Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

In silico Insights on IL-6: A Potential Target for Multicentric Castleman Disease

Author(s): Abhishek Aher, Trishang Udhwani, Ravina Khandelwal, Akanksha Limaye, Tajamul Hussain, Anuraj Nayarisseri* and Sanjeev Kumar Singh*

Volume 16, Issue 5, 2020

Page: [641 - 653] Pages: 13

DOI: 10.2174/1573409915666190902142524

Price: $65

Abstract

Background: Multicentric Castleman Disease (MCD) is a confrontational lymphoproliferative disorder described by symptoms such as lymph node proliferation, unwarranted secretion of inflammatory cytokines, hyperactive immune system, and in severe cases, multiple organ dysfunction. Interleukin-6 (IL-6) is a pleiotropic cytokine which is involved in a large range of physiological processes in our body such as pro-inflammation, anti-inflammation, differentiation of T-cells and is reported to be a key pathological factor in MCD. In the case of MCD, it was observed that IL-6 is overproduced from T-cells and macrophages which disturb Hepcidin, a vital regulator of iron trafficking in macrophage. The present study endeavour to expound the inhibitor which binds to IL-6 protein receptor with high affinity.

Methods: MolegroVirtual Docker software was employed to find the best-established drug from the list of selected inhibitors of IL-6. This compound was subjected to virtual screening against PubChem database to get inhibitors with a very similar structure. These inhibitors were docked to obtain a compound binding with high affinity to the target protein. The established compound and the virtual screened compound were subjected to relative analysis of interactivity energy variables and ADMET profile studies.

Results: Among all the selected inhibitors, the virtual screened compound PubChem CID: 101119084 is seen to possess the highest affinity with the target protein. Comparative studies and ADMET analysis further implicate this compound as a better inhibitor of the IL-6 protein.

Conclusion: Hence, this compound recognized in the study possesses high potential as an IL-6 inhibitor which might assist in the treatment of Multicentric Castleman Disease and should be examined for its efficiency by in vivo studies.

Keywords: IL-6 Inhibitors, multicentric castleman disease, virtual screening, molecular docking, ADMET, toxicity study.

Graphical Abstract

[1]
Castleman, B.; Iverson, L.; Menendez, V.P. Localized mediastinal lymphnode hyperplasia resembling thymoma. Cancer, 1956, 9(4), 822-830.
[http://dx.doi.org/10.1002/1097-0142(195607/08)9:4<822:AID-CNCR2820090430>3.0.CO;2-4] [PMID: 13356266]
[2]
Bowne, W.B.; Lewis, J.J.; Filippa, D.A.; Niesvizky, R.; Brooks, A.D.; Burt, M.E.; Brennan, M.F. The management of unicentric and multicentric Castleman’s disease: a report of 16 cases and a review of the literature. Cancer, 1999, 85(3), 706-717.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990201)85:3<706:AID-CNCR21>3.0.CO;2-7] [PMID: 10091744]
[3]
Chronowski, G.M.; Ha, C.S.; Wilder, R.B.; Cabanillas, F.; Manning, J.; Cox, J.D. Treatment of unicentric and multicentric Castleman disease and the role of radiotherapy. Cancer, 2001, 92(3), 670-676.
[http://dx.doi.org/10.1002/1097-0142(20010801)92:3<670:AID-CNCR1369>3.0.CO;2-Q] [PMID: 11505414]
[4]
Sato, Y.; Kojima, M.; Takata, K.; Morito, T.; Asaoku, H.; Takeuchi, T.; Mizobuchi, K.; Fujihara, M.; Kuraoka, K.; Nakai, T.; Ichimura, K.; Tanaka, T.; Tamura, M.; Nishikawa, Y.; Yoshino, T. Systemic IgG4-related lymphadenopathy: a clinical and pathologic comparison to multicentric Castleman’s disease. Mod. Pathol., 2009, 22(4), 589-599.
[http://dx.doi.org/10.1038/modpathol.2009.17] [PMID: 19270642]
[5]
Castleman, B.; Iverson, L.; Menendez, V.P. Localized mediastinal lymphnode hyperplasia resembling thymoma. Cancer, 1956, 9(4), 822-830.
[http://dx.doi.org/10.1002/1097-0142(195607/08)9:4<822:AID-CNCR2820090430>3.0.CO;2-4] [PMID: 13356266]
[6]
Fajgenbaum, D.C.; van Rhee, F.; Nabel, C.S. HHV-8-negative, idiopathic multicentric Castleman disease: novel insights into biology, pathogenesis, and therapy. Blood, 2014, 123(19), 2924-2933.
[http://dx.doi.org/10.1182/blood-2013-12-545087] [PMID: 24622327]
[7]
Chang, Y.; Cesarman, E.; Pessin, M.S.; Lee, F.; Culpepper, J.; Knowles, D.M.; Moore, P.S. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 1994, 266(5192), 1865-1869.
[http://dx.doi.org/10.1126/science.7997879] [PMID: 7997879]
[8]
Moore, P.S.; Chang, Y. Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and those without HIV infection. N. Engl. J. Med., 1995, 332(18), 1181-1185.
[http://dx.doi.org/10.1056/NEJM199505043321801] [PMID: 7700310]
[9]
Nishimoto, N.; Kishimoto, T. Interleukin 6: from bench to bedside. Nat. Clin. Pract. Rheumatol., 2006, 2(11), 619-626.
[http://dx.doi.org/10.1038/ncprheum0338] [PMID: 17075601]
[10]
Ben-Chetrit, E.; Flusser, D.; Okon, E.; Ackerman, Z.; Rubinow, A. Multicentric Castleman’s disease associated with rheumatoid arthritis: a possible role of hepatitis B antigen. Ann. Rheum. Dis., 1989, 48(4), 326-330.
[http://dx.doi.org/10.1136/ard.48.4.326] [PMID: 2712614]
[11]
Ondrey, F.G.; Dong, G.; Sunwoo, J.; Chen, Z.; Wolf, J.S.; Crowl-Bancroft, C.V.; Mukaida, N.; Van Waes, C. Constitutive activation of transcription factors NF-(kappa)B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol. Carcinog., 1999, 26(2), 119-129.
[http://dx.doi.org/10.1002/(SICI)1098-2744(199910)26:2<119:AID-MC6>3.0.CO;2-N] [PMID: 10506755]
[12]
Tilg, H.; Trehu, E.; Atkins, M.B.; Dinarello, C.A.; Mier, J.W. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood, 1994, 83(1), 113-118.
[PMID: 8274730]
[13]
Rincón, M.; Anguita, J.; Nakamura, T.; Fikrig, E.; Flavell, R.A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med., 1997, 185(3), 461-469.
[http://dx.doi.org/10.1084/jem.185.3.461] [PMID: 9053446]
[14]
Brandt, S.J.; Bodine, D.M.; Dunbar, C.E.; Nienhuis, A.W. Dysregulated interleukin 6 expression produces a syndrome resembling Castleman’s disease in mice. J. Clin. Invest., 1990, 86(2), 592-599.
[http://dx.doi.org/10.1172/JCI114749] [PMID: 2384605]
[15]
Ganz, T. Hepcidin--a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract. Res. Clin. Haematol., 2005, 18(2), 171-182.
[http://dx.doi.org/10.1016/j.beha.2004.08.020] [PMID: 15737883]
[16]
Torti, F.M.; Torti, S.V.; Territo, M.; Schiller, G.; Lichtenstein, A.; Ganz, T. Regulation of ferritin genes and protein. Blood, 2002, 99(10), 3505-3516.
[http://dx.doi.org/10.1182/blood.V99.10.3505] [PMID: 11986201]
[17]
Kemna, E.; Pickkers, P.; Nemeth, E.; van der Hoeven, H.; Swinkels, D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood, 2005, 106(5), 1864-1866.
[http://dx.doi.org/10.1182/blood-2005-03-1159] [PMID: 15886319]
[18]
Lee, P.; Peng, H.; Gelbart, T.; Wang, L.; Beutler, E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 1906-1910.
[http://dx.doi.org/10.1073/pnas.0409808102] [PMID: 15684062]
[19]
Screpanti, I.; Musiani, P.; Bellavia, D.; Cappelletti, M.; Aiello, F.B.; Maroder, M.; Frati, L.; Modesti, A.; Gulino, A.; Poli, V. Inactivation of the IL-6 gene prevents development of multicentric Castleman’s disease in C/EBP beta-deficient mice. J. Exp. Med., 1996, 184(4), 1561-1566.
[http://dx.doi.org/10.1084/jem.184.4.1561] [PMID: 8879230]
[20]
Kawabata, H.; Tomosugi, N.; Kanda, J.; Tanaka, Y.; Yoshizaki, K.; Uchiyama, T. Anti-interleukin 6 receptor antibody tocilizumab reduces the level of serum hepcidin in patients with multicentric Castleman’s disease. Haematologica, 2007, 92(6), 857-858.
[http://dx.doi.org/10.3324/haematol.10794] [PMID: 17550864]
[21]
Rosenthal, N. The New England Journal of Medicine Downloaded from nejm.org at Syddansk Universitetsbibliotek on January 12, 2012. For personal use only. No other uses without permission. Copyright © 1994 Massachusetts Medical Society. All rights reserved. Mol. Med., 1994, 331, 931-933.
[22]
Nishimoto, N.; Kanakura, Y.; Aozasa, K.; Johkoh, T.; Nakamura, M.; Nakano, S.; Nakano, N.; Ikeda, Y.; Sasaki, T.; Nishioka, K.; Hara, M.; Taguchi, H.; Kimura, Y.; Kato, Y.; Asaoku, H.; Kumagai, S.; Kodama, F.; Nakahara, H.; Hagihara, K.; Yoshizaki, K.; Kishimoto, T. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood, 2005, 106(8), 2627-2632.
[http://dx.doi.org/10.1182/blood-2004-12-4602] [PMID: 15998837]
[23]
Chan, K.L.; Lade, S.; Prince, H.M.; Harrison, S.J. Update and new approaches in the treatment of Castleman disease. J. Blood Med., 2016, 7, 145-158.
[http://dx.doi.org/10.2147/JBM.S60514] [PMID: 27536166]
[24]
Kawabata, H.; Kadowaki, N.; Nishikori, M.; Kitawaki, T.; Kondo, T.; Ishikawa, T.; Yoshifuji, H.; Yamakawa, N.; Imura, Y.; Mimori, T.; Matsumura, Y.; Miyachi, Y.; Matsubara, T.; Yanagita, M.; Haga, H.; Takaori-Kondo, A. Clinical features and treatment of multicentric castleman’s disease: a retrospective study of 21 Japanese patients at a single institute. J. Clin. Exp. Hematop., 2013, 53(1), 69-77.
[http://dx.doi.org/10.3960/jslrt.53.69] [PMID: 23801137]
[25]
El-Osta, H.; Janku, F.; Kurzrock, R. Successful treatment of Castleman’s disease with interleukin-1 receptor antagonist (Anakinra). Mol. Cancer Ther., 2010, 9(6), 1485-1488.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0156] [PMID: 20501803]
[26]
Reddy, D.; Mitsuyasu, R. HIV-associated multicentric Castleman disease. Curr. Opin. Oncol., 2011, 23(5), 475-481.
[http://dx.doi.org/10.1097/CCO.0b013e328349c233] [PMID: 21760504]
[27]
Somers, W.; Stahl, M.; Seehra, J.S. 1.9 A crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J., 1997, 16(5), 989-997.
[http://dx.doi.org/10.1093/emboj/16.5.989] [PMID: 9118960]
[28]
Bandaru, S.; Sumithnath, T.G.; Sharda, S.; Lakhotia, S.; Sharma, A.; Jain, A.; Hussain, T.; Nayarisseri, A.; Singh, S.K. Helix-Coil Transition Signatures B-Raf V600E Mutation and Virtual Screening for Inhibitors Directed Against Mutant B-Raf. Curr. Drug Metab., 2017, 18(6), 527-534.
[http://dx.doi.org/10.2174/1389200218666170503114611] [PMID: 28472910]
[29]
Bandaru, S.; Tiwari, G.; Akka, J.; Marri, V.K.; Alvala, M.; Gutlapalli, V.R.; Nayarisseri, A.; Mundluru, H.P. Identification of high affinity bioactive Salbutamol conformer directed against mutated (Thr164Ile) beta 2 adrenergic receptor. Curr. Top. Med. Chem., 2015, 15(1), 50-56.
[http://dx.doi.org/10.2174/1568026615666150112113040] [PMID: 25579570]
[30]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[31]
Sharda, S.; Sarmandal, P.; Cherukommu, S.; Dindhoria, K.; Yadav, M.; Bandaru, S.; Sharma, A.; Sakhi, A.; Vyas, T.; Hussain, T.; Nayarisseri, A.; Singh, S.K. A Virtual Screening Approach for the Identification of High Affinity Small Molecules Targeting BCR-ABL1 Inhibitors for the Treatment of Chronic Myeloid Leukemia. Curr. Top. Med. Chem., 2017, 17(26), 2989-2996.
[http://dx.doi.org/10.2174/1568026617666170821124512] [PMID: 28828991]
[32]
Chandrakar, B.; Jain, A.; Roy, S.; Gutlapalli, V.R.; Saraf, S.; Suppahia, A.; Verma, A.; Tiwari, A.; Yadav, M.; Nayarisseri, A. Molecular modeling of Acetyl-CoA carboxylase (ACC) from Jatropha curcas and virtual screening for identification of inhibitors. J. Pharm. Res., 2013, 6(9), 913-918.
[http://dx.doi.org/10.1016/j.jopr.2013.07.032]
[33]
Rao, D.M.; Nayarisseri, A.; Yadav, M.K.S.S.; Patel, D. Comparative modeling of methylentetrahydrofolate reductase (MTHFR) enzyme and its mutational assessment: in silico approach. International Journal of Bioinformatics Research, 2010, 2(1), 5-9.
[http://dx.doi.org/10.9735/0975-3087.2.1.5-9]
[34]
Bandaru, S.; Alvala, M.; Nayarisseri, A.; Sharda, S.; Goud, H.; Mundluru, H.P.; Singh, S.K. Molecular dynamic simulations reveal suboptimal binding of salbutamol in T164I variant of β2 adrenergic receptor. PLoS One, 2017, 12(10)e0186666
[http://dx.doi.org/10.1371/journal.pone.0186666] [PMID: 29053759]
[35]
Shameer, K.; Nayarisseri, A.; Romero Duran, F.X.; González-Díaz, H. Editorial: Improving Neuropharmacology using Big Data, Machine Learning and Computational Algorithms. Curr. Neuropharmacol., 2017, 15(8), 1058-1061.
[http://dx.doi.org/10.2174/1570159X1508171114113425] [PMID: 29199918]
[36]
Nasr, A.B.; Ponnala, D.; Sagurthi, S.R.; Kattamuri, R.K.; Marri, V.K.; Gudala, S.; Lakkaraju, C.; Bandaru, S.; Nayarisseri, A. Molecular Docking studies of FKBP12-mTOR inhibitors using binding predictions. Bioinformation, 2015, 11(6), 307-315.
[http://dx.doi.org/10.6026/97320630011307] [PMID: 26229292]
[37]
Khandekar, N.; Singh, S.; Shukla, R.; Tirumalaraju, S.; Bandaru, S.; Banerjee, T.; Nayarisseri, A. Structural basis for the in vitro known acyl-depsipeptide 2 (ADEP2) inhibition to Clp 2 protease from Mycobacterium tuberculosis. Bioinformation, 2016, 12(3), 92-97.
[http://dx.doi.org/10.6026/97320630012092] [PMID: 28149041]
[38]
Praseetha, S.; Bandaru, S.; Nayarisseri, A.; Sureshkumar, S. Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers. Asian Pac. J. Cancer Prev., 2016, 17(3), 1571-1576.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1571] [PMID: 27039807]
[39]
Patidar, K.; Deshmukh, A.; Bandaru, S.; Lakkaraju, C.; Girdhar, A.; Vr, G.; Banerjee, T.; Nayarisseri, A.; Singh, S.K. Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer. Asian Pac. J. Cancer Prev., 2016, 17(4), 2291-2295.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.2291] [PMID: 27221932]
[40]
Shaheen, U.; Akka, J.; Hinore, J.S.; Girdhar, A.; Bandaru, S.; Sumithnath, T.G.; Nayarisseri, A.; Munshi, A. Computer aided identification of sodium channel blockers in the clinical treatment of epilepsy using molecular docking tools. Bioinformation, 2015, 11(3), 131-137.
[http://dx.doi.org/10.6026/97320630011131] [PMID: 25914447]
[41]
Babitha, P.P.; Sahila, M.M.; Bandaru, S.; Nayarisseri, A.; Sureshkumar, S. Molecular Docking and Pharmacological Investigations of Rivastigmine-Fluoxetine and Coumarin-Tacrine hybrids against Acetyl Choline Esterase. Bioinformation, 2015, 11(8), 378-386.
[http://dx.doi.org/10.6026/97320630011378] [PMID: 26420918]
[42]
Dunna, N.R.; Bandaru, S.; Akare, U.R.; Rajadhyax, S.; Gutlapalli, V.R.; Yadav, M.; Nayarisseri, A. Multiclass comparative virtual screening to identify novel Hsp90 inhibitors: a therapeutic breast cancer drug target. Curr. Top. Med. Chem., 2015, 15(1), 57-64.
[http://dx.doi.org/10.2174/1568026615666150112113627] [PMID: 25579569]
[43]
Dunna, N.R.; Kandula, V.; Girdhar, A.; Pudutha, A.; Hussain, T.; Bandaru, S.; Nayarisseri, A. High affinity pharmacological profiling of dual inhibitors targeting RET and VEGFR2 in inhibition of kinase and angiogeneis events in medullary thyroid carcinoma. Asian Pac. J. Cancer Prev., 2015, 16(16), 7089-7095.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7089] [PMID: 26514495]
[44]
Bandaru, S.; Marri, V.K.; Kasera, P.; Kovuri, P.; Girdhar, A.; Mittal, D.R.; Ikram, S.; Gv, R.; Nayarisseri, A. Structure based virtual screening of ligands to identify cysteinyl leukotriene receptor 1 antagonist. Bioinformation, 2014, 10(10), 652-657.
[http://dx.doi.org/10.6026/97320630010652] [PMID: 25489175]
[45]
Sinha, C.; Nischal, A.; Bandaru, S.; Kasera, P.; Rajput, A.; Nayarisseri, A.; Khattri, S. An in silico approach for identification of novel inhibitors as a potential therapeutics targeting HIV-1 viral infectivity factor. Curr. Top. Med. Chem., 2015, 15(1), 65-72.
[http://dx.doi.org/10.2174/1568026615666150112114337] [PMID: 25579575]
[46]
Sinha, C.; Nischal, A.; Pant, K.K.; Bandaru, S.; Nayarisseri, A.; Khattri, S. Molecular docking analysis of RN18 and VEC5 in A3G-Vif inhibition. Bioinformation, 2014, 10(10), 611-616.
[http://dx.doi.org/10.6026/97320630010611] [PMID: 25489169]
[47]
Bandaru, S.; Ponnala, D.; Lakkaraju, C.; Bhukya, C.K.; Shaheen, U.; Nayarisseri, A. Identification of high affinity non-peptidic small molecule inhibitors of MDM2-p53 interactions through structure-based virtual screening strategies. Asian Pac. J. Cancer Prev., 2015, 16(9), 3759-3765.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3759] [PMID: 25987034]
[48]
Bandaru, S.; Prasad, M.H.; Jyothy, A.; Nayarisseri, A.; Yadav, M. Binding modes and pharmacophoric features of muscarinic antagonism and β2 agonism (MABA) conjugates. Curr. Top. Med. Chem., 2013, 13(14), 1650-1655.
[http://dx.doi.org/10.2174/15680266113139990115] [PMID: 23889054]
[49]
Vuree, S.; Dunna, N.R.; Khan, I.A.; Alharbi, K.K.; Vishnupriya, S.; Soni, D.; Shah, P.; Chandok, H.; Yadav, M.; Nayarisseri, A. Pharmacogenomics of drug resistance in Breast Cancer Resistance Protein (BCRP) and its mutated variants. J. Pharm. Res., 2013, 6(7), 791-798.
[http://dx.doi.org/10.1016/j.jopr.2013.06.020]
[50]
Basak, S.C.; Nayarisseri, A.; González-Díaz, H.; Bonchev, D. Editorial (Thematic Issue: Chemoinformatics Models for Pharmaceutical Design, Part 1). Curr. Pharm. Des., 2016, 22(33), 5041-5042.
[http://dx.doi.org/10.2174/138161282233161109224932] [PMID: 27852204]
[51]
Kelotra, A.; Gokhale, S.M.; Kelotra, S.; Mukadam, V.; Nagwanshi, K.; Bandaru, S.; Nayarisseri, A.; Bidwai, A. Alkyloxy carbonyl modified hexapeptides as a high affinity compounds for Wnt5A protein in the treatment of psoriasis. Bioinformation, 2014, 10(12), 743-749.
[http://dx.doi.org/10.6026/97320630010743] [PMID: 25670877]
[52]
Kelotra, S.; Jain, M.; Kelotra, A.; Jain, I.; Bandaru, S.; Nayarisseri, A.; Bidwai, A. An in silico appraisal to identify high affinity anti-apoptotic synthetic tetrapeptide inhibitors targeting the mammalian caspase 3 enzyme. Asian Pac. J. Cancer Prev., 2014, 15(23), 10137-10142.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10137] [PMID: 25556438]
[53]
Majhi, M.; Ali, M.A.; Limaye, A.; Sinha, K.; Bairagi, P.; Chouksey, M.; Shukla, R.; Kanwar, N.; Hussain, T.; Nayarisseri, A.; Singh, S.K. An in Silico Investigation of Potential EGFR Inhibitors for the Clinical Treatment of Colorectal Cancer. Curr. Top. Med. Chem., 2018, 18(27), 2355-2366.
[http://dx.doi.org/10.2174/1568026619666181129144107] [PMID: 30499396]
[54]
Khandelwal, R.; Chauhan, A.P.S.; Bilawat, S.; Gandhe, A.; Hussain, T.; Hood, E.A.; Nayarisseri, A.; Singh, S.K. Structure-based virtual screening for the identification of high affinity small molecule towards STAT3 for the clinical treatment of Osteosarcoma. Curr. Top. Med. Chem., 2018, 18(29), 2511-2526.
[http://dx.doi.org/10.2174/1568026618666181115092001] [PMID: 30430945]
[55]
Sharma, K.; Patidar, K.; Ali, M.A.; Patil, P.; Goud, H.; Hussain, T.; Nayarisseri, A.; Singh, S.K. Structure-Based Virtual Screening for the Identification of High Affinity Compounds as Potent VEGFR2 Inhibitors for the Treatment of Renal Cell Carcinoma. Curr. Top. Med. Chem., 2018, 18(25), 2174-2185.
[http://dx.doi.org/10.2174/1568026619666181130142237] [PMID: 30499413]
[56]
Sinha, K.; Majhi, M.; Thakur, G.; Patidar, K.; Sweta, J.; Hussain, T.; Nayarisseri, A.; Singh, S.K. Computer aided Drug Designing for the identification of high affinity small molecule targeting CD20 for the clinical treatment of Chronic Lymphocytic Leukemia (CLL). Curr. Top. Med. Chem., 2018, 18(29), 2527-2542.
[http://dx.doi.org/10.2174/1568026619666181210150044] [PMID: 30526461]
[57]
Jain, D.; Udhwani, T.; Sharma, S.; Gandhe, A.; Bhaskar, R.P.; Nayarisseri, A.; Singh, S.K. Design of novel JAK3 Inhibitors towards Rheumatoid Arthritis using molecular analysis. Bioinformation, 2019, 15(2), 68-78.
[http://dx.doi.org/10.6026/97320630015068]
[58]
Gokhale, P.; Chauhan, A.P.S.; Arora, A.; Khandekar, N.; Nayarisseri, A.; Singh, S.K. FLT3 inhibitor design using molecular docking based virtual screening for acute myeloid leukemia docking. Bioinformation, 2019, 15(2), 104-115.
[http://dx.doi.org/10.6026/97320630015104]
[59]
Shukla, P.; Khandelwal, R.; Sharma, D.; Dhar, A.; Nayarisseri, A.; Singh, S.K. Virtual Screening of IL-6 Inhibitors for Idiopathic Arthritis. Bioinformation, 2019, 15(2), 121-130.
[http://dx.doi.org/10.6026/97320630015121]
[60]
Udhwani, T.; Mukherjee, S.; Sharma, K.; Sweta, J.; Khandekar, N.; Nayarisseri, A.; Singh, S.K. Design of PD-L1 inhibitors for lung cancer. Bioinformation, 2019, 15(2), 139-150.
[http://dx.doi.org/10.6026/97320630015139]
[61]
Nayarisseri, A.; Singh, S.K. Functional Inhibition of VEGF and EGFR Suppressors in Cancer Treatment. Curr. Top. Med. Chem., 2019, 19(3), 178-179.
[http://dx.doi.org/10.2174/156802661903190328155731] [PMID: 30950335]
[62]
Patidar, K.; Panwar, U.; Vuree, S.; Sweta, J.; Sandhu, M.K.; Nayarisseri, A. Singh, S.K. An In silico Approach to Identify High Affinity Small Molecule Targeting m-TOR Inhibitors for the Clinical Treatment of Breast Cancer. Asian Pac. J. Cancer Prev., 2019, 20(4), 1229-1241.
[http://dx.doi.org/10.31557/APJCP.2019.20.4.1229] [PMID: 31030499]
[63]
Patidar, K.; Panwar, U.; Vuree, S.; Jajoriya, S.; Sandhu, M.K.; Nayarisseri, A.; Singh, S.K. An In silico Approach to Identify High Affinity small Molecule Targeting m-TOR Inhibitors for the Clinical Treatment of Breast Cancer. Asian Pac. J. Cancer Prev., 2019, 20(4), 1229-1241.
[64]
Nayarisseri, A. Prospects of Utilizing Computational Techniques for the Treatment of Human Diseases. Curr. Top. Med. Chem., 2019, 19(13), 1071-1074.
[65]
Sweta, J.; Khandelwal, R.; Srinitha, S.; Pancholi, R.; Adhikary, R.; Ali, M.A.; Nayarisseri, A.; Vuree, S.; Singh, S.K. Identification of High-Affinity Small Molecule Targeting IDH2 for the Clinical Treatment of Acute Myeloid Leukemia. Asian Pac. J. Cancer Prev., 2019, 20(8), 2287-2297.
[66]
Ali, M.A.; Vuree, S.; Goud, H.; Hussain, T.; Nayarisseri, A.; Singh, S.K. Identification of high-affinity small molecules targeting gamma secretase for the treatment of alzheimer’s disease. Curr. Top. Med. Chem., 2019, 19(13), 1173-1187.
[http://dx.doi.org/10.2174/1568026619666190617155326] [PMID: 31244427]
[67]
Sharda, S.; Khandelwal, R.; Adhikary, R.; Sharma, D.; Majhi, M.; Hussain, T.; Nayarisseri, A.; Singh, S.K.A. Computer - Aided Drug Designing for pharmacological inhibition of mutant alk for the treatment of non-small cell lung cancer. Curr. Top. Med. Chem., 2019, 19(13), 1129-1144.
[http://dx.doi.org/10.2174/156802661966619052108494] [PMID: 31109278]
[68]
Mendonça-Junior, F.J.B.; Scotti, M.T.; Nayarisseri, A.; Zondegoumba, E.N.T.; Scotti, L. Natural bioactive products with antioxidant properties useful in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2019.7151780
[PMID: 31210847] [http://dx.doi.org/10.1155/2019/7151780]
[69]
Monteiro, A.F.M.; Viana, J.O.; Nayarisseri, A.; Zondegoumba, E.N.; Mendonça, F.J.B., Junior; Scotti, M.T.; Scotti, L. Computational studies applied to flavonoids against alzheimer’s and parkinson’s diseases. Oxid. Med. Cell. Longev., 2018, 20187912765
[PMID: 30693065]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy