Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Calcium Pattern Assessment in Patients with Severe Aortic Stenosis Via the Chou’s 5-Steps Rule

Author(s): Agata Wiktorowicz, Adrian Wit, Artur Dziewierz, Lukasz Rzeszutko, Dariusz Dudek and Pawel Kleczynski*

Volume 25, Issue 35, 2019

Page: [3769 - 3775] Pages: 7

DOI: 10.2174/1381612825666190930101258

Price: $65

Abstract

Background: Progression of aortic valve calcifications (AVC) leads to aortic valve stenosis (AS). Importantly, the AVC degree has a great impact on AS progression, treatment selection and outcomes. Methods of AVC assessment do not provide accurate quantitative evaluation and analysis of calcium distribution and deposition in a repetitive manner.

Objective: We aim to prepare a reliable tool for detailed AVC pattern analysis with quantitative parameters.

Methods: We analyzed computed tomography (CT) scans of fifty patients with severe AS using a dedicated software based on MATLAB version R2017a (MathWorks, Natick, MA, USA) and ImageJ version 1.51 (NIH, USA) with the BoneJ plugin version 1.4.2 with a self-developed algorithm.

Results: We listed unique parameters describing AVC and prepared 3D AVC models with color pointed calcium layer thickness in the stenotic aortic valve. These parameters were derived from CT-images in a semi-automated and repeatable manner. They were divided into morphometric, topological and textural parameters and may yield crucial information about the anatomy of the stenotic aortic valve.

Conclusion: In our study, we were able to obtain and define quantitative parameters for calcium assessment of the degenerated aortic valves. Whether the defined parameters are able to predict potential long-term outcomes after treatment, requires further investigation.

Keywords: Aortic stenosis, calcifications, computer modelling, computed tomography, quantification, calcium distribution.

[1]
Lindman BR, Clavel MA, Mathieu P, et al. Calcific aortic stenosis. Nat Rev Dis Primers 2016; 2: 16006.
[http://dx.doi.org/10.1038/nrdp.2016.6] [PMID: 27188578]
[2]
Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Rev Esp Cardiol 2018; 71(2): 110.
[http://dx.doi.org/10.1093/eurheartj/ehx391] [PMID: 29425605]
[3]
Shabestari AA, Coronary ACSA. Review. Iran Red Crescent Med J 2013; 15(12)e16616
[http://dx.doi.org/10.5812/ircmj.16616]
[4]
Gillis K, Bala G, Roosens B, et al. Clinical validation of an ultrasound quantification score for aortic valve calcifications. Int J Cardiol 2018; 252: 68-71.
[http://dx.doi.org/10.1016/j.ijcard.2017.07.020] [PMID: 29249440]
[5]
Ryś M, Hryniewiecki T, Michałowska I, et al. Quantitative estimation of aortic valve calcification in multislice computed tomography in predicting the development of paravalvular leaks following transcatheter aortic valve replacement. Adv Interv Cardiol 2018; 14(51): 85-9.
[http://dx.doi.org/10.5114/aic.2018.74359] [PMID: 29743908]
[6]
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8): 500-10.
[http://dx.doi.org/10.1038/s41568-018-0016-5] [PMID: 29777175]
[7]
deSouza NM, Achten E, Alberich-Bayarri A, et al. Validated imaging biomarkers as decision-making tools in clinical trials and routine practice: current status and recommendations from the EIBALL* subcommittee of the European Society of Radiology (ESR). Insights Imaging 2019; 10(1): 87.
[http://dx.doi.org/10.1186/s13244-019-0764-0] [PMID: 31468205]
[8]
Smaïl-Tabbone M, Rance B. Contributions from the 2018 Literature on Bioinformatics and Translational Informatics. Yearb Med Inform 2019; 28(1): 190-3.
[http://dx.doi.org/10.1055/s-0039-1677945] [PMID: 31419831]
[9]
Soualmia LF, Lecroq T. Bioinformatics methods and tools to advance clinical care. Findings from the yearbook 2015 Section on bioinformatics and translational informatics. Yearb Med Inform 2015; 10(1): 170-3.
[http://dx.doi.org/10.15265/IY-2015-026] [PMID: 26293864]
[10]
Kasprzak JD, Pawlowski J, Peruga JZ, Kaminski J, Lipiec P. First-in-man experience with real-time holographic mixed reality display of three-dimensional echocardiography during structural intervention: balloon mitral commissurotomy. Eur Heart J 2019.pii: ehz127
[http://dx.doi.org/10.1093/eurheartj/ehz127] [PMID: 30977787]
[11]
Paul MA, Opyrchał J, Witowski J, Ibrahim AMS, Knakiewicz M, Jaremków P. The Use of a Three-dimensional Printed Model for Surgical Excision of a Vascular Lesion in the Head and Neck. J Craniofac Surg 2019.
[http://dx.doi.org/10.1097/SCS.0000000000005541] [PMID: 31188247]
[12]
Skalski A, Jakubowski J, Drewniak T. LEFMIS: locally-oriented evaluation framework for medical image segmentation algorithms. Phys Med Biol 2018; 63(16)165016
[http://dx.doi.org/10.1088/1361-6560/aad316] [PMID: 29999495]
[13]
Wodzinski M, Skalski A, Ciepiela I, Kuszewski T, Kedzierawski P, Gajda J. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms. Phys Med Biol 2018; 63(3)035024
[http://dx.doi.org/10.1088/1361-6560/aaa4b1] [PMID: 29293469]
[14]
Le NQK, Yapp EKY, Ou YY, Yeh HY. iMotor-CNN: identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou’s 5-step rule. Anal Biochem 2019; 575: 17-26.
[http://dx.doi.org/10.1016/j.ab.2019.03.017] [PMID: 30930199]
[15]
Ning Q, Ma Z, Zhao X. dForml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via chou’s 5-step rule and pseudo components. J Theor Biol 2019; 470: 43-9.
[http://dx.doi.org/10.1016/j.jtbi.2019.03.011] [PMID: 30880183]
[16]
Le NQK. iN6-methylat (5-step): identifying DNA N6-methyladenine sites in rice genome using continuous bag of nucleobases via Chou’s 5-step rule. Mol Genet Genomics 2019; 294(5): 1173-82.
[http://dx.doi.org/10.1007/s00438-019-01570-y] [PMID: 31055655]
[17]
Hussain W, Khan YD, Rasool N, Khan SA, Chou KC. SPrenylC-PseAAC: a sequence-based model developed via chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J Theor Biol 2019; 468: 1-11.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.007] [PMID: 30768975]
[18]
Kabir M, Ahmad S, Iqbal M, Hayat M. iNR-2L: a two-level sequence-based predictor developed via chou’s 5-steps rule and general PseAAC for identifying nuclear receptors and their families. Genomics 2019; pii: S0888-7543(18): 30694-3.
[http://dx.doi.org/10.1016/j.ygeno.2019.02.006] [PMID: 30779939]
[19]
Awais M, Hussain W, Khan YD, Rasool N, Khan SA, Chou KC. iPhosH-PseAAC: identify phosphohistidine sites in proteins by blending statistical moments and position relative features according to the chou's 5-step rule and general pseudo amino acid composition. IEEE/ACM Trans Comput Biol Bioinform 2019.
[20]
Zhan X, Chen M, Lu W. Accelerated search for perovskite materials with higher Curie temperature based on the machine learning methods. Comput Mater Sci 2018; 151: 41-8.
[http://dx.doi.org/10.1016/j.commatsci.2018.04.031]
[21]
Wiktorowicz A, Wit A, Dziewierz A, Rzeszutko L, Dudek D, Kleczynski P. A novel approach to quantification of aortic valve calcifications in patients undergoing transcatheter aortic valve implantation. Minerva Cardioangiol 2019; 67(1): 3-10.
[http://dx.doi.org/10.23736/S0026-4725.18.04793-X] [PMID: 30226030]
[22]
Doube M, Kłosowski MM, Arganda-Carreras I, et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 2010; 47(6): 1076-9.
[http://dx.doi.org/10.1016/j.bone.2010.08.023] [PMID: 20817052]
[23]
Joseph J, Naqvi SY, Giri J, Goldberg S. Aortic Stenosis: Pathophysiology, Diagnosis, and therapy. Am J Med 2017; 130(3): 253-63.
[http://dx.doi.org/10.1016/j.amjmed.2016.10.005] [PMID: 27810479]
[24]
Figulla HR, Franz M, Lauten A. The history of transcatheter aortic valve implantation (TAVI)-A personal view over 25 years of development. Cardiovasc Revasc Med 2019; S1553- 8389(19): 30323-9.
[http://dx.doi.org/10.1016/j.carrev.2019.05.024] [PMID: 31383557]
[25]
Ueno G, Ohno N. Aortic valve approaches in the era of minimally invasive cardiac surgery. Surg Today 2019.
[http://dx.doi.org/10.1007/s00595-019-01848-z] [PMID: 31342159]
[26]
Ewe SH, Ng AC, Schuijf JD, et al. Location and severity of aortic valve calcium and implications for aortic regurgitation after transcatheter aortic valve implantation. Am J Cardiol 2011; 108(10): 1470-7.
[http://dx.doi.org/10.1016/j.amjcard.2011.07.007] [PMID: 21855831]
[27]
Koh EY, Lam KY, Bindraban NR, et al. Aortic valve calcification as a predictor of location and severity of paravalvular regurgitation after transcatheter aortic valve implantation. Interact Cardiovasc Thorac Surg 2015; 20(3): 345-50.
[http://dx.doi.org/10.1093/icvts/ivu413] [PMID: 25487234]
[28]
Corciu AI, Siciliano V, Poggianti E, Petersen C, Venneri L, Picano E. Cardiac calcification by transthoracic echocardiography in patients with known or suspected coronary artery disease. Int J Cardiol 2010; 142(3): 288-95.
[http://dx.doi.org/10.1016/j.ijcard.2009.01.021] [PMID: 19195722]
[29]
Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15(4): 827-32.
[http://dx.doi.org/10.1016/0735-1097(90)90282-T] [PMID: 2407762]
[30]
Kumar V, Min JK, He X, Raman SV. Computation of calcium score with dual-energy computed tomography: a phantom study. J Comput Assist Tomogr 2017; 41(1): 156-8.
[http://dx.doi.org/10.1097/RCT.0000000000000480] [PMID: 27680414]
[31]
Gaibazzi N, Baldari C, Faggiano P, et al. Cardiac calcium score on 2D echo: correlations with cardiac and coronary calcium at multi-detector computed tomography. Cardiovasc Ultrasound 2014; 12: 43.
[http://dx.doi.org/10.1186/1476-7120-12-43] [PMID: 25352208]
[32]
Chou KC, Jiang SP, Liu WM, Fee CH. Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci Sin 1979; 22: 341-58.
[33]
Chou KC, Forsén S. Graphical rules for enzyme-catalysed rate laws. Biochem J 1980; 187(3): 829-35.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[34]
Chou KC, Forsen S, Zhou GQ. Three schematic rules for deriving apparent rate constants. Chem Scr 1980; 16: 109-13.
[35]
Chou KC, Carter RE, Forsen S. A new graphical method for deriving rate equations for complicated mechanisms. Chem Scr 1981; 18: 82-6.
[36]
Chou KC, Forsen S. Graphical rules of steady-state reaction systems. Can J Chem 1981; 59: 737-55.
[http://dx.doi.org/10.1139/v81-107]
[37]
Zhou GP, Deng MH. An extension of chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J 1984; 222(1): 169-76.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[38]
Chou KC. Graphic rules in steady and non-steady state enzyme kinetics. J Biol Chem 1989; 264(20): 12074-9.
[PMID: 2745429]
[39]
Althaus IW, Chou JJ, Gonzales AJ, et al. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J Biol Chem 1993; 268(9): 6119-24.
[PMID: 7681060]
[40]
Chou KC. Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys Chem 1990; 35(1): 1-24.
[http://dx.doi.org/10.1016/0301-4622(90)80056-D] [PMID: 2183882]
[41]
Lin WZ, Xiao X. Wenxiang: a web-server for drawing wenxiang diagrams. Nat Sci 2011; 3: 862-5.
[42]
Ju Z, Wang SY. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou’s 5-steps rule and general pseudo components. Genomics 2019; S0888-7543(19): 30219-8.
[http://dx.doi.org/10.1016/j.ygeno.2019.05.027] [PMID: 31175975]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy