Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

Synthesis, Cytotoxicity and Molecular Docking Simulation of Novel bis-1,4-Dihydropyridines Linked to Aliphatic or Arene Core via Amide or Ester-Amide Linkages

Author(s): Amna M. Abdella, Amr M. Abdelmoniem, Nada S. Ibrahim, Salwa M. El-Hallouty, Ismail A. Abdelhamid* and Ahmed H.M. Elwahy*

Volume 20, Issue 9, 2020

Page: [801 - 816] Pages: 16

DOI: 10.2174/1389557519666190919160019

Price: $65

Abstract

Objective: Novel bis(1,4-dihydropyridine-3,5-dicarbonitrile) derivatives linked to aliphatic or aromatic cores via amide or ester-amide linkages were prepared and their structures were confirmed by several spectral tools.

Methods: The synthesis of novel N,N'-(alkanediyl)bis(2-(2-(3,5-dicyano-2,6-dimethyl-1,4-dihydropyridin- 4-yl)phenoxy)acetamide) by acid-catalyzed condensation of the bis-aldehydes with four equivalents of 3-aminocrotononitrile was reported.

Results: The structures of the synthesized compounds were confirmed by different spectral tools. The molecular docking stimulation studies indicated that the prepared compounds bind to the active site of cellular inhibitor apoptotic protein (cIAP1-BIR3). MTT assay for the novel bis(1,4-dihydropyridines) was performed on two different human cell lines (A549 and HCT116).

Conclusion: Compound 5a showed higher cytotoxic activity against A549. Compound 5d showed moderate activity against HCT116. The rest of compounds indicated lower or no activity against both cell lines.

Keywords: 3-Aminocrotononitrile, bis(1, 4-dihydropyridine-3, 5-dicarbonitrile), amide linkage, ester-amide linkage, Hantzsch pyridine synthesis, molecular docking, MTT cytotoxicity assay.

« Previous
Graphical Abstract

[1]
Letelier, M.E.; Entrala, P.; López-Alarcón, C.; González-Lira, V.; Molina-Berríos, A.; Cortés-Troncoso, J.; Jara-Sandoval, J.; Santander, P.; Núñez-Vergara, L. Nitroaryl-1,4-dihydropyridines as antioxidants against rat liver microsomes oxidation induced by iron/ascorbate, nitrofurantoin and naphthalene. Toxicol. In Vitro, 2007, 21(8), 1610-1618.
[http://dx.doi.org/10.1016/j.tiv.2007.06.001] [PMID: 17669617]
[2]
Shamim, T.; Gupta, M.; Paul, S. J. Mol. Catal. Chem., 2009, 302, 15.
[http://dx.doi.org/10.1016/j.molcata.2008.11.024]
[3]
Swarnalatha, G.; Prasanthi, G. 1,4-Dihydropyridines: A multtifunctional molecule- a review. Int. J. Chemtech Res., 2011, 3, 75.
[4]
Sridhar, R.; Perumal, P.T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: synthesis of novel 4-(3-carboxyl-1H-pyrazol-4-yl)-1,4-dihydropyridines. Tetrahedron, 2005, 61, 2465-2470.
[http://dx.doi.org/10.1016/j.tet.2005.01.008]
[5]
Paul, S.; Sharma, S.; Gupta, M.; Choudhary, D.; Gupta, R. Bull. Korean Chem. Soc., 2007, 28, 336-338.
[http://dx.doi.org/10.5012/bkcs.2007.28.2.336]
[6]
Saikh, F.; De, R.; Ghosh, S. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by cupric bromide under mild heterogeneous condition. Tetrahedron Lett., 2014, 55, 6171-6174.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.025]
[7]
Zapata-Urzúa, C.; Pérez-Ortiz, M.; Acosta, G.A.; Mendoza, J.; Yedra, L.; Estradé, S.; Álvarez-Lueje, A.; Núñez-Vergara, L.J.; Albericio, F.; Lavilla, R.; Kogan, M.J. Hantzsch dihydropyridines: Privileged structures for the formation of well-defined gold nanostars. J. Colloid Interface Sci., 2015, 453, 260-269.
[http://dx.doi.org/10.1016/j.jcis.2015.04.050] [PMID: 25989057]
[8]
Sridharan, V.; Perumal, P.T.; Avendaño, C.; Menéndez, J.C. A new three-component domino synthesis of 1,4-dihydropyridines. Tetrahedron, 2007, 63, 4407-4413.
[http://dx.doi.org/10.1016/j.tet.2007.03.092]
[9]
Navidpour, L.; Shafaroodi, H.; Miri, R.; Dehpour, A.R.; Shafiee, A. Lipophilic 4-imidazoly-1,4-dihydropyridines: synthesis, calcium channel antagonist activity and protection against pentylenetetrazole-induced seizure. Farmaco, 2004, 59(4), 261-269.
[http://dx.doi.org/10.1016/j.farmac.2003.11.013] [PMID: 15081343]
[10]
Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett., 2009, 50, 5248-5250.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.018]
[11]
Filipan-Litvić, M.; Litvić, M.; Vinković, V. Tetrahedron, 2008, 64, 5649.
[http://dx.doi.org/10.1016/j.tet.2008.04.040]
[12]
Miri, R.; Javidnia, K.; Hemmateenejad, B.; Tabarzad, M.; Jafarpour, M. Synthesis, evaluation of pharmacological activities and quantitative structure-activity relationship studies of a novel group of bis(4-nitroaryl-1,4-dihyropyridine). Chem. Biol. Drug Des., 2009, 73(2), 225-235.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00770.x] [PMID: 19207425]
[13]
Abbas, H-A.S.; El Sayed, W.A.; Fathy, N.M. Synthesis and antitumor activity of new dihydropyridine thioglycosides and their corresponding dehydrogenated forms. Eur. J. Med. Chem., 2010, 45(3), 973-982.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.039] [PMID: 20004044]
[14]
Marco-Contelles, J.; León, R.; de Los Ríos, C.; Guglietta, A.; Terencio, J.; López, M.G.; García, A.G.; Villarroya, M. Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem., 2006, 49(26), 7607-7610.
[http://dx.doi.org/10.1021/jm061047j] [PMID: 17181144]
[15]
Safak, C.; Simsek, R. Fused 1,4-dihydropyridines as potential calcium modulatory compounds. Mini Rev. Med. Chem., 2006, 6, 747-755.
[16]
Murthy, Y.L.N.; Rajack, A.; Moturu, T.R.; Jeson babu, J.; Praveen, Ch.; Aruna Lakshmi, K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines. Bioorg. Med. Chem. Lett., 2012, 22(18), 6016-6023.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.003] [PMID: 22901391]
[17]
Samzadeh-Kermani, A.; Shafaroodi, H.; Miri, R.; Mirkhani, H.; Vosooghi, M.; Shafiee, A. Molecular modeling and protection against pentylenetetrazole-induced seizure of new 1,4-dihydropyridines containing 5(4)-imidazolyl substituent. Med. Chem. Res., 2008, 18, 112.
[http://dx.doi.org/10.1007/s00044-008-9112-5]
[18]
Huber, I.; Wappl, E.; Herzog, A. Conserved Ca2+-antagonistbinding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochemical Chem. J., 2000, 347, 829-236.
[http://dx.doi.org/10.1042/bj3470829]
[19]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[20]
Rampe, D.; Michael Kane, J. Activators of voltage‐dependent L‐type calcium channels. Drug Dev. Res., 1994, 33(3), 344.
[http://dx.doi.org/10.1002/ddr.430330313]
[21]
Loev, B.; Goodman, M.M.; Snader, M.K.; Tedeschi, R.; Macko, E. “Hantzsch-type” dihydropyridine hypotensive agents. 3. J. Med. Chem., 1974, 17(9), 956-965.
[http://dx.doi.org/10.1021/jm00255a010] [PMID: 4859592]
[22]
Bossert, F.; Meyer, H.; Wehinger, E. 4‐Aryldihydropyridines, a new class of highly active calcium Antagonists. Angew. Chem. Int. Ed. Engl., 1981, 20(9), 762.
[http://dx.doi.org/10.1002/anie.198107621]
[23]
Iijima, T.; Yanagisawa, T.; Taira, N. Increase in the slow inward current by intracellularly applied nifedipine and nicardipine in single ventricular cells of the guinea-pig heart. J. Mol. Cell. Cardiol., 1984, 16(12), 1173-1177.
[http://dx.doi.org/10.1016/S0022-2828(84)80043-7] [PMID: 6085351]
[24]
Bohlooli, S.; Mahmoudian, M.; Skellern, G.G.; Grant, M.H.; Tettey, J.N.A. Metabolism of the dihydropyridine calcium channel blockers mebudipine and dibudipine by isolated rat hepatocytes. J. Pharm. Pharmacol., 2004, 56(11), 1469-1475.
[http://dx.doi.org/10.1211/0022357044760] [PMID: 15525456]
[25]
Subramani, S.; Vijayanand, C.; Tharion, E. Differential effects of organic calcium-channel blockers on diastolic SR calcium-handling in the frog heart. Br. J. Pharmacol., 2002, 137(6), 756-760.
[http://dx.doi.org/10.1038/sj.bjp.0704921] [PMID: 12411405]
[26]
Reid, J.L.; Meredith, P.A.; Pasanisi, F. Clinical pharmacological aspects of calcium antagonists and their therapeutic role in hypertension. J. Cardiovasc. Pharmacol., 1985, 7(Suppl. 4), S18-S20.
[http://dx.doi.org/10.1097/00005344-198507004-00004] [PMID: 2412006]
[27]
Wallin, J.D.; Cook, M.E.; Blanski, L.; Bienvenu, G.S.; Clifton, G.G.; Langford, H.; Turlapaty, P.; Laddu, A. Intravenous nicardipine for the treatment of severe hypertension. Am. J. Med., 1988, 85(3), 331-338.
[http://dx.doi.org/10.1016/0002-9343(88)90582-7] [PMID: 3414728]
[28]
Boer, R.; Gekeler, V. Chemosensitizer in tumor therapy: new compounds promise better efficacy. Drugs Future, 1995, 20, 499-509.
[29]
Klusa, V. Drugs Future, 1995, 20.
[30]
Bretzel, R.G.; Bollen, C.C.; Maeser, E.; Federlin, K.F. Am. J. Kidney Dis., 1993, 21, S53.
[http://dx.doi.org/10.1016/0272-6386(93)70125-I]
[31]
Jiang, J.L.; van Rhee, A.M.; Melman, N.; Ji, X.D.; Jacobson, K.A. 6-phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J. Med. Chem., 1996, 39(23), 4667-4675.
[http://dx.doi.org/10.1021/jm960457c] [PMID: 8917655]
[32]
Tusell, J.M.; Barrón, S.; Serratosa, J. Anticonvulsant activity of delta-HCH, calcium channel blockers and calmodulin antagonists in seizures induced by lindane and other convulsant drugs. Brain Res., 1993, 622(1-2), 99-104.
[http://dx.doi.org/10.1016/0006-8993(93)90807-Y] [PMID: 7694769]
[33]
Donkor, I.O.; Zhou, X.; Schmidt, J.; Agrawal, K.C.; Kishore, V. Synthesis and radioprotective effects of adamantyl substituted 1,4-dihydropyridine derivatives. Bioorg. Med. Chem., 1998, 6(5), 563-568.
[http://dx.doi.org/10.1016/S0968-0896(98)00017-0] [PMID: 9629469]
[34]
Kruk, I.; Kladna, A.; Lichszteld, K.; Michalska, T.; Aboul-Enein, H.Y.; Tunçbilek, M.; Ertan, R. Antioxidant activity of 4-flavonil-1,4-dihydropyridine derivatives. Biopolymers, 2001, 62(3), 163-167.
[http://dx.doi.org/10.1002/bip.1010] [PMID: 11343286]
[35]
Kauder, W.F.; Watts, J.A. Antioxidant properties of dihydropyridines in isolated rat hearts. Biochem. Pharmacol., 1996, 51(6), 811-819.
[http://dx.doi.org/10.1016/0006-2952(95)02404-2] [PMID: 8602877]
[36]
Abdalla, A.; Tirzite, D.; Tirzitis, G.; Roozen, J. Antioxidant activity of 1,4-dihydropyridine derivatives in β-carotene-methyl linoleate, sunflower oil and emulsions. Food Chem., 1999, 66(2), 189.
[http://dx.doi.org/10.1016/S0308-8146(98)00265-9]
[37]
Díaz-Araya, G.; Godoy, L.; Naranjo, L.; Squella, A.; Letelier, M.E.; Núñez-Vergara, L.J. Antioxidant effects of 1,4-dihydropyridine and nitroso aryl derivatives on the Fe+3/ascorbate-stimulated lipid peroxidation in rat brain slices. Gen. Pharmacol.Vasc. Syst., 1998, 31, 385-391.
[http://dx.doi.org/10.1016/S0306-3623(98)00034-2]
[38]
Hassaneen, H.M.E.; Hassaneen, H.M.; Elnagdi, M.H. Enamines in heterocyclic synthesis: A route to 4-substituted pyrazoles and condensed pyrazoles. Z. Naturforsch. B, 2004, 59(10), 1132.
[http://dx.doi.org/10.1515/znb-2004-1009]
[39]
Ghozlan, S.A.S.; Abdelhamid, I.A.; Gaber, H.; Elnagdi, M.H. Studies with functionally substituted enamines: Synthesis of new aminoazolo-pyrimidines and -1,2,4-triazines. J. Chem. Res., 2004, 2004, 789.
[http://dx.doi.org/10.3184/0308234043431230]
[40]
Ghozlan, S.A.S.; Abdelhamid, I.A.; Hassaneen, H.M.; Elnagdi, M.H. Studies with enamines and azaenamines: A novel efficient route to 6‐amino‐1,4‐dihydropyridazines and their condensed derivatives. J. Heterocycl. Chem., 2007, 44, 105.
[http://dx.doi.org/10.1002/jhet.5570440118]
[41]
Riyadh, S.M.; Abdelhamid, I.A.; Al-Matar, H.M.; Hilmy, N.M.; Elnagdi, M.H. Enamines as precursors to polyfunctional heteroaromatic compounds; a decade of development. Heterocycles, 2008, 75(8), 1849-1905.
[http://dx.doi.org/10.3987/REV-07-625]
[42]
Ghozlan, S.A.S.; Ahmed, A.G.; Abdelhamid, I.A. Regioorientation in the addition reaction of α‐substituted cinnamonitrile to enamines utilizing chitosan as a green catalyst: Unambiguous structural characterization using 2D‐HMBC NMR spectroscopy. J. Heterocycl. Chem., 2016, 53, 817.
[http://dx.doi.org/10.1002/jhet.2341]
[43]
Menger, F.M.; Azov, V.A. Synthesis and properties of water-soluble asterisk molecules. J. Am. Chem. Soc., 2002, 124(37), 11159-11166.
[http://dx.doi.org/10.1021/ja0206238] [PMID: 12224964]
[44]
Gingras, M.; Pinchart, A.; Dallaire, C. Angew. Chem. Int. Ed., 1998, 37, 3149.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981204)37:22<3149:AID-ANIE3149>3.0.CO;2-4]
[45]
AL-Smadi.M., Mohammad, S. Synthesis, characterization, and reactions of selected multichalcone derivatives. J. Heterocycl. Chem., 2009, 46, 201.
[46]
Achelle, S.; Plé, N.; Kreher, D.; Attias, A-J.; Arfaoui, I.; Charra, F. Star-shaped ethynylpyrimidine with long alkoxyl side chains: synthesis, fluorescence and 2D self-assembling. Tetrahedron Lett., 2009, 50, 7055-7058.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.169]
[47]
Elwahy, A.H.M. A new approach for the design of novel hexa-host molecules. Tetrahedron Lett., 2001, 42, 5123-5126.
[http://dx.doi.org/10.1016/S0040-4039(01)00950-9]
[48]
van Manen, H-J.; Fokkens, R.H.; van Veggel, F.C.J.M.; Reinhoudt, D.N. Eur. J. Org. Chem., 2002, 2002, 3189.
[http://dx.doi.org/10.1002/1099-0690(200209)2002:18<3189:AID-EJOC3189>3.0.CO;2-8]
[49]
Al-Awadi, N.A.; Abdelhamid, I.A.; Al-Etaibi, A.M.; Elnagdi, M.H. Gas-Phase pyrolysis in organic synthesis: Rapid green synthesis of 4-quinolinones. Synlett, 2007, 2205-2208
[http://dx.doi.org/10.1055/s-2007-985573]
[50]
Abdelhamid, I.A.; Darwish, E.S.; Nasra, M.A.; Abdel-gallil, F.M.; Fleita, D.H. Efficient and eco-friendly synthesis of 2-amino-1,3-selenazoles in ionic liquid/water system at ambient conditions. ARKIVOC, 2008, 2008, 117-125.
[http://dx.doi.org/10.3998/ark.5550190.0009.c14]
[51]
Al-Awadi, N.A.; Ibrahim, M.R.; Abdelhamid, I.A.; Elnagdi, M.H. Arylhydrazonals as the aldehyde component in Baylis–Hillman reactions. Tetrahedron, 2008, 64, 8202-8205.
[http://dx.doi.org/10.1016/j.tet.2008.06.026]
[52]
Darwish, E.S.; Abdelhamid, I.A.; Nasra, M.A.; Abdel-Gallil, F.M.; Fleita, D.H. A One‐Pot Biginelli synthesis of 6‐unsubstituted 5‐aroylpyrimidin‐2(1H)‐ones and 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones. Helv. Chim. Acta, 2010, 93, 1204.
[http://dx.doi.org/10.1002/hlca.200900355]
[53]
Abdelhamid, I.A.; Ghozlan, S.A.S.; Kolshorn, H.; Meier, H.; Elnagdi, M.H. Studies using (E)-6-Oxo-1-aryl-4-(2-N-piperidinyl) vinyl-1,6-dihydropyridazine-5-carbonitrile. Heterocycles, 2007, 71, 2627-2637.
[http://dx.doi.org/10.3987/COM-07-11141]
[54]
Ghozlan, S.A.S.; Abdelhamid, I.A.; Elnagdi, M.H.; Gaber, H.M. J. Heterocycl. Chem., 2005, 42, 1185.
[http://dx.doi.org/10.1002/jhet.5570420623]
[55]
Ghozlan, S.A.S.; Ahmed, A.G.; Abdelhamid, I.A. Studies on enaminonitriles: A new synthesis of 1,3‐substituted pyrazole‐4‐carbonitrile. J. Heterocycl. Chem., 2016, 53, 817.
[http://dx.doi.org/10.1002/jhet.2341]
[56]
Abdelhamid, I.A.; Darwish, E.S.; Nasra, M.A.; Abdel-Gallil, F.M.; Fleita, D.H. Synthesis; Stuttg, 2010, p. 1107.
[57]
Ghozlan, S.A.S.; Ramadan, M.A.; Abdelmoniem, A.M.; Elwahy, A.H.M.; Abdelhamid, I.A. Bis(indoline-2,3-diones): versatile precursors for novel bis(spirooxindoles) incorporating 4H -chromene-3-carbonitrile and pyrano[2,3-d]pyrimidine-6-carbonitrile derivatives. Turk. J. Chem., 2017, 41, 410-419.
[http://dx.doi.org/10.3906/kim-1609-42]
[58]
Abdelmoniem, A.M.; Elwahy, A.H.M.; Abdelhamid, I.A. Synthesis of novel bis(nicotinecarbonitrile) derivatives. ARKIVOC, 2016, iii, 304.
[59]
Abd El-Fatah, N.A.; Darweesh, A.F.; Mohamed, A.A.; Abdelhamid, I.A.; Elwahy, A.H.M. Experimental and theoretical study on the regioselective bis- and polyalkylation of 2-mercaptonicotinonitrile and 2-mercaptopyrimidine-5-carbonitrile derivatives. Tetrahedron, 2017, 73, 1436-1450.
[http://dx.doi.org/10.1016/j.tet.2017.01.047]
[60]
Abdelhamid, I.A.; Darweesh, A.F.; Elwahy, A.H.M. Synthesis and characterization of poly(2,6-dimethyl-4-phenyl-1,4-dihydropyri-dinyl)-arenes as novel multi-armed molecules. Tetrahedron Lett., 2015, 56, 7085-7088.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.015]
[61]
Kassab, R.M.; Elwahy, A.H.M.; Abdelhamid, I.A. 1,ω-Bis(formylphenoxy)alkane: versatile precursors for novel bis-dihydropyridine derivatives. Monatsh. Chem., 2016, 147, 1227-1232.
[http://dx.doi.org/10.1007/s00706-015-1644-z]
[62]
Abdelmoniem, A.M.; Salaheldin, T.A.; Abdelhamid, I.A.; Elwahy, A.H.M. New Bis(dihydropyridine‐3,5‐dicarbonitrile) derivatives: Green synthesis and cytotoxic activity evaluation. J. Heterocycl. Chem., 2017, 54, 2670.
[http://dx.doi.org/10.1002/jhet.2867]
[63]
El-Fatah, N.A.A.; Darweesh, A.F.; Mohamed, A.A.; Abdelhamid, I.A.; Elwahy, A.H.M. Monatsh. Chem., 2017, 148, 2107-2122.
[http://dx.doi.org/10.1007/s00706-017-2040-7]
[64]
Mohamed, M.F.; Darweesh, A.F.; Elwahy, A.H.M.; Abdelhamid, I.A. Regioselective synthesis and theoretical studies of novel bis(tetrahydro[1,2,4]triazolo[5,1-b]quinazolin-8(4H)-ones) catalyzed by ZnO nanoparticles. RSC Advances, 2016, 6, 40900.
[65]
Sanad, S.M.H.; Kassab, R.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Microwave assisted multi-component synthesis of novel Bis(1,4-dihydropyridines) based arenes or heteroarenes. Heterocycles, 2016, 92, 910-924.
[http://dx.doi.org/10.3987/COM-16-13441]
[66]
Salama, S.K.; Darweesh, A.F.; Abdelhamid, I.A.; Elwahy, A.H.M. Microwave assisted green multicomponent synthesis of novel bis(2‐amino‐tetrahydro‐4H‐chromene‐3‐carbonitrile) derivatives using chitosan as eco‐friendly basic catalyst. J. Heterocycl. Chem., 2017, 54, 305.
[http://dx.doi.org/10.1002/jhet.2584]
[67]
Abdella, A.M.; Moatasim, Y.; Ali, M.A.; Elwahy, A.H.M.; Abdelhamid, I.A. Synthesis and anti‐influenza virus activity of novel bis(4H‐chromene‐3‐carbonitrile) derivatives. J. Heterocycl. Chem., 2017, 54, 1854.
[http://dx.doi.org/10.1002/jhet.2776]
[68]
Abdella, A.M.; Elwahy, A.H.M.; Abdelhamid, I.A. Multicomponent synthesis of novel bis(2-amino-tetrahydro-4H-chromene-3- carbonitrile) derivatives linked to arene or heteroarene cores. Curr. Org. Synth., 2016, 13, 601-610.
[http://dx.doi.org/10.2174/1570179413999151211115100]
[69]
Abdelmoniem, A.M.; Ghozlan, S.A.S.; Abdelmoniem, D.M.; Elwahy, A.H.M.; Abdelhamid, I.A. Facile one‐pot, three‐component synthesis of novel Bis‐heterocycles incorporating 5H‐chromeno[2,3‐b]pyridine‐3‐carbonitrile derivatives. J. Heterocycl. Chem., 2017, 54, 2844.
[http://dx.doi.org/10.1002/jhet.2890]
[70]
Elwahy, A.H.M.; Abbas, A.A.; Kassab, R.M. Synthesis of novel macrocyclic di‐ and tetralactams containing triazole subunits. Heteroatom Chem., 2003, 14, 551.
[http://dx.doi.org/10.1002/hc.10191]
[71]
Elwahy, A.H.M. Synthesis of New Benzo-substituted macrocyclic ligands containing quinoxaline subunits. Tetrahedron, 2000, 56, 897-901.
[http://dx.doi.org/10.1016/S0040-4020(99)01072-8]
[72]
Sayed, O.M.; Mekky, A.E.M.; Farag, A.M.; Elwahy, A.H.M. J. Sulfur Chem., 2014, 36, 124.
[http://dx.doi.org/10.1080/17415993.2014.975131]
[73]
Muathen, H.A.; Aloweiny, N.A.M.; Elwahy, A.H.M. Synthesis of novel amide‐crownophanes and Schiff base‐crownophanes based on p‐phenylene, 2,6‐naphthalene, and 9,10‐anthracene. J. Heterocycl. Chem., 2009, 46, 656.
[http://dx.doi.org/10.1002/jhet.129]
[74]
Abdella, A.M.; Mohamed, M.F.; Mohamed, A.F.; Elwahy, A.H.M.; Abdelhamid, I.A. Novel bis(dihydropyrano[3,2‐c]chromenes): synthesis, antiproliferative effect and molecular docking simulation. J. Heterocycl. Chem., 2018, 55, 498.
[http://dx.doi.org/10.1002/jhet.3072]
[75]
Abdella, A.M.; Elwahy, A.H.M. Abdelhamid., I.A. Curr. Org. Synth., 2016, 13, 601.
[76]
Yang, C.; Wang, H.; Zhang, B.; Chen, Y.; Zhang, Y.; Sun, X.; Xiao, G.; Nan, K.; Ren, H.; Qin, S. LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC. J. Exp. Clin. Cancer Res., 2016, 35(1), 158.
[http://dx.doi.org/10.1186/s13046-016-0435-7] [PMID: 27737687]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy