
[http://dx.doi.org/10.2147/DDDT.S127328] [PMID: 28293102]
[68]
Park, J.; Park, J.E.; Hedrick, V.E.; Wood, K.V.; Bonham, C.; Lee, W.; Yeo, Y. A comparative in vivo study of albumin-coated paclitaxel nanocrystals and abraxane. Small, 2018, 14(16)e1703670
[http://dx.doi.org/10.1002/smll.201703670] [PMID: 29570231]
[69]
Nilubol, N.; Yuan, Z.; Paciotti, G.F.; Tamarkin, L.; Sanchez, C.; Gaskins, K.; Freedman, E.M.; Cao, S.; Zhao, J.; Kingston, D.G.I.; Libutti, S.K.; Kebebew, E. Novel dual-action targeted nanomedicine in mice with metastatic thyroid cancer and pancreatic neuroendocrine tumors. J. Natl. Cancer Inst., 2018, 110, 1019-1029.
[70]
Mioc, M.; Pavel, I.Z.; Ghiulai, R.; Coricovac, D.E.; Farcaş, C.; Mihali, C.V.; Oprean, C.; Serafim, V.; Popovici, R.A.; Dehelean, C.A.; Shtilman, M.I.; Tsatsakis, A.M.; Şoica, C. The cytotoxic effects of betulin-conjugated gold nanoparticles as stable formulations in normal and melanoma cells. Front. Pharmacol., 2018, 3(9), 429.
[http://dx.doi.org/10.3389/fphar.2018.00429]
[71]
Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine (Lond.), 2011, 7(5), 604-614.
[http://dx.doi.org/10.1016/j.nano.2011.01.014] [PMID: 21333754]
[72]
Rong, Y.; Welsh, J.S. Dosimetric and clinical review of helical tomotherapy. Expert Rev. Anticancer Ther., 2011, 11(2), 309-320.
[http://dx.doi.org/10.1586/era.10.175] [PMID: 21342048]
[73]
Song, G.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater., 2017, 29(32)
[http://dx.doi.org/10.1002/adma.201700996] [PMID: 28643452]
[74]
Kotb, S.; Detappe, A.; Lux, F.; Appaix, F.; Barbier, E.L.; Tran, V.L.; Plissonneau, M.; Gehan, H.; Lefranc, F.; Rodriguez-Lafrasse, C.; Verry, C.; Berbeco, R.; Tillement, O.; Sancey, L. Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics, 2016, 6(3), 418-427.
[http://dx.doi.org/10.7150/thno.14018] [PMID: 26909115]
[75]
Chithrani, D.B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res., 2010, 173(6), 719-728.
[http://dx.doi.org/10.1667/RR1984.1] [PMID: 20518651]
[76]
Zhang, X.D.; Chen, J.; Luo, Z.; Wu, D.; Shen, X.; Song, S.S.; Sun, Y.M.; Liu, P.X.; Zhao, J.; Huo, S.; Fan, S.; Fan, F.; Liang, X.J.; Xie, J. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater., 2014, 3(1), 133-141.
[http://dx.doi.org/10.1002/adhm.201300189] [PMID: 23873780]
[77]
Hainfeld, J.F.; Dilmanian, F.A.; Slatkin, D.N.; Smilowitz, H.M. Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol., 2008, 60(8), 977-985.
[http://dx.doi.org/10.1211/jpp.60.8.0005] [PMID: 18644191]
[78]
Hainfeld, J.F.; Dilmanian, F.A.; Zhong, Z.; Slatkin, D.N.; Kalef-Ezra, J.A.; Smilowitz, H.M. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol., 2010, 55(11), 3045-3059.
[http://dx.doi.org/10.1088/0031-9155/55/11/004] [PMID: 20463371]
[79]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[80]
Daniel, Y.J.; Lova, S.; Melissa, S.; Ajlan, A.Z.; Surya, M.; Phillip, P.S.; James, J.D.; Brian, C.B.; Michelle, A.B.; Dongha, B.; Gary, D.K.; Andrew, T.; Jay, F.D. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One, 2013, 8(4)e62425
[81]
Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A.L.; Kao, G.; Dorsey, J.; Tsourkas, A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 2014, 8(1), 104-112.
[http://dx.doi.org/10.1021/nn405701q] [PMID: 24377302]
[82]
Zhang, X.D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.M.; Liu, P.X.; Liang, X.J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33(27), 6408-6419.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.047] [PMID: 22681980]
[83]
Yang, Y.S.; Carney, R.P.; Stellacci, F.; Irvine, D.J. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. ACS Nano, 2014, 8(9), 8992-9002.
[http://dx.doi.org/10.1021/nn502146r] [PMID: 25123510]
[84]
Horsman, M.R.; Overgaard, J. Hyperthermia: a potent enhancer of radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2007, 19(6), 418-426.
[http://dx.doi.org/10.1016/j.clon.2007.03.015] [PMID: 17493790]
[85]
Yang, C.T.; Li, K.Y.; Meng, F.Q.; Lin, J.F.; Young, I.C.; Ivkov, R.; Lin, F.H. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. Nanotechnology, 2018, 29(37)375101
[http://dx.doi.org/10.1088/1361-6528/aacda1]
[86]
Reihaneh, H.; Umrani, R.D.; Paknikar, K.M. Hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3nanoparticles: in vivo studies. Nanotechnology, 2016, 11, 1779-1791.
[http://dx.doi.org/10.2147/IJN.S104617]
[87]
Shanei, A.; Sazgarnia, A.; Dolat, E.; Hojaji-Najafabadi, L.; Sehhati, M.; Baradaran-Ghahfarokhi, M. Dual function of gold nanoparticles in synergism with mitoxantrone and microwave hyperthermia against melanoma cells. Asian Pac. J. Cancer Prev., 2017, 18(11), 2911-2917.
[http://dx.doi.org/10.22034/APJCP.2017.18.11.2911 ] [PMID: 29172258]
[88]
Behnam, M.A.; Emami, F.; Sobhani, Z.; Koohi-Hosseinabadi, O.; Dehghanian, A.R.; Zebarjad, S.M.; Moghim, M.H.; Oryan, A. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer Model. Adv. Pharm. Bull., 2018, 8(1), 49-55.
[http://dx.doi.org/10.15171/apb.2018.006] [PMID: 29670838]
[89]
Mroz, P.; Yaroslavsky, A.; Kharkwal, G.B.; Hamblin, M.R. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel), 2011, 3(2), 2516-2539.
[http://dx.doi.org/10.3390/cancers3022516] [PMID: 23914299]
[90]
Cui, S.; Chen, H.; Zhu, H.; Tian, J.; Chi, X.; Qian, Z.; Samuel, A.; Gu, Y.Q. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J. Mater. Chem., 2012, 22, 4861-4873.
[http://dx.doi.org/10.1039/c2jm16112e]
[91]
Kato, H.; Harada, M.; Ichinose, S.; Usuda, J.; Tsuchida, T.; Okunaka, T. Photodynamic therapy (PDT) of lung cancer: Experience of the Tokyo Medical University. Photodiagn. Photodyn. Ther., 2004, 1(1), 49-55.
[http://dx.doi.org/10.1016/S1572-1000(04)00008-0] [PMID: 25048064]
[92]
Allison, R.R.; Sheng, C.; Cuenca, R.; Bagnato, V.S.; Austerlitz, C.; Sibata, C.H. Photodynamic therapy for anal cancer. Photodiagn. Photodyn. Ther., 2010, 7(2), 115-119.
[http://dx.doi.org/10.1016/j.pdpdt.2010.04.002] [PMID: 20510306]
[93]
Guyon, L.; Ascencio, M.; Collinet, P.; Mordon, S. Photodiagnosis and photodynamic therapy of peritoneal metastasis of ovarian cancer. Photodiagn. Photodyn. Ther., 2012, 9(1), 16-31.
[http://dx.doi.org/10.1016/j.pdpdt.2011.08.003] [PMID: 22369725]
[94]
Rady, M.; Gomaa, I.; Afifi, N.; Abdel-Kader, M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int. J. Pharm., 2018, 548(1), 480-490.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.057] [PMID: 29959090]
[95]
Zhan, J.; Ma, Z.; Wang, D.; Li, X.; Li, X.; Le, L.; Kang, A.; Hu, P.; She, L.; Yang, F. Magnetic and pH dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy. Int. J. Nanomedicine, 2017, 12, 2733-2748.
[http://dx.doi.org/10.2147/IJN.S127528] [PMID: 28442903]
[96]
Wang, M.; Geilich, B.M.; Keidar, M.; Webster, T.J. Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma. Int. J. Nanomedicine, 2017, 12, 4117-4127.
[http://dx.doi.org/10.2147/IJN.S129266] [PMID: 28615940]
[97]
Dean, J.M.; DeLong, R.K. A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells. Methods Mol. Biol., 2015, 1297, 187-196.
[http://dx.doi.org/10.1007/978-1-4939-2562-9_13] [PMID: 25896004]
[98]
McCall, J.; Smith, J.J.; Marquardt, K.N.; Knight, K.R.; Bane, H.; Barber, A.; DeLong, R.K. ZnO nanoparticles protect RNA from degradation better than DNA. Nanomaterials (Basel), 2017, 7(11), 378.
[http://dx.doi.org/10.3390/nano7110378] [PMID: 29117135]
[99]
Oliner, J.; Min, H.; Leal, J.; Yu, D.; Rao, S.; You, E.; Tang, X.; Kim, H.; Meyer, S.; Han, S.J.; Hawkins, N.; Rosenfeld, R.; Davy, E.; Graham, K.; Jacobsen, F.; Stevenson, S.; Ho, J.; Chen, Q.; Hartmann, T.; Michaels, M.; Kelley, M.; Li, L.; Sitney, K.; Martin, F.; Sun, J.R.; Zhang, N.; Lu, J.; Estrada, J.; Kumar, R.; Coxon, A.; Kaufman, S.; Pretorius, J.; Scully, S.; Cattley, R.; Payton, M.; Coats, S.; Nguyen, L.; Desilva, B.; Ndifor, A.; Hayward, I.; Radinsky, R.; Boone, T.; Kendall, R. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell, 2004, 6(5), 507-516.
[http://dx.doi.org/10.1016/j.ccr.2004.09.030] [PMID: 15542434]
[100]
Helfrich, I.; Edler, L.; Sucker, A.; Thomas, M.; Christian, S.; Schadendorf, D.; Augustin, H.G. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin. Cancer Res., 2009, 15(4), 1384-1392.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1615] [PMID: 19228739]
[101]
Liu, Z.L.; You, C.L.; Wang, B.; Lin, J.H.; Hu, X.F.; Shan, X.Y.; Wang, M.S.; Zheng, H.B.; Zhang, Y.D. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells. Oncol. Lett., 2016, 11(6), 3992-3998.
[http://dx.doi.org/10.3892/ol.2016.4539] [PMID: 27313729]
[102]
Ganesh, S.; Koser, M.L.; Cyr, W.A.; Chopda, G.R.; Tao, J.; Shui, X.; Ying, B.; Chen, D.; Pandya, P. Chipumuro, E2, Siddiquee, Z.; Craig, K.; Lai, C.; Dudek, H.; Monga, S.P.; Wang, W.; Brown, B.D.; Abrams, M.T. Direct pharmacological inhibition of β-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther., 2016, 15(9), 2143-2154.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0309] [PMID: 27390343]
[103]
Zhou, Z.; Liu, S.; Zhang, Y.; Yang, X.; Ma, Y.; Guan, Z.; Wu, Y.; Zhang, L.; Yang, Z. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells. Int. J. Nanomedicine, 2017, 12, 7255-7272.
[http://dx.doi.org/10.2147/IJN.S136726] [PMID: 29042774]
[104]
Zilio, S.; Vella, J.L.; De la Fuente, A.C.; Daftarian, P.M.; Weed, D.T.; Kaifer, A.; Marigo, I.; Leone, K.; Bronte, V.; Serafini, P. 4PD functionalized dendrimers: A flexible tool for in vivo gene silencing of tumor-educated myeloid cells. J. Immunol., 2017, 198(10), 4166-4177.
[http://dx.doi.org/10.4049/jimmunol.1600833] [PMID: 28396317]
[105]
Wang, P.; Zhang, L.; Xie, Y.; Wang, N.; Tang, R.; Zheng, W.; Jiang, X. Genome editing for cancer therapy: Delivery of cas9 Protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Adv. Sci. (Weinh.), 2017, 4(11)1700175
[http://dx.doi.org/10.1002/advs.201700175] [PMID: 29201613]
[106]
Corazzari, M.; Rapino, F.; Ciccosanti, F.; Giglio, P.; Antonioli, M.; Conti, B.; Fimia, G.M.; Lovat, P.E.; Piacentini, M. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ., 2015, 22(6), 946-958.
[http://dx.doi.org/10.1038/cdd.2014.183] [PMID: 25361077]
[107]
Coelho, P.; Silva, L.; Faria, I.; Vieria, M.; Monteiro, A.; Pinto, G.; Prudêncio, C.; Fernandes, R.; Soares, R. Adipocyte secretome increases radioresistance of malignant melanocytes by improving cell survival and decreasing oxidative status. Radiat. Res., 2017, 187(5), 581-588.
[http://dx.doi.org/10.1667/RR14551.1] [PMID: 28362167]
[108]
Song, H.; Wang, L.; Lyu, J.; Wu, Y.; Guo, W.; Ren, G. Loss of nuclear BAP1 expression is associated with poor prognosis in oral mucosal melanoma. Oncotarget, 2017, 8(17), 29080-29090.
[http://dx.doi.org/10.18632/oncotarget.16175] [PMID: 28404968]
[109]
Bresler, S.C.; Min, L.; Rodig, S.J.; Walls, A.C.; Xu, S.; Geng, S.; Hodi, F.S.; Murphy, G.F.; Lian, C.G. Gene expression profiling of anti-CTLA4-treated metastatic melanoma in patients with treatment-induced autoimmunity. Lab. Invest., 2017, 97(2), 207-216.
[http://dx.doi.org/10.1038/labinvest.2016.126] [PMID: 27918555]
[110]
Ladwa, R.; Atkinson, V. The cessation of anti-PD-1 antibodies of complete responders in metastatic melanoma. Melanoma Res., 2017, 27(2), 168-170.
[http://dx.doi.org/10.1097/CMR.0000000000000336] [PMID: 28099369]
[111]
Kim, S.; Kim, H.T.; Suh, H.S. Combination therapy of BRAF inhibitors for advanced melanoma with BRAF V600 mutation: a systematic review and meta-analysis. J. Dermatolog. Treat., 2018, 29(3), 314-321.
[http://dx.doi.org/10.1080/09546634.2017.1330530] [PMID: 28504036]
[112]
Faghfuri, E.; Nikfar, S.; Niaz, K.; Faramarzi, M.A.; Abdollahi, M. Mitogen-activated protein kinase (MEK) inhibitors to treat melanoma alone or in combination with other kinase inhibitors. Expert Opin. Drug Metab. Toxicol., 2018, 14(3), 317-330.
[http://dx.doi.org/10.1080/17425255.2018.1432593] [PMID: 29363351]
[113]
Zhang, Y.; Li, N.; Suh, H.; Irvine, D.J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun., 2018, 9(1), 6.
[http://dx.doi.org/10.1038/s41467-017-02251-3] [PMID: 29295974]
[114]
Jiang, P.; Gao, W.; Ma, T.; Wang, R.; Piao, Y.; Dong, X.; Wang, P.; Zhang, X.; Liu, Y.; Su, W.; Xiang, R.; Zhang, J.; Li, N. CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics, 2019, 9(10), 2950-2966.
[http://dx.doi.org/10.7150/thno.29617] [PMID: 31244935]
[115]
Weigelin, B.; Bolaños, E.; Teijeira, A.; Martinez-Forero, I.; Labiano, S.; Azpilikueta, A.; Morales-Kastresana, A.; Quetglas, J.I.; Wagena, E.; Sánchez-Paulete, A.R.; Chen, L.; Friedl, P.; Melero, I. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc. Natl. Acad. Sci. USA, 2015, 112(24), 7551-7556.
[http://dx.doi.org/10.1073/pnas.1506357112] [PMID: 26034288]
[116]
Garg, A.D.; Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev., 2017, 280(1), 126-148.
[http://dx.doi.org/10.1111/imr.12574] [PMID: 29027218]
[117]
Wang, Y.; John, R.; Chen, J.; Richardson, J.A.; Shelton, J.M.; Bennett, M.; Zhou, X.J.; Nagami, G.T.; Zhang, Y.; Wu, Q.Q.; Lu, C.Y. IRF-1 promotes inflammation early after ischemic acute kidney injury. J. Am. Soc. Nephrol., 2009, 20(7), 1544-1555.
[http://dx.doi.org/10.1681/ASN.2008080843] [PMID: 19443641]
[118]
Swe, T.; Kim, K.B. Update on systemic therapy for advanced cutaneous melanoma and recent development of novel drugs. Clin. Exp. Metastasis, 2018, 35(5-6), 503-520.
[http://dx.doi.org/10.1007/s10585-018-9913-y] [PMID: 30019239]
[119]
Lamiaux, M.; Scalbert, C.; Lepesant, P.; Desmedt, E.; Templier, C.; Dziwniel, V.; Staumont-Sallé, D.; Mortier, L. Severe skin toxicity with organ damage under the combination of targeted therapy following immunotherapy in metastatic melanoma. Melanoma Res., 2018, 28(5), 451-457.
[http://dx.doi.org/10.1097/CMR.0000000000000472] [PMID: 29985833]
[120]
Lioux, T.; Mauny, M.A.; Lamoureux, A.; Bascoul, N.; Hays, M.; Vernejoul, F.; Baudru, A.S.; Boularan, C.; Lopes-Vicente, J.; Qushair, G.; Tiraby, G. Design, synthesis, and biological evaluation of novel cyclic adenosine-inosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING). J. Med. Chem., 2016, 59(22), 10253-10267.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01300] [PMID: 27783523]
[121]
Wilson, D.R.; Sen, R.; Sunshine, J.C.; Pardoll, D.M.; Green, J.J.; Kim, Y.J. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine (Lond.),, 2018, 14(2), 237-246.
[http://dx.doi.org/10.1016/j.nano.2017.10.013] [PMID: 29127039]
[122]
Fu, J.; Kanne, D.B.; Leong, M.; Glickman, L.H.; McWhirter, S.M.; Lemmens, E.; Mechette, K.; Leong, J.J.; Lauer, P.; Liu, W.; Sivick, K.E.; Zeng, Q.; Soares, K.C.; Zheng, L.; Portnoy, D.A.; Woodward, J.J.; Pardoll, D.M.; Dubensky, T.W., Jr; Kim, Y. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med., 2015, 7(283)283ra52
[http://dx.doi.org/10.1126/scitranslmed.aaa4306] [PMID: 25877890]
[123]
Dubensky, T.W., Jr; Kanne, D.B.; Leong, M.L. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther. Adv. Vaccines, 2013, 1(4), 131-143.
[http://dx.doi.org/10.1177/2051013613501988] [PMID: 24757520]
[124]
Sunshine, J.C.; Akanda, M.I.; Li, D.; Kozielski, K.L.; Green, J.J. Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules, 2011, 12(10), 3592-3600.
[http://dx.doi.org/10.1021/bm200807s] [PMID: 21888340]
[125]
Kamada, T.; Togashi, Y.; Tay, C.; Ha, D.; Sasaki, A.; Nakamura, Y.; Sato, E.; Fukuoka, S.; Tada, Y.; Tanaka, A.; Morikawa, H.; Kawazoe, A.; Kinoshita, T.; Shitara, K.; Sakaguchi, S.; Nishikawa, H. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 9999-10008.
[http://dx.doi.org/10.1073/pnas.1822001116] [PMID: 31028147]
[126]
Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med., 2018, 50(12), 165.
[http://dx.doi.org/10.1038/s12276-018-0191-1] [PMID: 30546008]
[127]
Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, 13(4), 227-242.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[128]
Zhang, H.; Snyder, K.M.; Suhoski, M.M.; Maus, M.V.; Kapoor, V.; June, C.H.; Mackall, C.L. 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J. Immunol., 2007, 179(7), 4910-4918.
[http://dx.doi.org/10.4049/jimmunol.179.7.4910] [PMID: 17878391]
[129]
Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12293-12297.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[130]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(1), 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[131]
Kosmides, A.K.; Sidhom, J.W.; Fraser, A.; Bessell, C.A.; Schneck, J.P. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano, 2017, 11(6), 5417-5429.
[http://dx.doi.org/10.1021/acsnano.6b08152] [PMID: 28589725]
[132]
Choi, B.B.R.; Choi, J.H.; Hong, J.W.; Song, K.W.; Lee, H.J.; Kim, U.K.; Kim, G.C. Selective killing of melanoma cells with non-thermal atmospheric pressure plasma and p-fak antibody conjugated gold nanoparticles. Int. J. Med. Sci., 2017, 14(11), 1101-1109.
[http://dx.doi.org/10.7150/ijms.20104] [PMID: 29104464]
[133]
Chu, D.; Zhao, Q.; Yu, J.; Zhang, F.; Zhang, H.; Wang, Z. Nanoparticle targeting of neutrophils for improved cancer immunotherapy. Adv. Healthc. Mater., 2016, 5(9), 1088-1093.
[http://dx.doi.org/10.1002/adhm.201500998] [PMID: 26989887]
[134]
Miao, W.; Kim, H.; Gujrati, V.; Kim, J.Y.; Jon, H.; Lee, Y.; Choi, M.; Kim, J.; Lee, S.; Lee, D.Y.; Kang, S.; Jon, S. Photo-decomposable organic nanoparticles for combined tumor optical imaging and multiple phototherapies. Theranostics, 2016, 6(13), 2367-2379.
[http://dx.doi.org/10.7150/thno.15829] [PMID: 27877241]
[135]
Chen, W.; Qin, M.; Chen, X.; Wang, Q.; Zhang, Z.; Sun, X. Combining photothermal therapy and immunotherapy against melanoma by polydopamine-coated Al2O3 nanoparticles. Theranostics, 2018, 8(8), 2229-2241.
[http://dx.doi.org/10.7150/thno.24073] [PMID: 29721075]
[136]
Sun, M.; Guo, J.; Hao, H.; Tong, T.; Wang, K.; Gao, W. Tumour-homing chimeric polypeptide-conjugated polypyrrole nanoparticles for imaging-guided synergistic photothermal and chemical therapy of cancer. Theranostics, 2018, 8(10), 2634-2645.
[http://dx.doi.org/10.7150/thno.24705] [PMID: 29774064]
[137]
Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science, 2018, 359(6382), 1355-1360.
[http://dx.doi.org/10.1126/science.aar7112] [PMID: 29567706]
[138]
Finn, O.J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol., 2018, 18(3), 183-194.
[http://dx.doi.org/10.1038/nri.2017.140] [PMID: 29279613]
[139]
van der Burg, S.H. Correlates of immune and clinical activity of novel cancer vaccines. Semin. Immunol., 2018, 39, 119-136.
[http://dx.doi.org/10.1016/j.smim.2018.04.001] [PMID: 29709421]
[140]
Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662), 217-221.
[http://dx.doi.org/10.1038/nature22991] [PMID: 28678778]
[141]
O’Hagan, D.T.; Friedland, L.R.; Hanon, E.; Didierlaurent, A.M. Towards an evidence based approach for the development of adjuvanted vaccines. Curr. Opin. Immunol., 2017, 47, 93-102.
[http://dx.doi.org/10.1016/j.coi.2017.07.010] [PMID: 28755542]
[142]
Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; Kendra, K.L.; White, R.L.; Gonzalez, R.; Kuzel, T.M.; Curti, B.; Leming, P.D.; Whitman, E.D.; Balkissoon, J.; Reintgen, D.S.; Kaufman, H.; Marincola, F.M.; Merino, M.J.; Rosenberg, S.A.; Choyke, P.; Vena, D.; Hwu, P. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med., 2011, 364(22), 2119-2127.
[http://dx.doi.org/10.1056/NEJMoa1012863] [PMID: 21631324]
[143]
Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res., 2019, 38(1), 146.
[http://dx.doi.org/10.1186/s13046-019-1154-7] [PMID: 30953535]
[144]
Sarbu, L.; Kitchell, B.E.; Bergman, P.J. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study. J. Feline Med. Surg., 2017, 19(2), 224-230.
[http://dx.doi.org/10.1177/1098612X15623319] [PMID: 26685147]
[145]
Cervantes-Barragan, L.; Züst, R.; Maier, R.; Sierro, S.; Janda, J.; Levy, F.; Speiser, D.; Romero, P.; Rohrlich, P.S.; Ludewig, B.; Thiel, V. Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity. MBio, 2010, 1(4), e00171-e10.
[http://dx.doi.org/10.1128/mBio.00171-10] [PMID: 20844609]
[146]
Nishikawa, H.; Sato, E.; Briones, G.; Chen, L.M.; Matsuo, M.; Nagata, Y.; Ritter, G.; Jäger, E.; Nomura, H.; Kondo, S.; Tawara, I.; Kato, T.; Shiku, H.; Old, L.J.; Galán, J.E.; Gnjatic, S. In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest., 2006, 116(7), 1946-1954.
[http://dx.doi.org/10.1172/JCI28045] [PMID: 16794737]
[147]
Kato, T.; Yui, M.; Deo, V.K.; Park, E.Y. Development of rous sarcoma virus-like particles displaying hCC49 scFv for specific targeted drug delivery to human colon carcinoma cells. Pharm. Res., 2015, 32(11), 3699-3707.
[http://dx.doi.org/10.1007/s11095-015-1730-2] [PMID: 26047779]
[148]
Saung, M.T.; Ke, X.; Howard, G.P.; Zheng, L.; Mao, H.Q. Particulate carrier systems as adjuvants for cancer vaccines. Biomater. Sci., 2019, 28(2), 215-236.
[http://dx.doi.org/10.1039/C9BM00871C] [PMID: 31528923]
[149]
Chen, X.Y.; Butt, A.M.; Mohd Amin, M.C.I. Enhanced paracellular delivery of vaccine by hydrogel microparticles-mediated reversible tight junction opening for effective oral immunization. J. Control. Release, 2019, 311-312, 50-64.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.031] [PMID: 31465827]
[150]
Conniot, J.; Scomparin, A.; Peres, C.; Yeini, E.; Pozzi, S.; Matos, A.I.; Kleiner, R.; Moura, L.I.F.; Zupančič, E.; Viana, A.S.; Doron, H.; Gois, P.M.P.; Erez, N.; Jung, S.; Satchi-Fainaro, R.; Florindo, H.F. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat. Nanotechnol., 2019, 14(9), 891-901.
[http://dx.doi.org/10.1038/s41565-019-0512-0] [PMID: 31384037]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy