General Review Article

调节性T细胞在癌症免疫治疗中的分子标记,特别关注急性髓系白血病(AML) -系统综述

卷 27, 期 28, 2020

页: [4673 - 4698] 页: 26

弟呕挨: 10.2174/0929867326666191004164041

价格: $65

摘要

只有深入了解Treg细胞在抗肿瘤免疫中的作用和调节,并发现新的免疫靶点,新一代免疫治疗才能有效。这可以提高未来和新疗法的临床疗效,并减少由后者引起的不良反应。本文讨论了在肿瘤微环境(TME)中使用调节性T (Treg)细胞治疗肿瘤的策略。讨论了影响TME不稳定的因素以及预防未来免疫紊乱的相关治疗方法。据预测,PD-1抑制剂有风险,在治疗急性髓系白血病(AML)、肺腺癌和前列腺腺癌时应考虑其不良反应。相比之下,本文分析的Treg分子标记FoxP3和CD25在几乎所有癌症中都比正常人表达更强。然而,与FoxP3抑制剂相比,CD25抑制剂在预测患者生存方面更有效,尤其是在联合TGF-β阻滞剂时。根据癌症基因组图谱获得的数据,我们聚焦AML免疫治疗,讨论不同的治疗策略,包括抗CD25/IL-2、抗CTLA-4、抗IDO、抗酪氨酸激酶受体、抗PI3K治疗,并重点介绍AML免疫治疗的最新进展和临床成果。为了预测关键靶标抑制剂(即CTLA-4、FoxP3、CD25和PD-1)的风险和副作用,我们最终分析并比较了来自10种常见癌症的癌症基因组图谱。本综述显示Treg细胞在AML中显著增加,关键标志物的比较综述表明,Treg免疫治疗并不是对所有类型的癌症都有效。因此,AML中阻滞CD25(+)FoxP3(+) Treg细胞的提示多于其他类型的癌症;同时,在其他癌症中研究的Treg标记也为AML免疫治疗提供了很好的借鉴。

关键词: 调节性T细胞,肿瘤微环境,癌症免疫治疗,CD25

[1]
Zhang, H.; Kong, H.; Zeng, X.; Guo, L.; Sun, X.; He, S. Subsets of regulatory T cells and their roles in allergy. J. Transl. Med., 2014, 12, 125.
[http://dx.doi.org/10.1186/1479-5876-12-125] [PMID: 24886492]
[2]
Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol., 1995, 155(3), 1151-1164.
[PMID: 7636184]
[3]
Lourenço, E.V.; La Cava, A. Natural regulatory T cells in autoimmunity. Autoimmunity, 2011, 44(1), 33-42.
[http://dx.doi.org/10.3109/08916931003782155] [PMID: 21091291]
[4]
Ellis, S.D.P.; McGovern, J.L.; van Maurik, A.; Howe, D.; Ehrenstein, M.R.; Notley, C.A. Induced CD8+FoxP3+ Treg cells in rheumatoid arthritis are modulated by p38 phosphorylation and monocytes expressing membrane tumor necrosis factor α and CD86. Arthritis Rheumatol., 2014, 66(10), 2694-2705.
[http://dx.doi.org/10.1002/art.38761] [PMID: 24980778]
[5]
Chakraborty, S.; Panda, A.K.; Bose, S.; Roy, D.; Kajal, K.; Guha, D.; Sa, G. Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Sci. Rep., 2017, 7(1), 1628.
[http://dx.doi.org/10.1038/s41598-017-01788-z] [PMID: 28487507]
[6]
Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 2019, 110(7), 2080-2089.
[http://dx.doi.org/10.1111/cas.14069] [PMID: 31102428]
[7]
Charbonnier, L-M.; Chatila, T.A. Phenotypic and functional characterization of regulatory T cell populations In: Signaling Mechanisms Regulating T Cell Diversity and Function; Soboloff, J.; Kappes, D.J., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, 2018; pp. 105-118.
[8]
Li, W.; Geng, L.; Liu, X.; Gui, W.; Qi, H. Recombinant adiponectin alleviates abortion in mice by regulating Th17/Treg imbalance via p38MAPK-STAT5 pathway. Biol. Reprod., 2019, 100(4), 1008-1017.
[http://dx.doi.org/10.1093/biolre/ioy251] [PMID: 30496353]
[9]
Li, M.O.; Rudensky, A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol., 2016, 16(4), 220-233.
[http://dx.doi.org/10.1038/nri.2016.26] [PMID: 27026074]
[10]
Chao, J.L.; Savage, P.A. Unlocking the Complexities of Tumor-Associated Regulatory T Cells. J. Immunol., 2018, 200(2), 415-421.
[http://dx.doi.org/10.4049/jimmunol.1701188] [PMID: 29311383]
[11]
Elkord, E. Thymus-Derived, Peripherally Derived, and in vitro-Induced T Regulatory Cells. Front. Immunol., 2014, 5, 17.
[http://dx.doi.org/10.3389/fimmu.2014.00017] [PMID: 24478778]
[12]
Met, Ö.; Jensen, K.M.; Chamberlain, C.A.; Donia, M.; Svane, I.M. Principles of adoptive T cell therapy in cancer. Semin. Immunopathol., 2019, 41(1), 49-58.
[http://dx.doi.org/10.1007/s00281-018-0703-z] [PMID: 30187086]
[13]
Silverman, E. Kymriah: A Sign of More Difficult Decisions To Come. Manag. Care, 2018, 27(5), 17.
[PMID: 29763402]
[14]
MacDonald, K.N.; Piret, J.M.; Levings, M.K. Methods to manufacture regulatory T cells for cell therapy. Clin. Exp. Immunol., 2019, 197(1), 52-63.
[http://dx.doi.org/10.1111/cei.13297] [PMID: 30913302]
[15]
Chiang, C.L-L.; Balint, K.; Coukos, G.; Kandalaft, L.E. Potential approaches for more successful dendritic cell-based immunotherapy. Expert Opin. Biol. Ther., 2015, 15(4), 569-582.
[http://dx.doi.org/10.1517/14712598.2015.1000298] [PMID: 25553913]
[16]
Jeffery, H.C.; Braitch, M.K.; Brown, S.; Oo, Y.H. Clinical Potential of Regulatory T Cell Therapy in Liver Diseases: An Overview and Current Perspectives. Front. Immunol., 2016, 7, 334.
[http://dx.doi.org/10.3389/fimmu.2016.00334] [PMID: 27656181]
[17]
Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front. Immunol., 2018, 9, 444.
[http://dx.doi.org/10.3389/fimmu.2018.00444] [PMID: 29593717]
[18]
Passat, T.; Touchefeu, Y.; Gervois, N.; Jarry, A.; Bossard, C.; Bennouna, J. [Physiopathological mechanisms of immune-related adverse events induced by anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies in cancer treatment]. Bull. Cancer, 2018, 105(11), 1033-1041.
[http://dx.doi.org/10.1016/j.bulcan.2018.07.005] [PMID: 30244981]
[19]
De Kouchkovsky, I.; Abdul-Hay, M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer J., 2016, 6(7) e441
[http://dx.doi.org/10.1038/bcj.2016.50] [PMID: 27367478]
[20]
Corthay, A. How do regulatory T cells work? Scand. J. Immunol., 2009, 70(4), 326-336.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02308.x] [PMID: 19751267]
[21]
Fisher, S.A.; Aston, W.J.; Chee, J.; Khong, A.; Cleaver, A.L.; Solin, J.N.; Ma, S.; Lesterhuis, W.J.; Dick, I.; Holt, R.A.; Creaney, J.; Boon, L.; Robinson, B.; Lake, R.A. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun. Inflamm. Dis., 2016, 5(1), 16-28.
[http://dx.doi.org/10.1002/iid3.136] [PMID: 28250921]
[22]
Luo, J.; Song, J.; Zhang, H.; Zhang, F.; Liu, H.; Li, L.; Zhang, Z.; Chen, L.; Zhang, M.; Lin, D.; Lin, M.; Zhou, R. Melatonin mediated Foxp3-downregulation decreases cytokines production via the TLR2 and TLR4 pathways in H. pylori infected mice. Int. Immunopharmacol., 2018, 64, 116-122.
[http://dx.doi.org/10.1016/j.intimp.2018.08.034] [PMID: 30173051]
[23]
Khalife, E.; Khodadadi, A.; Talaeizadeh, A.; Rahimian, L.; Nemati, M.; Jafarzadeh, A. Overexpression of Regulatory T Cell-Related Markers (FOXP3, CTLA-4 and GITR) by Peripheral Blood Mononuclear Cells from Patients with Breast Cancer. Asian Pac. J. Cancer Prev., 2018, 19(11), 3019-3025.
[http://dx.doi.org/10.31557/APJCP.2018.19.11.3019] [PMID: 30484986]
[24]
Ying, L.; Yan, F.; Meng, Q.; Yu, L.; Yuan, X.; Gantier, M.P.; Williams, B.R.G.; Chan, D.W.; Shi, L.; Tu, Y.; Ni, P.; Wang, X.; Chen, W.; Zang, X.; Xu, D.; Hu, Y. PD-L1 expression is a prognostic factor in subgroups of gastric cancer patients stratified according to their levels of CD8 and FOXP3 immune markers. OncoImmunology, 2018, 7(6) e1433520
[http://dx.doi.org/10.1080/2162402X.2018.1433520] [PMID: 29872566]
[25]
Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; Zhu, Y.; Wei, S.; Kryczek, I.; Daniel, B.; Gordon, A.; Myers, L.; Lackner, A.; Disis, M.L.; Knutson, K.L.; Chen, L.; Zou, W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med., 2004, 10(9), 942-949.
[http://dx.doi.org/10.1038/nm1093] [PMID: 15322536]
[26]
Overacre-Delgoffe, A.E.; Vignali, D.A.A. Treg Fragility: A Prerequisite for Effective Antitumor Immunity? Cancer Immunol. Res., 2018, 6(8), 882-887.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0066] [PMID: 30068755]
[27]
Onizuka, S.; Tawara, I.; Shimizu, J.; Sakaguchi, S.; Fujita, T.; Nakayama, E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res., 1999, 59(13), 3128-3133.
[PMID: 10397255]
[28]
Dannull, J.; Su, Z.; Rizzieri, D.; Yang, B.K.; Coleman, D.; Yancey, D.; Zhang, A.; Dahm, P.; Chao, N.; Gilboa, E.; Vieweg, J. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest., 2005, 115(12), 3623-3633.
[http://dx.doi.org/10.1172/JCI25947] [PMID: 16308572]
[29]
Ohkusu-Tsukada, K.; Toda, M.; Udono, H.; Kawakami, Y.; Takahashi, K. Targeted inhibition of IL-10-secreting CD25- Treg via p38 MAPK suppression in cancer immunotherapy. Eur. J. Immunol., 2010, 40(4), 1011-1021.
[http://dx.doi.org/10.1002/eji.200939513] [PMID: 20127675]
[30]
Zhang, J.; Dunk, C.E.; Shynlova, O.; Caniggia, I.; Lye, S.J. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine, 2019, 39, 531-539.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.015] [PMID: 30579870]
[31]
Curiel, T.J. Tregs and rethinking cancer immunotherapy. J. Clin. Invest., 2007, 117(5), 1167-1174.
[http://dx.doi.org/10.1172/JCI31202] [PMID: 17476346]
[32]
Zou, W.; Regulatory, T. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol., 2006, 6(4), 295-307.
[http://dx.doi.org/10.1038/nri1806] [PMID: 16557261]
[33]
Jones, M.B.; Alvarez, C.A.; Johnson, J.L.; Zhou, J.Y.; Morris, N.; Cobb, B.A. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One, 2019, 14(5) e0216893
[http://dx.doi.org/10.1371/journal.pone.0216893] [PMID: 31120919]
[34]
Kumar, P.; Saini, S.; Prabhakar, B.S. Cancer Immunotherapy with Check Point Inhibitor Can Cause Autoimmune Adverse Events Due to Loss of Treg Homeostasis. Semin. Cancer Biol., 2020, 64, 29-35.
[http://dx.doi.org/10.1016/j.semcancer.2019.01.006] [PMID: 30716481]
[35]
Apolo, A.B.; Infante, J.R.; Balmanoukian, A.; Patel, M.R.; Wang, D.; Kelly, K.; Mega, A.E.; Britten, C.D.; Ravaud, A.; Mita, A.C.; Safran, H.; Stinchcombe, T.E.; Srdanov, M.; Gelb, A.B.; Schlichting, M.; Chin, K.; Gulley, J.L. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J. Clin. Oncol., 2017, 35(19), 2117-2124.
[http://dx.doi.org/10.1200/JCO.2016.71.6795] [PMID: 28375787]
[36]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[37]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[38]
Shimizu, J.; Yamazaki, S.; Takahashi, T.; Ishida, Y.; Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol., 2002, 3(2), 135-142.
[http://dx.doi.org/10.1038/ni759] [PMID: 11812990]
[39]
McHugh, R.S.; Whitters, M.J.; Piccirillo, C.A.; Young, D.A.; Shevach, E.M.; Collins, M.; Byrne, M.C. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 2002, 16(2), 311-323.
[http://dx.doi.org/10.1016/S1074-7613(02)00280-7] [PMID: 11869690]
[40]
Vence, L.; Bucktrout, S. L.; Fernandez Curbelo, I.; Blando, J.; Smith, B. M.; Mahne, A. E.; Lin, J. C.; Park, T.; Sai, T.; Pascua, E.; Chaparro-Riggers, J.; Sharma, P. Characterization and comparison of GITR expression in solid tumors. Clin Cancer Res., 2019, 25(21), 6501-6510.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0289] [PMID: 31358539]
[41]
van Beek, A.A.; Zhou, G.; Doukas, M.; Boor, P.P.C.; Noordam, L.; Mancham, S.; Campos Carrascosa, L.; van der Heide-Mulder, M.; Polak, W.G.; Ijzermans, J.N.M.; Pan, Q.; Heirman, C.; Mahne, A.; Bucktrout, S.L.; Bruno, M.J.; Sprengers, D.; Kwekkeboom, J. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int. J. Cancer, 2019, 145(4), 1111-1124.
[http://dx.doi.org/10.1002/ijc.32181] [PMID: 30719701]
[42]
Zhang, X.; Guo, M.; Yang, J.; Zheng, Y.; Xiao, Y.; Liu, W.; Ren, F. Increased Expression of GARP in Papillary Thyroid Carcinoma. Endocr. Pathol., 2019, 30(1), 1-7.
[http://dx.doi.org/10.1007/s12022-018-9557-0] [PMID: 30443770]
[43]
Zimmer, N.; Kim, E.; Sprang, B.; Leukel, P.; Khafaji, F.; Ringel, F.; Sommer, C.; Tuettenberg, J.; Tuettenberg, A.; Tu-ettenberg, A. GARP as an Immune Regulatory Molecule in the Tumor Microenvironment of Glioblastoma Multiforme. Int. J. Mol. Sci., 2019, 20(15) E3676
[http://dx.doi.org/10.3390/ijms20153676] [PMID: 31357555]
[44]
Oh, E.; Choi, I-K.; Hong, J.; Yun, C-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget, 2017, 8(3), 4730-4746.
[http://dx.doi.org/10.18632/oncotarget.13972] [PMID: 28002796]
[45]
Eriksson, E.; Wenthe, J.; Irenaeus, S.; Loskog, A.; Ullenhag, G. Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med., 2016, 14(1), 282.
[http://dx.doi.org/10.1186/s12967-016-1037-z] [PMID: 27687804]
[46]
Whiteside, T.L.; Mandapathil, M.; Szczepanski, M.; Szajnik, M. Mechanisms of tumor escape from the immune system: adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull. Cancer, 2011, 98(2), E25-E31.
[http://dx.doi.org/10.1684/bdc.2010.1294] [PMID: 21339097]
[47]
de Leve, S.; Wirsdörfer, F.; Jendrossek, V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front. Immunol., 2019, 10, 698.
[http://dx.doi.org/10.3389/fimmu.2019.00698] [PMID: 31024543]
[48]
Sek, K.; Mølck, C.; Stewart, G.D.; Kats, L.; Darcy, P.K.; Beavis, P.A. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int. J. Mol. Sci., 2018, 19(12), 3837.
[http://dx.doi.org/10.3390/ijms19123837] [PMID: 30513816]
[49]
Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J-F.; Enjyoji, K.; Linden, J.; Oukka, M.; Kuchroo, V.K.; Strom, T.B.; Robson, S.C. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med., 2007, 204(6), 1257-1265.
[http://dx.doi.org/10.1084/jem.20062512] [PMID: 17502665]
[50]
Mandapathil, M.; Szczepanski, M.; Harasymczuk, M.; Ren, J.; Cheng, D.; Jackson, E.K.; Gorelik, E.; Johnson, J.; Lang, S.; Whiteside, T.L. CD26 expression and adenosine deaminase activity in regulatory T cells (Treg) and CD4(+) T effector cells in patients with head and neck squamous cell carcinoma. OncoImmunology, 2012, 1(5), 659-669.
[http://dx.doi.org/10.4161/onci.20387] [PMID: 22934258]
[51]
Salgado, F.J.; Pérez-Díaz, A.; Villanueva, N.M.; Lamas, O.; Arias, P.; Nogueira, M. CD26: a negative selection marker for human Treg cells. Cytometry A, 2012, 81(10), 843-855.
[http://dx.doi.org/10.1002/cyto.a.22117] [PMID: 22949266]
[52]
Mandapathil, M.; Hilldorfer, B.; Szczepanski, M.J.; Czystowska, M.; Szajnik, M.; Ren, J.; Lang, S.; Jackson, E.K.; Gorelik, E.; Whiteside, T.L. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J. Biol. Chem., 2010, 285(10), 7176-7186.
[http://dx.doi.org/10.1074/jbc.M109.047423] [PMID: 19858205]
[53]
Pedros, C.; Canonigo-Balancio, A.J.; Kong, K-F.; Altman, A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight, 2017, 2(23) e95692
[http://dx.doi.org/10.1172/jci.insight.95692] [PMID: 29212947]
[54]
Albu, D.I.; Wang, Z.; Huang, K-C.; Wu, J.; Twine, N.; Leacu, S.; Ingersoll, C.; Parent, L.; Lee, W.; Liu, D.; Wright-Michaud, R.; Kumar, N.; Kuznetsov, G.; Chen, Q.; Zheng, W.; Nomoto, K.; Woodall-Jappe, M.; Bao, X. EP4 Antagonism by E7046 diminishes Myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunity. OncoImmunology, 2017, 6(8) e1338239
[http://dx.doi.org/10.1080/2162402X.2017.1338239] [PMID: 28920002]
[55]
Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med., 2014, 20(1), 62-68.
[http://dx.doi.org/10.1038/nm.3432] [PMID: 24362934]
[56]
Cheekatla, S. S.; Tripathi, D.; Venkatasubramanian, S.; Paidipally, P.; Welch, E.; Tvinnereim, A. R.; Nurieva, R.; Vankayalapati, R. IL-21 receptor signaling is essential for optimal CD4(+) T Cell function and control of mycobacterium tuberculosis infection in mice. J. Immunol., 2017, 199(8), 2815-2822.
[http://dx.doi.org/10.4049/jimmunol.1601231] [PMID: 28855309]
[57]
Venkatasubramanian, S.; Cheekatla, S.; Paidipally, P.; Tripathi, D.; Welch, E.; Tvinnereim, A.R.; Nurieva, R.; Vankayalapati, R. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. Mucosal Immunol., 2017, 10(4), 1031-1042.
[http://dx.doi.org/10.1038/mi.2016.105] [PMID: 27924822]
[58]
Korn, T.; Bettelli, E.; Gao, W.; Awasthi, A.; Jäger, A.; Strom, T.B.; Oukka, M.; Kuchroo, V.K. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007, 448(7152), 484-487.
[http://dx.doi.org/10.1038/nature05970] [PMID: 17581588]
[59]
Ye, J.; Qiu, J.; Bostick, J.W.; Ueda, A.; Schjerven, H.; Li, S.; Jobin, C.; Chen, Z.E.; Zhou, L. The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. Cell Rep., 2017, 21(8), 2277-2290.
[http://dx.doi.org/10.1016/j.celrep.2017.10.114] [PMID: 29166616]
[60]
Zhu, W.; Chen, X.; Yu, J.; Xiao, Y.; Li, Y.; Wan, S.; Su, W.; Liang, D. Baicalin modulates the Treg/Teff balance to alleviate uveitis by activating the aryl hydrocarbon receptor. Biochem. Pharmacol., 2018, 154, 18-27.
[http://dx.doi.org/10.1016/j.bcp.2018.04.006] [PMID: 29656117]
[61]
Wang, H.; Franco, F.; Ho, P-C. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Trends Cancer, 2017, 3(8), 583-592.
[http://dx.doi.org/10.1016/j.trecan.2017.06.005] [PMID: 28780935]
[62]
Chaudhary, B.; Elkord, E. Regulatory t Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines (Basel), 2016, 4(3), 28.
[http://dx.doi.org/10.3390/vaccines4030028] [PMID: 27509527]
[63]
Wielandt, A.M.; Villarroel, C.; Hurtado, C.; Simian, D.; Zamorano, D.; Martínez, M.; Castro, M.; Vial, M.T.; Kronberg, U.; López-Kostner, F. [Characterization of patients with sporadic colorectal cancer following the new Consensus Molecular Subtypes (CMS)]. Rev. Med. Chil., 2017, 145(4), 419-430.
[http://dx.doi.org/10.4067/S0034-98872017000400001] [PMID: 28748988]
[64]
Ansell, S.M. Harnessing the power of the immune system in non-Hodgkin lymphoma: immunomodulators, checkpoint inhibitors, and beyond. Hematology (Am. Soc. Hematol. Educ. Program), 2017, 2017(1), 618-621.
[http://dx.doi.org/10.1182/asheducation-2017.1.618] [PMID: 29222312]
[65]
Kageyama, Y.; Miwa, H.; Arakawa, R.; Tawara, I.; Ohishi, K.; Masuya, M.; Nakase, K.; Katayama, N. Expression of CD25 fluctuates in the leukemia-initiating cell population of CD25-positive AML. PLoS One, 2018, 13(12) e0209295
[http://dx.doi.org/10.1371/journal.pone.0209295] [PMID: 30550585]
[66]
Gedaly, R.; De Stefano, F.; Turcios, L.; Hill, M.; Hidalgo, G.; Mitov, M.I.; Alstott, M.C.; Butterfield, D.A.; Mitchell, H.C.; Hart, J.; Al-Attar, A.; Jennings, C.D.; Marti, F. mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation, 2019, 103(4), 705-715.
[http://dx.doi.org/10.1097/TP.0000000000002495] [PMID: 30451741]
[67]
Guo, Z.; Wang, A.; Zhang, W.; Levit, M.; Gao, Q.; Barberis, C.; Tabart, M.; Zhang, J.; Hoffmann, D.; Wiederschain, D.; Rocnik, J.; Sun, F.; Murtie, J.; Lengauer, C.; Gross, S.; Zhang, B.; Cheng, H.; Patel, V.; Schio, L.; Adrian, F.; Dorsch, M.; Garcia-Echeverria, C.; Huang, S.M. PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood, 2014, 124(11), 1777-1789.
[http://dx.doi.org/10.1182/blood-2014-01-551234] [PMID: 25006129]
[68]
Cerny, J.; Yu, H.; Ramanathan, M.; Raffel, G.D.; Walsh, W.V.; Fortier, N.; Shanahan, L.; O’Rourke, E.; Bednarik, J.; Barton, B. Expression of CD25 independently predicts early treatment failure of acute myeloid leukaemia (AML). Br. J. Haematol., 2013, 160(2), 262-266.
[http://dx.doi.org/10.1111/bjh.12109] [PMID: 23116454]
[69]
Du, W.; He, J.; Zhou, W.; Shu, S.; Li, J.; Liu, W.; Deng, Y.; Lu, C.; Lin, S.; Ma, Y.; He, Y.; Zheng, J.; Zhu, J.; Bai, L.; Li, X.; Yao, J.; Hu, D.; Gu, S.; Li, H.; Guo, A.; Huang, S.; Feng, X.; Hu, D. High IL2RA mRNA expression is an independent adverse prognostic biomarker in core binding factor and intermediate-risk acute myeloid leukemia. J. Transl. Med., 2019, 17(1), 191.
[http://dx.doi.org/10.1186/s12967-019-1926-z] [PMID: 31171000]
[70]
Yabushita, T.; Satake, H.; Maruoka, H.; Morita, M.; Katoh, D.; Shimomura, Y.; Yoshioka, S.; Morimoto, T.; Ishikawa, T. Expression of multiple leukemic stem cell markers is associated with poor prognosis in de novo acute myeloid leukemia. Leuk. Lymphoma, 2018, 59(9), 2144-2151.
[http://dx.doi.org/10.1080/10428194.2017.1410888] [PMID: 29251166]
[71]
Arandi, N.; Ramzi, M.; Safaei, F.; Monabati, A. Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype. Blood Res., 2018, 53(4), 294-298.
[http://dx.doi.org/10.5045/br.2018.53.4.294] [PMID: 30588466]
[72]
Li, J.; Meinhardt, A.; Roehrich, M-E.; Golshayan, D.; Dudler, J.; Pagnotta, M.; Trucco, M.; Vassalli, G. Indoleamine 2,3-dioxygenase gene transfer prolongs cardiac allograft survival. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(6), H3415-H3423.
[http://dx.doi.org/10.1152/ajpheart.00532.2007] [PMID: 17933973]
[73]
Zhang, Y.; Zhang, G.; Liu, Y.; Chen, R.; Zhao, D.; McAlister, V.; Mele, T.; Liu, K.; Zheng, X. GDF15 Regulates Malat-1 Circular RNA and Inactivates NFκB Signaling Leading to Immune Tolerogenic DCs for Preventing Alloimmune Rejection in Heart Transplantation. Front. Immunol., 2018, 9, 2407.
[http://dx.doi.org/10.3389/fimmu.2018.02407] [PMID: 30425709]
[74]
Jabbarzadeh Kaboli, P.; Leong, M.P-Y.; Ismail, P.; Ling, KH. Antitumor effects of berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 breast cancer cells using molecular modelling and in vitro study. Pharmacol. Rep., 2019, 71(1), 13-23.
[http://dx.doi.org/10.1016/j.pharep.2018.07.005] [PMID: 30343043]
[75]
Verma, P.; Verma, R.; Nair, R.R.; Budhwar, S.; Khanna, A.; Agrawal, N.R.; Sinha, R.; Birendra, R.; Rajender, S.; Singh, K. Altered crosstalk of estradiol and progesterone with Myeloid-derived suppressor cells and Th1/Th2 cytokines in early miscarriage is associated with early breakdown of maternal-fetal tolerance. Am. J. Reprod. Immunol., 2019, 81(2) e13081
[http://dx.doi.org/10.1111/aji.13081] [PMID: 30589483]
[76]
Soliman, H.H.; Jackson, E.; Neuger, T.; Dees, E.C.; Harvey, R.D.; Han, H.; Ismail-Khan, R.; Minton, S.; Vahanian, N.N.; Link, C.; Sullivan, D.M.; Antonia, S. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget, 2014, 5(18), 8136-8146.
[http://dx.doi.org/10.18632/oncotarget.2357] [PMID: 25327557]
[77]
Park, J-H.; Ko, J.S.; Shin, Y.; Cho, J.Y.; Oh, H.A.; Bothwell, A.L.M.; Lee, S-K. Intranuclear interactomic inhibition of FoxP3 suppresses functions of Treg cells. Biochem. Biophys. Res. Commun., 2014, 451(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.141] [PMID: 25044110]
[78]
Fan, K.; Yang, C.; Fan, Z.; Huang, Q.; Zhang, Y.; Cheng, H.; Jin, K.; Lu, Y.; Wang, Z.; Luo, G.; Yu, X.; Liu, C. MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer. Cancer Lett., 2018, 418, 167-175.
[http://dx.doi.org/10.1016/j.canlet.2018.01.017] [PMID: 29337110]
[79]
Wakamatsu, E.; Omori, H.; Kawano, A.; Ogawa, S.; Abe, R. Strong TCR stimulation promotes the stabilization of Foxp3 expression in regulatory T cells induced in vitro through increasing the demethylation of Foxp3 CNS2. Biochem. Biophys. Res. Commun., 2018, 503(4), 2597-2602.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.021] [PMID: 30007439]
[80]
Kim, M.S.; Lee, A.; Cho, D.; Kim, T.S. AIMP1 regulates TCR signaling and induces differentiation of regulatory T cells by interfering with lipid raft association. Biochem. Biophys. Res. Commun., 2019, 514(3), 875-880.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.040] [PMID: 31084930]
[81]
Chellappa, S.; Kushekhar, K.; Munthe, L.A.; Tjønnfjord, G.E.; Aandahl, E.M.; Okkenhaug, K.; Taskén, K. The PI3K p110δ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. J. Immunol., 2019, 202(5), 1397-1405.
[http://dx.doi.org/10.4049/jimmunol.1701703] [PMID: 30692213]
[82]
Han, Y.; Dong, Y.; Yang, Q.; Xu, W.; Jiang, S.; Yu, Z.; Yu, K.; Zhang, S. Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells. Front. Immunol., 2018, 9, 2227.
[http://dx.doi.org/10.3389/fimmu.2018.02227] [PMID: 30319662]
[83]
Szczepanski, M. J.; Szajnik, M.; Czystowska, M.; Mandapathil, M.; Strauss, L.; Welsh, A.; Foon, K. A.; Whiteside, T. L.; Boyiadzis, M. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin. Canc. Res., 2009, 15(10), 3325-3332.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3010] [PMID: 19417016]
[84]
Edwards, D.K. V; Watanabe-Smith, K.; Rofelty, A.; Damnernsawad, A.; Laderas, T.; Lamble, A.; Lind, E.F.; Kaempf, A.; Mori, M.; Rosenberg, M.; d’Almeida, A.; Long, N.; Agarwal, A.; Sweeney, D.T.; Loriaux, M.; McWeeney, S.K.; Tyner, J.W. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 2019, 133(6), 588-599.
[http://dx.doi.org/10.1182/blood-2018-03-838946] [PMID: 30425048]
[85]
Gyori, D.; Lim, E.L.; Grant, F.M.; Spensberger, D.; Roychoudhuri, R.; Shuttleworth, S.J.; Okkenhaug, K.; Stephens, L.R.; Hawkins, P.T. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight, 2018, 3(11) e120631
[http://dx.doi.org/10.1172/jci.insight.120631] [PMID: 29875321]
[86]
Sander, F.E.; Nilsson, M.; Rydström, A.; Aurelius, J.; Riise, R.E.; Movitz, C.; Bernson, E.; Kiffin, R.; Ståhlberg, A.; Brune, M.; Foà, R.; Hellstrand, K.; Thorén, F.B.; Martner, A. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol. Immunother., 2017, 66(11), 1473-1484.
[http://dx.doi.org/10.1007/s00262-017-2040-9] [PMID: 28721449]
[87]
Ingram, W.; Kordasti, S.; Chan, L.; Barber, L.D.; Tye, G.J.; Hardwick, N.; Mufti, G.J.; Farzaneh, F. Human CD80/IL2 lentivirus transduced acute myeloid leukaemia cells enhance cytolytic activity in vitro in spite of an increase in regulatory CD4+ T cells in a subset of cultures. Cancer Immunol. Immunother., 2009, 58(10), 1679-1690.
[http://dx.doi.org/10.1007/s00262-009-0679-6] [PMID: 19283381]
[88]
Ge, W.; Ma, X.; Li, X.; Wang, Y.; Li, C.; Meng, H.; Liu, X.; Yu, Z.; You, S.; Qiu, L. B7-H1 up-regulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells. Leuk. Res., 2009, 33(7), 948-957.
[http://dx.doi.org/10.1016/j.leukres.2009.01.007] [PMID: 19233469]
[89]
Curti, A.; Pandolfi, S.; Valzasina, B.; Aluigi, M.; Isidori, A.; Ferri, E.; Salvestrini, V.; Bonanno, G.; Rutella, S.; Durelli, I.; Horenstein, A.L.; Fiore, F.; Massaia, M.; Colombo, M.P.; Baccarani, M.; Lemoli, R.M. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood, 2007, 109(7), 2871-2877.
[http://dx.doi.org/10.1182/blood-2006-07-036863] [PMID: 17164341]
[90]
De Velasco, G.; Je, Y.; Bossé, D.; Awad, M.M.; Ott, P.A.; Moreira, R.B.; Schutz, F.; Bellmunt, J.; Sonpavde, G.P.; Hodi, F.S.; Choueiri, T.K. Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients. Cancer Immunol. Res., 2017, 5(4), 312-318.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0237] [PMID: 28246107]
[91]
Du, X.; Liu, M.; Su, J.; Zhang, P.; Tang, F.; Ye, P.; Devenport, M.; Wang, X.; Zhang, Y.; Liu, Y.; Zheng, P. Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res., 2018, 28(4), 433-447.
[http://dx.doi.org/10.1038/s41422-018-0012-z] [PMID: 29463898]
[92]
Gambichler, T.; Schröter, U.; Höxtermann, S.; Susok, L.; Stockfleth, E.; Becker, J.C. A Brief Communication on Circulating PD-1-positive T-Regulatory Lymphocytes in Melanoma Patients Undergoing Adjuvant Immunotherapy With Nivolumab. J. Immunother., 2019, 42(7), 265-268.
[http://dx.doi.org/10.1097/CJI.0000000000000277] [PMID: 31145230]
[93]
Zappasodi, R.; Sirard, C.; Li, Y.; Budhu, S.; Abu-Akeel, M.; Liu, C.; Yang, X.; Zhong, H.; Newman, W.; Qi, J.; Wong, P.; Schaer, D.; Koon, H.; Velcheti, V.; Hellmann, M.D.; Postow, M.A.; Callahan, M.K.; Wolchok, J.D.; Merghoub, T. Rational design of anti-GITR-based combination immunotherapy. Nat. Med., 2019, 25(5), 759-766.
[http://dx.doi.org/10.1038/s41591-019-0420-8] [PMID: 31036879]
[94]
Wang, D.Y.; Salem, J-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; Rathmell, W.K.; Ancell, K.K.; Balko, J.M.; Bowman, C.; Davis, E.J.; Chism, D.D.; Horn, L.; Long, G.V.; Carlino, M.S.; Lebrun-Vignes, B.; Eroglu, Z.; Hassel, J.C.; Menzies, A.M.; Sosman, J.A.; Sullivan, R.J.; Moslehi, J.J.; Johnson, D.B. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol., 2018, 4(12), 1721-1728.
[http://dx.doi.org/10.1001/jamaoncol.2018.3923] [PMID: 30242316]
[95]
Anquetil, C.; Salem, J-E.; Lebrun-Vignes, B.; Johnson, D.B.; Mammen, A.L.; Stenzel, W.; Léonard-Louis, S.; Benveniste, O.; Moslehi, J.J.; Allenbach, Y. Immune Checkpoint Inhibitor-Associated Myositis: expanding the spectrum of cardiac complications of the immunotherapy revolution. Circulation, 2018, 138(7), 743-745.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035898] [PMID: 30359135]
[96]
Reynolds, K.L.; Guidon, A.C. Diagnosis and Management of Immune Checkpoint Inhibitor-Associated Neurologic Toxicity: Illustrative Case and Review of the Literature. Oncologist, 2019, 24(4), 435-443.
[http://dx.doi.org/10.1634/theoncologist.2018-0359] [PMID: 30482825]
[97]
Wright, J.J.; Salem, J-E.; Johnson, D.B.; Lebrun-Vignes, B.; Stamatouli, A.; Thomas, J.W.; Herold, K.C.; Moslehi, J.; Powers, A.C. Increased Reporting of Immune Checkpoint Inhibitor-Associated Diabetes. Diabetes Care, 2018, 41(12), e150-e151.
[http://dx.doi.org/10.2337/dc18-1465] [PMID: 30305348]
[98]
Berkowitz, J.L.; Janik, J.E.; Stewart, D.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Shih, J.H.; Fleisher, T.A.; Turner, M.; Urquhart, N.E.; Wharfe, G.H.; Figg, W.D.; Peer, C.J.; Goldman, C.K.; Waldmann, T.A.; Morris, J.C. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin. Immunol., 2014, 155(2), 176-187.
[http://dx.doi.org/10.1016/j.clim.2014.09.012] [PMID: 25267440]
[99]
Onda, M.; Kobayashi, K.; Pastan, I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc. Natl. Acad. Sci. USA, 2019, 116(10), 4575-4582.
[http://dx.doi.org/10.1073/pnas.1820388116] [PMID: 30760587]
[100]
Pu, N.; Zhao, G.; Yin, H.; Li, J-A.; Nuerxiati, A.; Wang, D.; Xu, X.; Kuang, T.; Jin, D.; Lou, W.; Wu, W. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J. Transl. Med., 2018, 16(1), 294.
[http://dx.doi.org/10.1186/s12967-018-1673-6] [PMID: 30359281]
[101]
Pu, N.; Zhao, G.; Gao, S.; Cui, Y.; Xu, Y.; Lv, Y.; Nuerxiati, A.; Wu, W. Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent. Eur. J. Immunol., 2018, 43(2), 123-131.
[http://dx.doi.org/10.5114/ceji.2018.77381] [PMID: 30135623]
[102]
Liu, G-F.; Li, G-J.; Zhao, H. Efficacy and Toxicity of Different Chemotherapy Regimens in the Treatment of Advanced or Metastatic Pancreatic Cancer: A Network Meta-Analysis. J. Cell. Biochem., 2018, 119(1), 511-523.
[http://dx.doi.org/10.1002/jcb.26210] [PMID: 28608558]
[103]
Kobayashi, S.; Ueno, M.; Hara, H.; Irie, K.; Goda, Y.; Moriya, S.; Tezuka, S.; Tanaka, M.; Okusaka, T.; Ohkawa, S.; Morimoto, M. Unexpected Side Effects of a High S-1 Dose: Subanalysis of a Phase III Trial Comparing Gemcitabine, S-1 and Combinatorial Treatments for Advanced Pancreatic Cancer. Oncology, 2016, 91(3), 117-126.
[http://dx.doi.org/10.1159/000446989] [PMID: 27303788]
[104]
Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J-E. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol. Ther., 2018, 189, 89-103.
[http://dx.doi.org/10.1016/j.pharmthera.2018.04.009] [PMID: 29698683]
[105]
Maleki Vareki, S.; Chen, D.; Di Cresce, C.; Ferguson, P.J.; Figueredo, R.; Pampillo, M.; Rytelewski, M.; Vincent, M.; Min, W.; Zheng, X.; Koropatnick, J. IDO Downregulation Induces Sensitivity to Pemetrexed, Gemcitabine, FK866, and Methoxyamine in Human Cancer Cells. PLoS One, 2015, 10(11) e0143435
[http://dx.doi.org/10.1371/journal.pone.0143435] [PMID: 26579709]
[106]
Dill, E.A.; Dillon, P.M.; Bullock, T.N.; Mills, A.M. IDO expression in breast cancer: an assessment of 281 primary and metastatic cases with comparison to PD-L1. Mod. Pathol., 2018, 31(10), 1513-1522.
[http://dx.doi.org/10.1038/s41379-018-0061-3] [PMID: 29802358]
[107]
Vermeersch, E.; Liénart, S.; Collignon, A.; Lucas, S.; Gallimore, A.; Gysemans, C.; Unutmaz, D.; Vanhoorelbeke, K.; De Meyer, S.F.; Maes, W.; Deckmyn, H. Deletion of GARP on mouse regulatory T cells is not sufficient to inhibit the growth of transplanted tumors. Cell. Immunol., 2018, 332, 129-133.
[http://dx.doi.org/10.1016/j.cellimm.2018.07.011] [PMID: 30093071]
[108]
Jin, H.; Zhang, J.; Shen, K.; Hao, J.; Feng, Y.; Yuan, C.; Zhu, Y.; Ma, X. Efficacy and safety of perioperative appliance of sunitinib in patients with metastatic or advanced renal cell carcinoma: A systematic review and meta-analysis. Medicine (Baltimore), 2019, 98(20) e15424
[http://dx.doi.org/10.1097/MD.0000000000015424] [PMID: 31096438]
[109]
Sandhu, H.; Cooper, S.; Hussain, A.; Mee, C.; Maddock, H. Attenuation of Sunitinib-induced cardiotoxicity through the A3 adenosine receptor activation. Eur. J. Pharmacol., 2017, 814, 95-105.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.011] [PMID: 28811127]
[110]
Šeparović, R.; Pavlović, M.; Silovski, T.; Silovski, H.; Tečić Vuger, A. Uncommon Side Effects of Sunitinib Therapy in a Patient with Metastatic Renal Cell Cancer: Case Report. Acta Clin. Croat., 2018, 57(3), 577-580.
[PMID: 31168192]
[111]
Zhao, B.; Zhao, H.; Zhao, J. Risk of fatal adverse events in cancer patients treated with sunitinib. Crit. Rev. Oncol. Hematol., 2019, 137, 115-122.
[http://dx.doi.org/10.1016/j.critrevonc.2019.03.007] [PMID: 31014507]
[112]
Gibney, G. T.; Kudchadkar, R. R.; DeConti, R. C.; Thebeau, M. S.; Czupryn, M. P.; Tetteh, L.; Eysmans, C.; Richards, A.; Schell, M. J.; Fisher, K. J. Safety, correlative markers, and clinical results of adjuvant nivolumab in combinationwith vaccine in resected high-risk metastatic melanoma. Clin. Canc. Res., 2015, 21(4), 712-720.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2468] [PMID: 25524312]
[113]
Rooney, C.M. Can Treg elimination enhance NK cell therapy for AML? Blood, 2014, 123(25), 3848-3849.
[http://dx.doi.org/10.1182/blood-2014-05-570291] [PMID: 24948620]
[114]
Wang, M.; Zhang, C.; Tian, T.; Zhang, T.; Wang, R.; Han, F.; Zhong, C.; Hua, M.; Ma, D. Increased Regulatory T Cells in Peripheral Blood of Acute Myeloid Leukemia Patients Rely on Tumor Necrosis Factor (TNF)-α-TNF Receptor-2 Pathway. Front. Immunol., 2018, 9, 1274.
[http://dx.doi.org/10.3389/fimmu.2018.01274] [PMID: 29922294]
[115]
Xue, T.; Liu, P.; Zhou, Y.; Liu, K.; Yang, L.; Moritz, R.L.; Yan, W.; Xu, L.X. Interleukin-6 Induced “Acute” Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics. Theranostics, 2016, 6(6), 773-794.
[http://dx.doi.org/10.7150/thno.14394] [PMID: 27162549]
[116]
Lissoni, P. Therapy implications of the role of interleukin-2 in cancer. Expert Rev. Clin. Immunol., 2017, 13(5), 491-498.
[http://dx.doi.org/10.1080/1744666X.2017.1245146] [PMID: 27782752]
[117]
Li, Strick-Marchand, H.; Lim , A. I.; Ren, J Masse-Ranson, G.; Li, D.; Jouvion, G.; Rogge, L.; Lucas, S.; Li, B.; Jouvion, G.; Rogge, L.; Lucas, S.; Li, B.; Santo, J.P.D. Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nature, 1762, 8(1), 1762.
[http://dx.doi.org/10.1038/s41467-017-01570-9] [PMID: 29176694]
[118]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[119]
Ramachandran, M.; Dimberg, A.; Essand, M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin. Cancer Biol., 2017, 45, 23-35.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.010] [PMID: 28257957]
[120]
Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell, 2018, 175(2), 313-326.
[http://dx.doi.org/10.1016/j.cell.2018.09.035] [PMID: 30290139]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy