Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Exenatide在阿尔茨海默病中作用的初步研究

卷 16, 期 8, 2019

页: [741 - 752] 页: 12

弟呕挨: 10.2174/1567205016666190913155950

价格: $65

摘要

背景:有力的临床前证据表明,Exenatide是一种用于治疗2型糖尿病的胰高血糖素样肽-1(GLP-1)受体激动剂,在阿尔茨海默氏病(AD)中具有神经保护作用和可缓解疾病。 目的:我们进行了一项为期18个月的双盲随机安慰剂对照II期临床试验,以评估Exenatide的安全性和耐受性,并探讨AD早期临床,认知和生物标志物结局的治疗反应。 方法:18名以脑脊液(CSF)生物标志物为基础的高概率AD参与者完成了整个研究,然后被赞助者提前终止。部分结果可用于21。 结果:Exenatide安全且耐受性好,在口服葡萄糖耐量试验中显示出与安慰剂相比,预期的恶心发生率更高,食欲下降,葡萄糖和GLP-1下降。与安慰剂相比,Exenatide治疗在临床和认知指标,MRI皮质厚度和体积,或脑脊液,血浆和血浆神经元细胞外囊泡(EV)中的生物标志物方面均无差异或趋势,只是降低了EV中的Aβ42。 结论:较低的EVAβ42的阳性发现支持新出现的证据,即血浆神经元EV为在AD临床试验中证明生物标志物应答提供了有效的平台。由于提前终止,该研究的动力不足,因此我们无法得出任何肯定的结论。然而,对次要结局的分析表明,没有证据支持Exenatide在临床AD中可以缓解疾病的假说,降低EVAβ42本身并不能改善AD的认知结局。

关键词: GLP-1激动剂,exenatide,记忆,糖尿病,安慰剂,阿尔茨海默病。

[1]
Alzheimer’s A. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12(4): 459-509. 2016
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[2]
Becker RE, Kapogiannis D, Greig NH. Does traumatic brain injury hold the key to the Alzheimer’s disease puzzle? Alzheimers Dement 14(4): 431-43. 2018
[http://dx.doi.org/10.1016/j.jalz.2017.11.007] [PMID: 29245000]
[3]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6): 595-608. 2016
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[4]
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Front Aging Neurosci 9: 118. 2017
[http://dx.doi.org/10.3389/fnagi.2017.00118] [PMID: 28515688]
[5]
Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 122(4): 1339-53. 2012
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[6]
Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4): 1316-38. 2012
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[7]
Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol 90(5A): 3G-10G. 2002
[http://dx.doi.org/10.1016/S0002-9149(02)02553-5] [PMID: 12231073]
[8]
Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14(6): 750-6. 2011
[http://dx.doi.org/10.1038/nn.2801] [PMID: 21532579]
[9]
Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, et al. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest 125(6): 2463-7. 2015
[http://dx.doi.org/10.1172/JCI79742] [PMID: 25938784]
[10]
Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131(Pt 12): 3311-34. 2008
[http://dx.doi.org/10.1093/brain/awn288] [PMID: 19015157]
[11]
Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5(6): 514-6. 2002
[http://dx.doi.org/10.1038/nn0602-849] [PMID: 11992114]
[12]
De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 106(6): 1971-6. 2009
[http://dx.doi.org/10.1073/pnas.0809158106] [PMID: 19188609]
[13]
Miller BW, Willett KC, Desilets AR. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann Pharmacother 45(11): 1416-24. 2011
[http://dx.doi.org/10.1345/aph.1Q238] [PMID: 22028424]
[14]
Landreth G, Jiang Q, Mandrekar S, Heneka M. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5(3): 481-9. 2008
[http://dx.doi.org/10.1016/j.nurt.2008.05.003] [PMID: 18625459]
[15]
Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimers Dement 10(1)(Suppl.): S12-25. 2014
[http://dx.doi.org/10.1016/j.jalz.2013.12.007] [PMID: 24529520]
[16]
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60(4): 470-512. 2008
[http://dx.doi.org/10.1124/pr.108.000604] [PMID: 19074620]
[17]
Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 268(26): 19650-5. 1993
[PMID: 8396143]
[18]
Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci 18(1-2): 7-14. 2002
[http://dx.doi.org/10.1385/JMN:18:1-2:07] [PMID: 11931352]
[19]
Alvarez E, Martínez MD, Roncero I, Chowen JA, Garcia-Cuartero B, Gispert JD, et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 92(4): 798-806. 2005
[http://dx.doi.org/10.1111/j.1471-4159.2004.02914.x] [PMID: 15686481]
[20]
Hamilton A, Hölscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20(13): 1161-6. 2009
[http://dx.doi.org/10.1097/WNR.0b013e32832fbf14] [PMID: 19617854]
[21]
Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 300(3): 958-66. 2002
[http://dx.doi.org/10.1124/jpet.300.3.958] [PMID: 11861804]
[22]
Perry T, Greig NH. Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr Alzheimer Res 2(3): 377-85. 2005
[http://dx.doi.org/10.2174/1567205054367892] [PMID: 15974903]
[23]
Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res 86(2): 326-38. 2008
[http://dx.doi.org/10.1002/jnr.21483] [PMID: 17803225]
[24]
Hamilton A, Patterson S, Porter D, Gault VA, Holscher C. Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J Neurosci Res 89(4): 481-9. 2011
[http://dx.doi.org/10.1002/jnr.22565] [PMID: 21312223]
[25]
Hölscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection: new hopes for novel treatments of Alzheimer’s disease? Neurobiol Aging 31(9): 1495-502. 2010
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.023] [PMID: 18930564]
[26]
McClean PL, Gault VA, Harriott P, Hölscher C. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s disease. Eur J Pharmacol 630(1-3): 158-62. 2010
[http://dx.doi.org/10.1016/j.ejphar.2009.12.023] [PMID: 20035739]
[27]
During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 2003. 9(9): 1173-9.
[http://dx.doi.org/10.1038/nm919] [PMID: 12925848]
[28]
Isacson R, Nielsen E, Dannaeus K, Bertilsson G, Patrone C, Zachrisson O, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol 650(1): 249-55. 2011
[http://dx.doi.org/10.1016/j.ejphar.2010.10.008] [PMID: 20951130]
[29]
Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19(4): 1205-19. 2010
[http://dx.doi.org/10.3233/JAD-2010-1314] [PMID: 20308787]
[30]
Gengler S, McClean PL, McCurtin R, Gault VA, Hölscher C. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol Aging 33(2): 265-76. 2012
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.02.014] [PMID: 20359773]
[31]
Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Choudhary K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390(10103): 1664-75. 2017
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[32]
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 280-92. 2011
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[33]
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 263-9. 2011
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[34]
Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016. 87(5): 539-47.
[http://dx.doi.org/10.1212/WNL.0000000000002923] [PMID: 27371494]
[35]
Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer’s brain. Ann Clin Transl Neurol 5(3): 262-72. 2018
[http://dx.doi.org/10.1002/acn3.530] [PMID: 29560372]
[36]
Schulte RF, Boesiger P. ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed 19(2): 255-63. 2006
[http://dx.doi.org/10.1002/nbm.1026] [PMID: 16541464]
[37]
Chia CW, Carlson OD, Kim W, et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58(6): 1342-9. 2009
[http://dx.doi.org/10.2337/db08-0958] [PMID: 19276444]
[38]
Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. 2013
[39]
Kapogiannis D, Boxer A, Schwartz JB, et al. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J 29(2): 589-96. 2015
[http://dx.doi.org/10.1096/fj.14-262048] [PMID: 25342129]
[40]
Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement 11(6): 600-7. 2015
[http://dx.doi.org/10.1016/j.jalz.2014.06.008]
[41]
Goetzl EJ, Boxer A, Schwartz JB, et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 2015. 85(1): 40-7.
[http://dx.doi.org/10.1212/WNL.0000000000001702] [PMID: 26062630]
[42]
Mustapic M, Eitan E, Werner JK Jr, et al. Plasma Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic Processes. Front Neurosci 11: 278. 2017
[http://dx.doi.org/10.3389/fnins.2017.00278] [PMID: 28588440]
[43]
Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in Basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med 154(2): 103-12. 2011
[http://dx.doi.org/10.7326/0003-4819-154-2-201101180-00300] [PMID: 21138825]
[44]
Kyriacou A, Ahmed AB. Exenatide Use in the Management of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 3(8): 2554-67. 2010
[http://dx.doi.org/10.3390/ph3082554] [PMID: 27713366]
[45]
Maurer TS, Debartolo DB, Tess DA, Scott DO. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 33(1): 175-81. 2005
[http://dx.doi.org/10.1124/dmd.104.001222] [PMID: 15502010]
[46]
Elahi D, Ruff DA, Carlson OD, Meneilly GS, Habener JF, Egan JM. Does GLP-1 suppress its own basal secretion? Endocr Res 41(1): 16-20. 2016
[http://dx.doi.org/10.3109/07435800.2015.1038353] [PMID: 26186406]
[47]
Spaan PE, Raaijmakers JG, Jonker C. Early assessment of dementia: the contribution of different memory components. Neuropsychology 19(5): 629-40. 2005
[http://dx.doi.org/10.1037/0894-4105.19.5.629] [PMID: 16187881]
[48]
Lortie JJ, Remington R, Hoffmann H, Shea TB. Lack of Correlation of WAIS Digit Span with Clox 1 and the Dementia Rating Scale in MCI. Int J Alzheimers Dis 2012829743 2012
[http://dx.doi.org/10.1155/2012/829743] [PMID: 22577593]
[49]
Kiewel NA, Wisdom NM, Bradshaw MR, Pastorek NJ, Strutt AM. A retrospective review of digit span-related effort indicators in probable Alzheimer’s disease patients. Clin Neuropsychol 26(6): 965-74. 2012
[http://dx.doi.org/10.1080/13854046.2012.694478] [PMID: 22703555]
[50]
Mullins RJ, Mustapic M, Goetzl EJ, Kapogiannis D. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer’s disease. Hum Brain Mapp 38(4): 1933-40. 2017
[http://dx.doi.org/10.1002/hbm.23494] [PMID: 28105773]
[51]
Eitan E, Tosti V, Suire CN, et al. In a randomized trial in prostate cancer patients, dietary protein restriction modifies markers of leptin and insulin signaling in plasma extracellular vesicles. Aging Cell 16(6): 1430-3. 2017
[http://dx.doi.org/10.1111/acel.12657] [PMID: 28921841]
[52]
Grill JD, Karlawish J. Addressing the challenges to successful recruitment and retention in Alzheimer’s disease clinical trials. Alzheimers Res Ther 2(6): 34. 2010
[http://dx.doi.org/10.1186/alzrt58] [PMID: 21172069]
[53]
Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Front Aging Neurosci 8: 108. 2016
[http://dx.doi.org/10.3389/fnagi.2016.00108] [PMID: 27252647]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy