Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

General Research Article

A Procedural Excursion of Micro Needles for Drug Delivery Systems

Author(s): Pankaj Anand * and Neeraj Tripathi

Volume 12, Issue 3, 2020

Page: [232 - 239] Pages: 8

DOI: 10.2174/1876402911666190911143227

Abstract

Background: MEMS (Micro Electro-Mechanical System) has many applications in various fields.

Objective: Development and fabrication of micro needle for biomedical application is one of that area.

Method: Application of micro to nano-scale technology in fabrication process, yields wide range of progress and produces micro mechanical devices, which provide easy transport of biological fluids into or away from living body with less effort or pain.

Conclusion: This paper presents the excursion of solid to hollow micro needles, considering their shapes, materials, with different fabrication processes. This survey discusses the application on specific body parts and drug delivery systems. Our paper suggests that hollow tubes are most effective design for application.

Keywords: MEMS, drug delivery, micro fabrication, nano-scale technology, biological fluids, microneedle.

Graphical Abstract

[1]
Richards Grayson, A.C.; Scheidt Shawgo, R.; Li, Y.; Cima, M.J. Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev., 2004, 56(2), 173-184.
[http://dx.doi.org/10.1016/j.addr.2003.07.012] [PMID: 14741114]
[2]
Lin, L.; Pisano, A.P. Silicon-processed microneedles. J. Microelectromech. Syst., 1999, 8(1), 78-84.
[3]
Kim, Y-C.; Park, J-H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2012, 64(14), 1547-1568.
[http://dx.doi.org/10.1016/j.addr.2012.04.005] [PMID: 22575858]
[4]
Chen, S.H.; Li, N.N.; Chen, J. Development and experimental verification of a nonlinear hyperelastic model for microneedle-skin interactions. In: IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), Bangkok; , 2012; pp. 61-65.
[5]
Podder, P. K.; Mallick, D.; Samajdar, D. P.; Bhattacharyya, A. Design, simulation and study of mems based micro-needles and micro-pump for biomedical applications. Des. Simul. Study MEMS Based Micro-needles Micro-pump Biomed. Appl, 2011, 1(3)
[6]
Madou, M.J. Fundamentals of Microfabrication And Nanotechnology; CRC Press: Boca Raton, FL, 2011.
[7]
Chen, Y-T. Fabrication of microneedles. J. Mar. Sci. Technol., 2010, 18, 243-248.
[8]
Ganesan, K.; Palanisamy, V. Analysis and experiment of MEMS based micropump for microfluidic application. Int. J. Advan. Research in Comp. Eng. Tech. (IJARCET), 2012, 10, 259.
[9]
Luttge, R. Integrated lithographic molding for microneedle-based devices. J. Microelectromech. Syst., 2007, 16(4), 872-884.
[10]
Mogusala, N.R.; Devadasu, V.R. Fabrication of microneedle molds and polymer based biodegradable microneedle patches: A novel method. Am. J. Drug Deliv. Therap., 2015, 2(2), 2349-7211.
[11]
McAllister, D.V.; Wang, P.M.; Davis, S.P.; Park, J.H.; Canatella, P.J.; Allen, M.G.; Prausnitz, M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13755-13760.
[http://dx.doi.org/10.1073/pnas.2331316100] [PMID: 14623977]
[12]
Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 1998, 87(8), 922-925.
[http://dx.doi.org/10.1021/js980042+] [PMID: 9687334]
[13]
Jin, C.Y.; Han, M.H.; Lee, S.S.; Choi, Y.H. Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed. Microdevices, 2009, 11(6), 1195-1203.
[http://dx.doi.org/10.1007/s10544-009-9337-1] [PMID: 19609679]
[14]
Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release, 2005, 104(1), 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.002] [PMID: 15866334]
[15]
Ji, J.; Tay, F.E.H.; Miao, J. Micro fabricated hollow micro needle array using ICP etcher. J. Phys., 2006, 34(1), 1132-1136.
[16]
Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release, 2007, 117(2), 227-237.
[PMID: 17169459]
[17]
Bariya, S.H.; Gohel, M.C.; Mehta, T.A.; Sharma, O.P. Microneedles: An emerging transdermal drug delivery system. J. Pharm. Pharmacol., 2012, 64(1), 11-29.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01369.x] [PMID: 22150668]
[18]
Kim, Y.C.; Quan, F.S.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech, 2010, 11(3), 1193-1201.
[http://dx.doi.org/10.1208/s12249-010-9471-3] [PMID: 20676947]
[19]
McAllsiter, D.V.; Cros, F.; Davis, S.P.; Matta, L.M.; Prausnitz, M.R.; Allen, M.G. Three-dimensional hollow microneedles and microtube arrays; Conf. on Solid-state Sensors and Actuators: Sendai, Japan, 1999, pp. 1098-1101.
[20]
Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng., 2005, 52(5), 909-915.
[http://dx.doi.org/10.1109/TBME.2005.845240] [PMID: 15887540]
[21]
Roxhed, N.; Gasser, T.C.; Griss, P.; Holzapfel, G.A.; Stemme, G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst., 2007, 16, 1429-1440.
[http://dx.doi.org/10.1109/JMEMS.2007.907461]
[22]
Ma, B.; Liu, S.; Gan, Z.; Liu, G.; Cai, X.; Zhang, H.; Yang, Z. A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery. Microfluid. Nanofluidics, 2006, 2, 417-423.
[http://dx.doi.org/10.1007/s10404-006-0083-x]
[23]
Teo, M.A.L.; Shearwood, C.; Ng, K.C.; Lu, J.; Moochhala, S. In vitro and in vivo characterization of MEMS microneedles. Biomed. Microdevices, 2005, 7(1), 47-52.
[24]
Mukerjee, E.; Collins, S.D.; Isseroff, R.R.; Smith, R.L. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A Phys., 2004, 114, 267-275.
[http://dx.doi.org/10.1016/j.sna.2003.11.008]
[25]
Kros, W.A. Aqueous solution of non-colloidal silicic acid and boric acid. U.S. Patent No 7,915,198. 292011.
[26]
Hsu, T-R. MEMS & Microsystems: Design, manufacture, and nanoscale engineering; John Wiley & Sons: New York, 2008.
[27]
Chandrasekaran, S.; Brazzle, J.D.; Frazier, A.B. Surface micromachined metallic microneedles. J. Microelectromech. Syst., 2003, 12(3), 281-288.
[http://dx.doi.org/10.1109/JMEMS.2003.809951]
[28]
Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Groenink, W.H.; Verpoorten, H.; Lüttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release, 2007, 117(2), 238-245.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.009] [PMID: 17196697]
[29]
Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release, 2007, 117(2), 227-237.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.017] [PMID: 17169459]
[30]
Janphuang, P. Polymer based micro needle patch fabricated using microinjection moulding. MATEC Web of Conferences, 2018, 192, 01039.
[http://dx.doi.org/10.1051/matecconf/201819201039]
[31]
Davidson, M.B. Diabetes Mellitus: Diagnosis and Treatment; Saunders: Philadelphia, 1998.
[32]
Koria, H.; Dedakia, A.; Patel, G. Microneedles as novel approach for drug delivery system. Drug Deliv. Syst., 2014.
[33]
Yung, K.L.; Kang, Ch.; Liu, H.; Tam, K.F.; Ko, S.M.; Kwan, F.Y.; Lee, T.M.H. Sharp tipped plastic hollow microneedle array by microinjection moulding. J. Micromech. Microeng., 2012, 22015016
[http://dx.doi.org/10.1088/0960-1317/22/1/015016]
[34]
Roxhed, N. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst. Journalism, 2007, 16(6), 1429-1440.
[35]
Teo, M.A.; Shearwood, C.; Ng, K.C.; Lu, J.; Moochhala, S. In vitro and in vivo characterization of MEMS microneedles. Biomed. Microdevices, 2005, 7(1), 47-52.
[http://dx.doi.org/10.1007/s10544-005-6171-y] [PMID: 15834520]
[36]
Janphuang, P. Polymer based microneedle patch fabricated using microinjec-tion moulding. MATEC Web of Conferences., 2018, 192
[37]
Gupta, J.; Denson, D.D.; Felner, E.I.; Prausnitz, M.R. Rapid local anesthesia in humans using minimally invasive microneedles. Clin. J. Pain, 2012, 28(2), 129-135.
[http://dx.doi.org/10.1097/AJP.0b013e318225dbe9] [PMID: 21712713]
[38]
Nordquist, L.; Roxhed, N.; Griss, P.; Stemme, G. Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm. Res., 2007, 24(7), 1381-1388.
[http://dx.doi.org/10.1007/s11095-007-9256-x] [PMID: 17387600]
[39]
Laurent, P.E.; Bonnet, S.; Alchas, P.; Regolini, P.; Mikszta, J.A.; Pettis, R.; Harvey, N.G. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine, 2007, 25(52), 8833-8842.
[http://dx.doi.org/10.1016/j.vaccine.2007.10.020] [PMID: 18023942]
[40]
Alarcon, J.B.; Hartley, A.W.; Harvey, N.G.; Mikszta, J.A. Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin. Vaccine Immunol., 2007, 14(4), 375-381.
[http://dx.doi.org/10.1128/CVI.00387-06] [PMID: 17329444]
[41]
Mikszta, J.A.; Dekker, J.P., III; Harvey, N.G.; Dean, C.H.; Brittingham, J.M.; Huang, J.; Sullivan, V.J.; Dyas, B.; Roy, C.J.; Ulrich, R.G. Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect. Immun., 2006, 74(12), 6806-6810.
[http://dx.doi.org/10.1128/IAI.01210-06] [PMID: 17030580]
[42]
Gattiker, G.E.; Kaler, K.; Mintchev, M.P. Electronic mosquito: designing asemi-invasive microsystem for blood sampling, analysis and drug delivery applications. Microsyst. Technol., 2005, 12, 44-51.
[http://dx.doi.org/10.1007/s00542-005-0015-9]
[43]
Smart, W.H.; Subramanian, K. The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol. Ther., 2000, 2(4), 549-559.
[http://dx.doi.org/10.1089/15209150050501961] [PMID: 11469618]
[44]
Jiang, J.; Moore, J.S.; Edelhauser, H.F.; Prausnitz, M.R. Intrascleral drug delivery to the eye using hollow microneedles. Pharm. Res., 2009, 26(2), 395-403.
[http://dx.doi.org/10.1007/s11095-008-9756-3] [PMID: 18979189]
[45]
Han, S.W.; Mieda, S.; Nakamura, C.; Kihara, T.; Nakamura, N.; Miyake, J. Successive detection of insulin-like growth factor-II bound to receptors on a living cell surface using an AFM. J. Mol. Recognit., 2011, 24(1), 17-22.
[http://dx.doi.org/10.1002/jmr.994] [PMID: 19953597]
[46]
Kolhar, P.; Doshi, N.; Mitragotri, S. Polymer nanoneedle-mediated intracellular drug delivery. Small, 2011, 7(14), 2094-2100.
[http://dx.doi.org/10.1002/smll.201100497] [PMID: 21695782]
[47]
Ashraf, M.W.; Tayyaba, S.; Nisar, A.; Afzulpurkar, N.; Bodhale, D.W.; Lomas, T.; Poyai, A.; Tuantranont, A. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc. Eng., 2010, 10(3), 91-108.
[http://dx.doi.org/10.1007/s10558-010-9100-5] [PMID: 20730492]
[48]
Ramasubramanian, M. K.; Barham, O. M.; Swaminathan, V. Mechanics of a mosquito bite with applications to microneedle design. Bioinsp. Biomim., 3.4, 2008.

© 2025 Bentham Science Publishers | Privacy Policy