Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

General Research Article

Manufacturing of Submicrofluidic Channels Based on Near-field Electrospinning with PEO

Author(s): Jiarong Zhang, Han Wang, Zhifeng Wang, Honghui Yao*, Guojie Xu, Shengyong Yan, Jun Zeng, Xiangyou Zhu, Jiannan Deng, Shaomu Zhuo and Jinghua Zeng

Volume 12, Issue 3, 2020

Page: [243 - 246] Pages: 4

DOI: 10.2174/1876402911666190916112452

Abstract

Background: Microfluidic channels have been widely applied in biomedicine and microelectronics. However, the manufacturing methods of microfluidic channel devices, such as photolithography, three-dimensional printing and Melt-electrospinning direct writing (MEDW), have the problem of high cost and complex process, which still can't reach a sub-micron scale stably.

Method: To improve the resolution of microfluidic channels, we developed a simple and flexible method to fabricate polydimethylsiloxane (PDMS) submicrofluidic channels. It depends on the following steps: (1) Direct Writing Polyethylene oxide (PEO) nanofiber by Near-field Electrospinning (NFES). (2) Packaging the nanofiber with PDMS. (3) Obtaining the PDMS submicrofluidic channel by inverted mode of PEO nanofiber.

Results: According to the result of the experiment, nanofiber can be stably prepared under the following conditions, the electrode-to-collector distance of 3.0 mm, the voltage of 1.7 KV, the collector moving speed of 80mm/s and the mixed solutions of ethanol and deionized water (1:1). Finally, the PDMS submicrofluidic channel was manufactured by NFES and PDMS molding technique, and the diameter of the channel was 0.84±0.08 μm.

Conclusion: The result verified the rationality of that method. In addition, the method can be easily integrated with high resolution channels for various usages, such as microelectronics, micro electro mechanical systems, and biomedical.

Keywords: Submicrofluidic channels, NFES, direct writing, PEO nanofiber, PDMS, microelectronics.

Graphical Abstract

[1]
Xi, H.D.; Zheng, H.; Guo, W.; Gañán-Calvo, A.M.; Ai, Y.; Tsao, C.W.; Zhou, J.; Li, W.; Huang, Y.; Nguyen, N.T.; Tan, S.H. Active droplet sorting in microfluidics: A review. Lab Chip, 2017, 17(5), 751-771.
[http://dx.doi.org/10.1039/C6LC01435F] [PMID: 28197601]
[2]
Reece, A.; Xia, B.; Jiang, Z.; Noren, B.; McBride, R.; Oakey, J. Microfluidic techniques for high throughput single cell analysis. Curr. Opin. Biotechnol., 2016, 40, 90-96.
[http://dx.doi.org/10.1016/j.copbio.2016.02.015] [PMID: 27032065]
[3]
Ahire, J.J.; Robertson, D.; Neveling, D.P.; van Reenen, A.J.; Dicks, L.M.T. Hyaluronic acid-coated poly(D,L-lactide) (PDLLA) nanofibers prepared by electrospinning and coating. RSC Advances, 2016, 6, 34791-34796.
[http://dx.doi.org/10.1039/C6RA01996J]
[4]
Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: a review. Lab Chip, 2016, 17(1), 34-75.
[http://dx.doi.org/10.1039/C6LC01018K] [PMID: 27841886]
[5]
Bonyár, A.; Sántha, H.; Ring, B.; Varga, M.; Kovács, J.G. 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development. Procedia Eng., 2010, 5, 291-294.
[http://dx.doi.org/10.1016/j.proeng.2010.09.105]
[6]
Eddings, M.A.; Johnson, M.A.; Gale, B.K. Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromech. Microeng., 2008, 18, 1171-1185.
[http://dx.doi.org/10.1088/0960-1317/18/6/067001]
[7]
Chung, B.G.; Lee, K.H.; Khademhosseini, A.; Lee, S.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip, 2012, 12(1), 45-59.
[http://dx.doi.org/10.1039/C1LC20859D] [PMID: 22105780]
[8]
Ashley, J.F.; Cramer, N.B.; Davis, R.H.; Bowman, C.N. Soft-lithography fabrication of microfluidic features using thiolene formulations. Lab Chip, 2011, 11(16), 2772-2778.
[http://dx.doi.org/10.1039/c1lc20189a] [PMID: 21691663]
[9]
Zeng, J.; Wang, H.; Lin, Y.; Zhang, J.; Liang, F.; Fang, F.; Yang, F.; Wang, P.; Zhu, Z.; Chen, X.; Chen, X.; Wang, Z.; Cai, N.; Tang, Y.; Wu, P. Fabrication of microfluidic channels based on melt-electrospinning direct writing. Microfluid. Nanofluidics, 2018, 22(2), 22.
[http://dx.doi.org/10.1007/s10404-018-2043-7]
[10]
Hochleitner, G.; Kessler, M.; Schmitz, M.; Boccaccini, A.R.; Teßmar, J.; Groll, J. Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles. Mater. Lett., 2017, 205, 257-260.
[http://dx.doi.org/10.1016/j.matlet.2017.06.096]
[11]
Huh, D.; Mills, K.L.; Zhu, X.; Burns, M.A.; Thouless, M.D.; Takayama, S. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater., 2007, 6(6), 424-428.
[http://dx.doi.org/10.1038/nmat1907] [PMID: 17486084]
[12]
Park, S.M.; Huh, Y.S.; Craighead, H.G.; Erickson, D. A method for nanofluidic device prototyping using elastomeric collapse. Proc. Natl. Acad. Sci. USA, 2009, 106(37), 15549-15554.
[http://dx.doi.org/10.1073/pnas.0904004106] [PMID: 19717418]
[13]
Liu, Y.; Zhang, L.; Sun, X.; Liu, J.; Fan, J.; Huang, D. Multijet electrospinning via auxiliary electrode. Mater. Lett., 2015, 141, 153-156.
[http://dx.doi.org/10.1016/j.matlet.2014.11.079]
[14]
E.N., Mohamad; W.N.L., Mahadi; A.M., Afifi Multiple-jet electrospinning methods for nanofiber processing: A review. Mater. Manuf. Process., 2018, 33, 479-498.
[http://dx.doi.org/10.1080/10426914.2017.1388523]
[15]
Wang, Z.; Chen, X.; Zeng, J.; Liang, F.; Wu, P.; Wang, H. Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning. AIP Adv., 2017, 7(3), 35310.
[http://dx.doi.org/10.1063/1.4974936]
[16]
Zheng, Y.S.; Zeng, Y.C. Jet repulsion in multi-jet electrospinning systems: From needle to needleless. Adv. Mat. Res., 2014, 852, 624-628.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.852.624]

© 2025 Bentham Science Publishers | Privacy Policy