Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Synthesis and Anti-mycobacterium Study on Halo-substituted 2-aryl oxyacetohydrazones

Author(s): Vijay J. Desale, Suraj N. Mali, Hemchandra K. Chaudhari, Maya C. Mali, Bapu R. Thorat* and Ramesh S. Yamgar

Volume 16, Issue 5, 2020

Page: [618 - 628] Pages: 11

DOI: 10.2174/1573409915666191018120611

Price: $65

Abstract

Background: The treatment of multiple-drug-resistant tuberculosis (MDR-TB) with currently available marketed drugs remains a global health concern. The cases of resistant tuberculosis patients are increasing day by day.

Objective: The objective of this study is to highlight the need of developing shorter, simpler and tolerable drug regimens.

Methods: In the present study, we synthesized various halo-substituted 2-aryloxyacetohydrazones via a series of reactions from halo-substituted phenols. All the compounds were characterized by using various spectroscopic methods, such as NMR, FT-IR, UV spectroscopy, etc.

Results: All the synthesized hydrazones showed theoretically good interactions with enzyme enoyl reductase (pdb id: 4tzk). All the synthesized compounds (5a-5o) showed moderate to good activity (3.125-100 μg/mL) against Mycobacteria tuberculosis, H37RV strain.

Conclusion: Our results would pave a new way for the development of more effective Anti-TB agents in the future.

Keywords: 2-aryloxyacetohydrazones, hydrazones, Anti-TB activity, molecular docking, Mycobacteria tuberculosis, enoyl reductase.

Graphical Abstract

[1]
Mali, S.N.; Morbale, T.S. Totally Drug-Resistant Tuberculosis (TDR-TB): An Overview. Int J Res. Methodol., 2016, 1(3), 29-36.
[2]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2017, 27(2), 223-227.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.071] [PMID: 27914798]
[3]
Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, S.W. Foye’s principles of medicinal chemistry, 7th ed; Wolters Kluwer: New Delhi, 2013, p. 1177.
[4]
World Health Organization http://www.who.int/topics/tuberculosis/en/ (date of access: 27-06-2019)
[5]
de Souza, M.V.N. Promising candidates in clinical trials against multidrug-resistant tuberculosis (MDR-TB) based on natural products. Fitoterapia, 2009, 80(8), 453-460.
[http://dx.doi.org/10.1016/j.fitote.2009.07.010] [PMID: 19698768]
[6]
Mali, S.N.; Chaudhari, H.K. Computational studies on imidazo [1,2-a] pyridine-3-carboxamide analogues as antimycobacterial agents: Common pharmacophore generation, atom-based 3D-QSAR, molecular dynamics simulation, QikProp, Molecular docking and prime MMGBSA approaches. Open Pharm. Sci. J., 2018, 5, 12-23.
[http://dx.doi.org/10.2174/1874844901805010012]
[7]
Smieja, M.J.; Marchetti, C.A.; Cook, D.J.; Smaill, F.M. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst. Rev., 2000, (2)CD001363
[http://dx.doi.org/10.1002/14651858.CD001363] [PMID: 10796642]
[8]
Akolo, C.; Adetifa, I.; Shepperd, S.; Volmink, J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst. Rev., 2010, (1)CD000171
[http://dx.doi.org/10.1002/14651858.CD000171.pub3] [PMID: 20091503]
[9]
Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; Schoolnik, G.K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med., 2003, 198(5), 693-704.
[http://dx.doi.org/10.1084/jem.20030846] [PMID: 12953091]
[10]
Mathew, B.; Suresh, J.; Ahsan, M.J.; Mathew, G.E.; Usman, D.; Subramanyan, P.N.; Safna, K.F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: a review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[11]
Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bernis, C.; Salvayre, R.; Nègre-Salvayre, A.; Baltas, M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem., 2010, 45(7), 3019-3026.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.031] [PMID: 20403645]
[12]
Rane, R.A.; Telvekar, V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2010, 20(19), 5681-5685.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.026] [PMID: 20800487]
[13]
Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Synthesis and antimicrobial activity of 2-chloro-6- methylquinoline hydrazone derivatives. J. Pharm. Bioallied Sci., 2009, 1, 27-31.
[http://dx.doi.org/10.4103/0975-7406.62683]
[14]
Kaplancikli, Z.A.; Altintop, M.D.; Özdemir, A.; Turan-Zitounia, G.; Khan, S.I.; Tabanca, N. Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Lett. Drug Des. Discov., 2012, 9, 310-315.
[http://dx.doi.org/10.2174/157018012799129828]
[15]
Hu, W.X.; Zhou, W.; Xia, C.N.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16(8), 2213-2218.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.048] [PMID: 16458509]
[16]
Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem., 2013, 21(21), 6592-6599.
[http://dx.doi.org/10.1016/j.bmc.2013.08.026] [PMID: 24071449]
[17]
Vicini, P.; Incerti, M.; La Colla, P.; Loddo, R. Anti-HIV evaluation of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem., 2009, 44(4), 1801-1807.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.030] [PMID: 18614259]
[18]
Rocha, L.T.S.; Costa, K.A.; Oliveira, A.C.P.; Nascimento, E.B., Jr; Bertollo, C.M.; Araújo, F.; Teixeira, L.R.; Andrade, S.P.; Beraldo, H.; Coelho, M.M. Antinociceptive, antiedematogenic and antiangiogenic effects of benzaldehyde semicarbazone. Life Sci., 2006, 79(5), 499-505.
[http://dx.doi.org/10.1016/j.lfs.2006.01.027] [PMID: 16600310]
[19]
Krishnan, K.; Prathiba, K.; Jayaprakash, V.; Basu, A.; Mishra, N.; Zhou, B.; Hu, S.; Yen, Y. Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2008, 18(23), 6248-6250.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.097] [PMID: 18976907]
[20]
Thanigaimalai, P.; Lee, K.C.; Sharma, V.K.; Roh, E.; Kim, Y.; Jung, S.H. Ketonethiosemicarbazones: structure-activity relationships for their melanogenesis inhibition. Bioorg. Med. Chem. Lett., 2011, 21(12), 3527-3530.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.146] [PMID: 21601449]
[21]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]
[22]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. In silico appraisal, Synthesis, Antibacterial screening and DNA cleavage for 1,2,5-thiadiazole derivative. Curr Comput Aided Drug Des, 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666190206142756] [PMID: 30727910]
[23]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[24]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives. J. Mol. Struct., 2019, 1192, 162-171.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.123]
[25]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn., 2019, 38(6), 1-14.
[http://dx.doi.org/10.1080/07391102.2019.1621213] [PMID: 31107179]
[26]
Glide; Schrodinger, LLC: NY, 2017.
[27]
LigPrep; Schrodinger, LLC: NY, 2017.
[28]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[29]
Prime; Schrodinger, LLC: NY 2017.
[30]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[31]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis, In-Silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr Comput Aided Drug Des, 2019, 15, 1.
[http://dx.doi.org/10.2174/1386207322666190722162100] [PMID: 31438831]
[32]
Kshatriya, R.; Kambale, D.; Mali, S.N.; Jejurkar, V.P.; Lokhande, P.; Chaudhari, H.K.; Saha, S.S. Brønsted Acid Catalyzed Domino Synthesis of Functionalized 4H‐Chromens and Their ADMET, Molecular Docking and Antibacterial Studies. ChemistrySelect, 2019, 4, 7943-7948.
[http://dx.doi.org/10.1002/slct.201901775]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy