Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

受体相互作用蛋白激酶1(RIPK1)作为潜在的治疗靶标:在阿尔茨海默氏病的发病机理中可能的作用概述

卷 16, 期 10, 2019

页: [907 - 918] 页: 12

弟呕挨: 10.2174/1567205016666191023102422

价格: $65

摘要

阿尔茨海默氏病(AD)是一种年龄依赖性神经退行性疾病,它是痴呆的最常见类型,其临床特征是存在细胞外和神经元内tau蛋白缠结的β-淀粉样蛋白(Aβ),最终导致记忆力和认知功能障碍的发作,影响基本日常活动的精神症状和行为障碍的发展。美国食品和药物管理局(FDA)批准的当前AD治疗主要集中在症状上,而不是在疾病的发病机理上。最近,受体相互作用蛋白激酶1(RIPK1)已被确定为通过尸检病在AD发病机理中的关键成分。而且,已经显示出对RIPK1的遗传和药理学抑制作用可逆转AD的表型,其介导途径尚待研究。这篇综述旨在通过自噬的参与来概述AD的发病机理和目前的治疗方法,并可能通过自噬机制提供对RIPK1在逆转AD进展中的新颖见解。

关键词: 阿尔茨海默氏病,神经退行性疾病,痴呆,β淀粉样蛋白,受体相互作用蛋白激酶1,自噬。

[1]
Hong-Qi Y, Zhi-Kun S, Sheng-Di C. Current advances in the treatment of Alzheimer’s disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 1(1): 21. (2012).
[http://dx.doi.org/10.1186/2047-9158-1-21] [PMID: 23210837]
[2]
Cummings JL, Back C. The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry 6(2): S64-78. (1998).
[http://dx.doi.org/10.1097/00019442-199821001-00009] [PMID: 9581223]
[3]
Bartus RT, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558): 408-14. (1982).
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[4]
Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev (1): CD005593 (2006).
[PMID: 16437532]
[5]
McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev (2): CD003154 (2006).
[PMID: 16625572]
[6]
Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration Proc Natl Acad Sci 108(14): 5819-24 (USA 2011)
[http://dx.doi.org/10.1073/pnas.1017033108] [PMID: 21421841]]
[7]
Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28): 9078-89. (2009).
[http://dx.doi.org/10.1523/JNEUROSCI.1071-09.2009] [PMID: 19605645]
[8]
Zempel H, Thies E, Mandelkow E, Mandelkow EM. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36): 11938-50. (2010).
[http://dx.doi.org/10.1523/JNEUROSCI.2357-10.2010] [PMID: 20826658]
[9]
Swerdlow RH. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2(3): 347-59. (2007).
[PMID: 18044185]
[10]
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5)a006270 (2012).
[http://dx.doi.org/10.1101/cshperspect.a006270] [PMID: 22553493]
[11]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 12(1): 1-12. (2010).
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[12]
Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer’s disease. Indian J Psychiatry 51(1): 55-61. (2009).
[http://dx.doi.org/10.4103/0019-5545.44908] [PMID: 19742193]
[13]
Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, et al. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11(5): 556-61. (2005).
[http://dx.doi.org/10.1038/nm1234] [PMID: 15834427]
[14]
Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, et al. Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100(18): 10417-22. (2003).
[http://dx.doi.org/10.1073/pnas.1834302100] [PMID: 12925731]
[15]
Fahrenholz F, Gilbert S, Kojro E, Lammich S, Postina R. Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Ann N Y Acad Sci 920: 215-22. (2000).
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06925.x] [PMID: 11193153]
[16]
Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, et al. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun (2003).; 301(1): 231-5.
[http://dx.doi.org/10.1016/S0006-291X(02)02999-6] [PMID: 12535668]
[17]
Tanabe C, Hotoda N, Sasagawa N, Sehara-Fujisawa A, Maruyama K, Ishiura S. ADAM19 is tightly associated with constitutive Alzheimer’s disease APP alpha-secretase in A172 cells. Biochem Biophys Res Commun 352(1): 111-7. (2007).
[http://dx.doi.org/10.1016/j.bbrc.2006.10.181] [PMID: 17112471]
[18]
Cole SL, Vassar R. The basic biology of BACE1: a key therapeutic target for Alzheimer’s disease. Curr Genomics 8(8): 509-30. (2007).
[http://dx.doi.org/10.2174/138920207783769512] [PMID: 19415126]
[19]
Zhang X, Li Y, Xu H, Zhang YW. The γ-secretase complex: from structure to function. Front Cell Neurosci 8: 427. (2014).
[http://dx.doi.org/10.3389/fncel.2014.00427] [PMID: 25565961]
[20]
Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100(11): 6382-7. (2003).
[http://dx.doi.org/10.1073/pnas.1037392100] [PMID: 12740439]
[21]
Iwatsubo T. The gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol 14(3): 379-83. (2004).
[http://dx.doi.org/10.1016/j.conb.2004.05.010] [PMID: 15194119]
[22]
De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38(1): 9-12. (2003).
[http://dx.doi.org/10.1016/S0896-6273(03)00205-8] [PMID: 12691659]
[23]
Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, et al. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323(5920): 1473-7. (2009).
[http://dx.doi.org/10.1126/science.1168979] [PMID: 19286555]
[24]
Kwok JB, Li QX, Hallupp M, Whyte S, Ames D, Beyreuther K, et al. Novel Leu723Pro amyloid precursor protein mutation increases amyloid beta42(43) peptide levels and induces apoptosis. Ann Neurol (2000).; 47(2): 249-53.
[http://dx.doi.org/10.1002/1531-8249(200002)47:2<249:AID-ANA18>3.0.CO;2-8] [PMID: 10665499]
[25]
Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, et al. Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology 60(2): 235-9. (2003).
[http://dx.doi.org/10.1212/01.WNL.0000042088.22694.E3] [PMID: 12552037]
[26]
Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H, et al. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75(7): 1039-42. (2004).
[http://dx.doi.org/10.1136/jnnp.2003.010611] [PMID: 15201367]
[27]
Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med 17(1): 64. (2019).
[http://dx.doi.org/10.1186/s12916-019-1299-4] [PMID: 30890171]
[28]
Zhou M, Huang T, Collins N, Zhang J, Shen H, Dai X, et al. APOE4 induces site-specific tau phosphorylation through calpain-CDK5 signaling pathway in EFAD-Tg mice. Curr Alzheimer Res (2016).; 13(9): 1048-55.
[http://dx.doi.org/10.2174/1567205013666160415154550] [PMID: 27087442]
[29]
Cacquevel M, Aeschbach L, Houacine J, Fraering PC. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One 7(4)e35133 (2012).
[http://dx.doi.org/10.1371/journal.pone.0035133] [PMID: 22529981]
[30]
Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3(1): 67-72. (1997).
[http://dx.doi.org/10.1038/nm0197-67] [PMID: 8986743]
[31]
Mehta ND, Refolo LM, Eckman C, Sanders S, Yager D, Perez-Tur J, et al. Increased Abeta42(43) from cell lines expressing presenilin 1 mutations. Ann Neurol 43(2): 256-8. (1998).
[http://dx.doi.org/10.1002/ana.410430217] [PMID: 9485068]
[32]
Qi Y, Morishima-Kawashima M, Sato T, Mitsumori R, Ihara Y. Distinct mechanisms by mutant presenilin 1 and 2 leading to increased intracellular levels of amyloid beta-protein 42 in Chinese hamster ovary cells. Biochemistry 42(4): 1042-52. (2003).
[http://dx.doi.org/10.1021/bi0267590] [PMID: 12549925]
[33]
Fang B, Jia L, Jia J. Chinese Presenilin-1 V97L mutation enhanced Abeta42 levels in SH-SY5Y neuroblastoma cells. Neurosci Lett 406(1-2): 33-7. (2006).
[http://dx.doi.org/10.1016/j.neulet.2006.06.072] [PMID: 16916581]
[34]
Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, et al. Abeta40 inhibits amyloid deposition in vivo. J Neurosci 27(3): 627-33. (2007).
[http://dx.doi.org/10.1523/JNEUROSCI.4849-06.2007] [PMID: 17234594]
[35]
Murray MM, Bernstein SL, Nyugen V, Condron MM, Teplow DB, Bowers MT. Amyloid beta protein: Abeta40 inhibits Abeta42 oligomerization. J Am Chem Soc 131(18): 6316-7. (2009).
[http://dx.doi.org/10.1021/ja8092604] [PMID: 19385598]
[36]
Ren Z, Yang M, Guan Z, Yu W. Astrocytic α7 nicotinic receptor activation inhibits amyloid-β aggregation by upregulating endogenous αB-crystallin through the PI3K/Akt signaling pathway. Curr Alzheimer Res 16(1): 39-48. (2019).
[http://dx.doi.org/10.2174/1567205015666181022093359] [PMID: 30345917]
[37]
Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12(7): 856-61. (2006).
[http://dx.doi.org/10.1038/nm1438] [PMID: 16799555]
[38]
Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012): 1774. (2010).
[http://dx.doi.org/10.1126/science.1197623] [PMID: 21148344]
[39]
Wang S, Wang R, Chen L, Bennett DA, Dickson DW, Wang DS. Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer’s brain. J Neurochem 115(1): 47-57. (2010).
[http://dx.doi.org/10.1111/j.1471-4159.2010.06899.x] [PMID: 20663017]
[40]
Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett 350(2): 113-6. (2003).
[http://dx.doi.org/10.1016/S0304-3940(03)00898-X] [PMID: 12972166]
[41]
Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, et al. Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171(1): 241-51. (2007).
[http://dx.doi.org/10.2353/ajpath.2007.070105] [PMID: 17591969]
[42]
Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6(2): 143-50. (2000).
[http://dx.doi.org/10.1038/72237] [PMID: 10655101]
[43]
Dolev I, Michaelson DM. A nontransgenic mouse model shows inducible amyloid-beta (Abeta) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Proc Natl Acad Sci USA 101(38): 13909-14. (2004).
[http://dx.doi.org/10.1073/pnas.0404458101] [PMID: 15365176]
[44]
Tundo GR, Sbardella D, Ciaccio C, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme (IDE): a novel heat shock-like protein. J Biol Chem 288(4): 2281-9. (2013).
[http://dx.doi.org/10.1074/jbc.M112.393108] [PMID: 23188819]
[45]
Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100(7): 4162-7. (2003).
[http://dx.doi.org/10.1073/pnas.0230450100] [PMID: 12634421]
[46]
Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, et al. Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci USA 100(10): 6221-6. (2003).
[http://dx.doi.org/10.1073/pnas.1031520100] [PMID: 12732730]
[47]
Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40(6): 1087-93. (2003).
[http://dx.doi.org/10.1016/S0896-6273(03)00787-6] [PMID: 14687544]
[48]
Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM. Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5): 645-54. (2005).
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.06.013] [PMID: 15708439]
[49]
Apelt J, Ach K, Schliebs R. Aging-related down-regulation of neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques. Neurosci Lett 339(3): 183-6. (2003).
[http://dx.doi.org/10.1016/S0304-3940(03)00030-2] [PMID: 12633883]
[50]
Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113): 780-6. (2006).
[http://dx.doi.org/10.1038/nature05291] [PMID: 17051204]
[51]
Schworer CM, Mortimore GE. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA 76(7): 3169-73. (1979).
[http://dx.doi.org/10.1073/pnas.76.7.3169] [PMID: 290994]
[52]
Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33(2): 437-49. (1967).
[http://dx.doi.org/10.1083/jcb.33.2.437] [PMID: 4292315]
[53]
Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35(2): C11-6. (1967).
[http://dx.doi.org/10.1083/jcb.35.2.C11] [PMID: 6055998]
[54]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67-93. (2009).
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[55]
Escoll P, Rolando M, Buchrieser C. Modulation of host autophagy during bacterial infection: sabotaging host munitions for pathogen nutrition. Front Immunol 7: 81. (2016).
[http://dx.doi.org/10.3389/fimmu.2016.00081] [PMID: 26973656]
[56]
Chiramel AI, Brady NR, Bartenschlager R. Divergent roles of autophagy in virus infection. Cells 2(1): 83-104. (2013).
[http://dx.doi.org/10.3390/cells2010083] [PMID: 24709646]
[57]
White E. The role for autophagy in cancer. J Clin Invest 125(1): 42-6. (2015).
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[58]
Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death Differ 12(2): 1528-34. (2005).
[http://dx.doi.org/10.1038/sj.cdd.4401777] [PMID: 16247500]
[59]
Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1): 131-9. (2011).
[http://dx.doi.org/10.1016/j.devcel.2010.12.003] [PMID: 21238931]
[60]
Nixon RA, Yang DS. Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4(10)a008839 (2012).
[http://dx.doi.org/10.1101/cshperspect.a008839] [PMID: 22983160]
[61]
Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7(7): 673-82. (2011).
[http://dx.doi.org/10.4161/auto.7.7.14733] [PMID: 21646866]
[62]
Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1): 92-104. (2014).
[http://dx.doi.org/10.1038/cr.2013.153] [PMID: 24281265]
[63]
Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12): 2435-44. (2004).
[http://dx.doi.org/10.1016/j.biocel.2004.02.013] [PMID: 15325583]
[64]
Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28(18): 5747-63. (2008).
[http://dx.doi.org/10.1128/MCB.02070-07] [PMID: 18644871]
[65]
Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 186(6): 773-82. (2009).
[http://dx.doi.org/10.1083/jcb.200907014] [PMID: 19797076]
[66]
Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7(1): 9-17. (2011).
[http://dx.doi.org/10.1038/nchembio.500] [PMID: 21164513]
[67]
Mizushima N. Autophagy: process and function. Genes Dev (2007).; 21(22): 2861-73.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[68]
Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782(12): 691-9. (2008).
[http://dx.doi.org/10.1016/j.bbadis.2008.10.002] [PMID: 18930136]
[69]
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 221(1): 3-12. (2010).
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[70]
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 140(3): 313-26. (2010).
[http://dx.doi.org/10.1016/j.cell.2010.01.028] [PMID: 20144757]
[71]
Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4): 323-8. (2007).
[http://dx.doi.org/10.4161/auto.4012] [PMID: 17387262]
[72]
Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22(3): 94-102. (2011).
[http://dx.doi.org/10.1016/j.tem.2010.12.003] [PMID: 21269838]
[73]
Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett 584(7): 1287-95. (2010).
[http://dx.doi.org/10.1016/j.febslet.2010.01.017] [PMID: 20083114]
[74]
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2): 310-22. (2010).
[http://dx.doi.org/10.1016/j.molcel.2010.09.026] [PMID: 20965424]
[75]
Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95(13): 7772-7. (1998).
[http://dx.doi.org/10.1073/pnas.95.13.7772] [PMID: 9636226]
[76]
Blagosklonny MV. Hypoxia, MTOR and autophagy: converging on senescence or quiescence. Autophagy 9(2): 260-2. (2013).
[http://dx.doi.org/10.4161/auto.22783] [PMID: 23192222]
[77]
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 13(2): 1886-918. (2012).
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[78]
Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280(37): 32081-9. (2005).
[http://dx.doi.org/10.1074/jbc.M502876200] [PMID: 16027121]
[79]
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8): 563-75. (2009).
[http://dx.doi.org/10.1038/nrc2676] [PMID: 19629071]
[80]
Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25(2): 193-205. (2007).
[http://dx.doi.org/10.1016/j.molcel.2006.12.009] [PMID: 17244528]
[81]
Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170(7): 1101-11. (2005).
[http://dx.doi.org/10.1083/jcb.200504035] [PMID: 16186256]
[82]
Lünemann JD, Schmidt J, Schmid D, Barthel K, Wrede A, Dalakas MC, et al. Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol 61(5): 476-83. (2007).
[http://dx.doi.org/10.1002/ana.21115] [PMID: 17469125]
[83]
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095): 880-4. (2006).
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[84]
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095): 885-9. (2006).
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[85]
Ban BK, Jun MH, Ryu HH, Jang DJ, Ahmad ST, Lee JA. Autophagy negatively regulates early axon growth in cortical neurons. Mol Cell Biol 33(19): 3907-19. (2013).
[http://dx.doi.org/10.1128/MCB.00627-13] [PMID: 23918799]
[86]
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148): 1121-5. (2007).
[http://dx.doi.org/10.1038/nature05925] [PMID: 17589504]
[87]
Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104(36): 14489-94. (2007).
[http://dx.doi.org/10.1073/pnas.0701311104] [PMID: 17726112]
[88]
Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M. Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy 3(6): 591-6. (2007).
[http://dx.doi.org/10.4161/auto.4964] [PMID: 17912025]
[89]
Maday S. Mechanisms of neuronal homeostasis: autophagy in the axon Brain Res 1649((Pt B)): 143-50 (2016).
[90]
Liang CC, Wang C, Peng X, Gan B, Guan JL. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem 285(5): 3499-509. (2010).
[http://dx.doi.org/10.1074/jbc.M109.072389] [PMID: 19940130]
[91]
Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74(2): 277-84. (2012).
[http://dx.doi.org/10.1016/j.neuron.2012.02.020] [PMID: 22542182]
[92]
Maday S, Holzbaur EL. Autophagosome assembly and cargo capture in the distal axon. Autophagy 8(5): 858-60. (2012).
[http://dx.doi.org/10.4161/auto.20055] [PMID: 22617438]
[93]
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2): 113-22. (2005).
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[94]
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28(27): 6926-37. (2008).
[http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008] [PMID: 18596167]
[95]
Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1): 87-98. (2005).
[http://dx.doi.org/10.1083/jcb.200505082] [PMID: 16203860]
[96]
Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36(12): 2531-40. (2004).
[http://dx.doi.org/10.1016/j.biocel.2004.05.010] [PMID: 15325590]
[97]
Neely KM, Green KN, LaFerla FM. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J Neurosci 31(8): 2781-91. (2011).
[http://dx.doi.org/10.1523/JNEUROSCI.5156-10.2010] [PMID: 21414900]
[98]
Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7): 1146-58. (2010).
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[99]
Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1): 258-77. (2011).
[http://dx.doi.org/10.1093/brain/awq341] [PMID: 21186265]
[100]
Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79(5): 873-86. (2013).
[http://dx.doi.org/10.1016/j.neuron.2013.06.046] [PMID: 24012002]
[101]
Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5(6)e11102 (2010).
[http://dx.doi.org/10.1371/journal.pone.0011102] [PMID: 20559548]
[102]
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, et al. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 106-107: 33-54. (2013).
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.002] [PMID: 23827971]
[103]
Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6): 2190-9. (2008).
[PMID: 18497889]
[104]
Steele JW, Lachenmayer ML, Ju S, Stock A, Liken J, Kim SH, et al. Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry 18(8): 889-97. (2013).
[http://dx.doi.org/10.1038/mp.2012.106] [PMID: 22850627]
[105]
Zhu Z, Yan J, Jiang W, Yao XG, Chen J, Chen L, et al. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 33(32): 13138-49. (2013).
[http://dx.doi.org/10.1523/JNEUROSCI.4790-12.2013] [PMID: 23926267]
[106]
Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, et al. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy (2014).; 10(1): 32-44.
[http://dx.doi.org/10.4161/auto.26508] [PMID: 24149893]
[107]
Lin Y. RIP1-mediated signaling pathways in cell survival and death control. 2014.
[http://dx.doi.org/10.1007/978-1-4614-8220-8_2]
[108]
Zhang L, Blackwell K, Workman LM, Chen S, Pope MR, Janz S, et al. RIP1 cleavage in the kinase domain regulates TRAIL-induced NF-κB activation and lymphoma survival. Mol Cell Biol 35(19): 3324-38. (2015).
[http://dx.doi.org/10.1128/MCB.00692-15] [PMID: 26195820]
[109]
Vandenabeele P, Grootjans S, Callewaert N, Takahashi N. Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ 20(2): 185-7. (2013).
[http://dx.doi.org/10.1038/cdd.2012.151] [PMID: 23197293]
[110]
Moriwaki K, Chan FK. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell Mol Life Sci 73(11-12): 2325-34. (2016).
[http://dx.doi.org/10.1007/s00018-016-2203-4] [PMID: 27048814]
[111]
Feltham R, Vince JE, Lawlor KE. Caspase-8: not so silently deadly. Clin Transl Immunology 6(1)e124 (2017).
[http://dx.doi.org/10.1038/cti.2016.83] [PMID: 28197335]
[112]
Kondylis V, Kumari S, Vlantis K, Pasparakis M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol Rev 277(1): 113-27. (2017).
[http://dx.doi.org/10.1111/imr.12550] [PMID: 28462531]
[113]
Christofferson DE, Li Y, Yuan J. Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol 76: 129-50. (2014).
[http://dx.doi.org/10.1146/annurev-physiol-021113-170259] [PMID: 24079414]
[114]
Kobayashi K, Inohara N, Hernandez LD, Galán JE, Núñez G, Janeway CA, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416(6877): 194-9. (2002).
[http://dx.doi.org/10.1038/416194a] [PMID: 11894098]
[115]
Wegner KW, Saleh D, Degterev A. Complex pathologic roles of ripk1 and ripk3: moving beyond necroptosis. Trends Pharmacol Sci 38(3): 202-25. (2017).
[http://dx.doi.org/10.1016/j.tips.2016.12.005] [PMID: 28126382]
[116]
Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2): 181-90. (2003).
[http://dx.doi.org/10.1016/S0092-8674(03)00521-X] [PMID: 12887920]
[117]
Newton K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 25(6): 347-53. (2015).
[http://dx.doi.org/10.1016/j.tcb.2015.01.001] [PMID: 25662614]
[118]
Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 18(4): 656-65. (2011).
[http://dx.doi.org/10.1038/cdd.2010.138] [PMID: 21052097]
[119]
Moquin DM, McQuade T, Chan FK. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8(10)e76841 (2013).
[http://dx.doi.org/10.1371/journal.pone.0076841] [PMID: 24098568]
[120]
Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep 1(5): 401-7. (2012).
[http://dx.doi.org/10.1016/j.celrep.2012.03.010] [PMID: 22675671]
[121]
Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2): 339-50. (2012).
[http://dx.doi.org/10.1016/j.cell.2012.06.019] [PMID: 22817896]
[122]
Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, Wu X, et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 288(23): 16247-61. (2013).
[http://dx.doi.org/10.1074/jbc.M112.435545] [PMID: 23612963]
[123]
Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56(4): 481-95. (2014).
[http://dx.doi.org/10.1016/j.molcel.2014.10.021] [PMID: 25459880]
[124]
Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity (2013).; 39(3): 443-53.
[http://dx.doi.org/10.1016/j.immuni.2013.06.018] [PMID: 24012422]
[125]
Yonekawa T, Gamez G, Kim J, Tan AC, Thorburn J, Gump J, et al. RIP1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep 16(6): 700-8. (2015).
[http://dx.doi.org/10.15252/embr.201439496] [PMID: 25908842]
[126]
Luan Q, Jin L, Jiang CC, Tay KH, Lai F, Liu XY, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy 11(7): 975-94. (2015).
[http://dx.doi.org/10.1080/15548627.2015.1049800] [PMID: 26018731]
[127]
Zhang Y, Zhang J, Yan R, Tian J, Zhang Y, Zhang J, et al. Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis. Proc Natl Acad Sci USA 114(11): 2964-9. (2017).
[http://dx.doi.org/10.1073/pnas.1610963114] [PMID: 28242694]
[128]
Li QX, Whyte S, Tanner JE, Evin G, Beyreuther K, Masters CL. Secretion of Alzheimer’s disease Abeta amyloid peptide by activated human platelets. Lab Invest 78(4): 461-9. (1998).
[PMID: 9564890]
[129]
Bharathi, Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KS. A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Brain Res Rev 52(2): 275-92. (2006).
[http://dx.doi.org/10.1016/j.brainresrev.2006.04.003]
[130]
Savory J, Herman MM, Ghribi O. Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis 10(2-3): 135-44. (2006).
[http://dx.doi.org/10.3233/JAD-2006-102-302] [PMID: 17119283]
[131]
Walton JR. An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101(9): 1275-84. (2007).
[http://dx.doi.org/10.1016/j.jinorgbio.2007.06.001] [PMID: 17662457]
[132]
Obulesu M, Rao DM. Animal models of Alzheimer’s disease: an understanding of pathology and therapeutic avenues. Int J Neurosci 120(8): 531-7. (2010).
[http://dx.doi.org/10.3109/00207451003760080] [PMID: 20615056]
[133]
Yang SH, Lee DK, Shin J, Lee S, Baek S. Kim J1, et al Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med 9(1): 61-77. (2017).
[http://dx.doi.org/10.15252/emmm.201606566] [PMID: 27861127]
[134]
Qinli Z, Meiqing L, Xia J, Li X, Weili G, Xiuliang J, et al. Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restor Neurol Neurosci 31(5): 543-55. (2013).
[PMID: 23735313]
[135]
Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci USA 114(41): E8788-97. (2017).
[http://dx.doi.org/10.1073/pnas.1714175114] [PMID: 28904096]
[136]
Mason AR, Elia LP, Finkbeiner S. The Receptor-interacting Serine/Threonine Protein Kinase 1 (RIPK1) Regulates Progranulin Levels. J Biol Chem 292(8): 3262-72. (2017).
[http://dx.doi.org/10.1074/jbc.M116.752006] [PMID: 28069809]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy