Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Herbal Medications for the Management of Diabetes Mellitus: A Review

Author(s): Bilal A. Al-Jaidi*, Haifa'a Marouf Odetallah, Balakumar Chandrasekaran and Razan Amro

Volume 6, Issue 4, 2020

Page: [332 - 350] Pages: 19

DOI: 10.2174/2215083805666190820115332

Price: $65

Abstract

Diabetes mellitus is a chronic metabolic disorder of the endocrine system affecting people worldwide. It is a serious disorder that needs lifetime control which is mainly treated by numerous chemical agents. Most of these chemical agents are associated with various unpleasant adverse effects, as a result of which there is a growing interest towards the alternative medicines which are found to be comparatively safer causing less adverse effects. As there are many plant’s extracts which are evident to provide hypoglycemic effect, intensive investigations are under progress to explore their advantageous effects on diabetic patients. This article discusses some of these important plants that are either being used for diabetes treatment or under investigation for future drug development.

Keywords: Alternative therapy, herbal medication, diabetes mellitus, cardiovascular diseases, hypoglycemic action, drug development, chemical agents.

Graphical Abstract

[1]
Pandey A, Tripathi P, Pandey R. et al Alternative therapies useful in the management of diabetes: A systematic review. J Pharm Bioallied Sci 2011; 3(4): 504.
[2]
Samad A, Shams MS, Ullah Z, et al. Status of herbal medicines in the treatment of diabetes: a review. Curr Diabetes Rev 2009; 5(2): 102-11.
[3]
Wang Z, Wang J, Chan P. Treating type 2 diabetes mellitus with traditional Chinese and Indian medicinal herbs Evid Based Complement Alternat Med 2013 2013.
[4]
Ghorbani A. Best herbs for managing diabetes: A review of clinical studies. Braz J Pharm Sci 2013; 49(3): 413-22.
[5]
WHO. Global report on Diabetes Geneva, Switzerland: 2016. Contract No.: ISBN 978 92 4 156525 7
[6]
Ghorbani A, Rakhshandeh H. The most effective herbs for diabetes. Mashhad: Mashhad University of Medical Sciences Publisher 2012; pp. 21-127.
[7]
Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther 2008; 88(11): 1254-64.
[8]
Lorenzati B, Zucco C, Miglietta S. et al Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of actionoral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharma 2010; 3(9): 3005-20.
[9]
Gupta N, Khera S, Vempati RP. et al Effect of yoga based lifestyle intervention on state and trait anxiety. Indian J Physiol Pharmacol 2006; 50(1): 41-7.
[10]
Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med 2011; 17(8): 563.
[11]
Bhat M, Zinjarde SS, Bhargava SY, et al. Antidiabetic Indian plants: A good source of potent amylase inhibitors. Evid-Based Complement Altern Med 2011 2011.
[12]
Li W, Zheng H, Bukuru J. et al Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004; 92(1): 1-21.
[13]
Kesari AN, Kesari S, Singh SK. et al Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J Ethnopharmacol 2007; 112(2): 305-11.
[14]
Welihinda J, Karunanayake E, Sheriff M. et al Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J Ethnopharmacol 1986; 17(3): 277-82.
[15]
Shivanagoudra SR, Perera WH, Perez JL, et al. Cucurbitane-type compounds from Momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorg Chem 2019; 87: 31-42.
[16]
Wang Q, Wu X, Shi F. et al Comparison of antidiabetic effects of saponins and polysaccharides from Momordica charantia L. in STZ-induced type 2 diabetic mice. Biomed Pharmacother 2019; 109: 744-50.
[17]
Okabayashi Y, Tani S, Fujisawa T, et al. Effect of Gymnema sylvestre, R.Br. on glucose homeostasis in rats. Diabetes Res Clin Pract 1990; 9(2): 143-8.
[18]
Tominaga M, Kimura M, Sugiyama K, et al. Effects of seishin-renshi-in and Gymnema sylvestre on insulin resistance in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 1995; 29(1): 11-7.
[19]
Shanmugasundaram K, Panneerselvam C, Samudram P. et al Enzyme changes and glucose utilisation in diabetic rabbits: the effect of Gymnema sylvestre, R. Br J Ethnopharmacol 1983; 7(2): 205-34.
[20]
Zhu XM, Xie P, Di YT. et al Two new triterpenoid saponins from Gymnema sylvestre. J Integr Plant Biol 2008; 50(5): 589-92.
[21]
Daisy P, Eliza J, Farook KA. MM A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats. J Ethnopharmacol 2009; 126(2): 339-44.
[22]
Ahmed AB, Rao AS, Rao MV. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate beta-cells regeneration and anti-diabetic activity in Wistar rats. Phytomed: Int J Phytother Phytopharmacol 2010; 17(13): 1033-9.
[23]
Hu SY. The genus Panax (ginseng) in Chinese medicine. Econ Bot 1976; 30(1): 11-28.
[24]
Qi L-W, Wang C-Z, Yuan C-S. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011; 28(3): 467-95.
[25]
Zheng Y, Bai L, Zhou Y, et al. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2018; 121: 1240-53.
[26]
Yoon M, Lee H, Jeong S, et al. Peroxisome proliferator-activated receptor α is involved in the regulation of lipid metabolism by ginseng. Br J Pharmacol 2003; 138(7): 1295-302.
[27]
Kong H-l, Wang J-P, Li Z-q. et al Anti-hypoxic effect of ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharm Sin 2009; 30(4): 396.
[28]
Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and tolerability of Ginkgo biloba extract EGb 761 ® by type of dementia: analyses of a randomised controlled trial. J Neurol Sci 2009; 283(1-2): 224-9.
[29]
Shen L, Chen X, Zhang X. et al Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. J Hered 2005; 94(4): 396.
[30]
D’Andrea G, Bussone G, Allais G, et al. Efficacy of Ginkgolide B in the prophylaxis of migraine with aura. Neurol Sci 2009; 30(1): 121-4.
[31]
Kudolo GB. et al The effect of 3-month ingestion of Ginkgo biloba extract on pancreatic beta-cell function in response to glucose loading in normal glucose tolerant individuals. J Clin Pharmacol 2000; 40(6): 647-54.
[32]
Li XS, Zheng WY, Lou SX. Effect of Ginkgo leaf extract on vascular endothelial function in patients with early stage diabetic nephropathy. Chin J Integr Med 2009; 15(1): 26-9.
[33]
Ihl R, Tribanek M, Bachinskaya N. Baseline neuropsychiatric symptoms are effect modifiers in Ginkgo biloba extract (EGb 761®) treatment of dementia with neuropsychiatric features. Retrospective data analyses of a randomized controlled trial. J Neurol Sci 2010; 299(1-2): 184-7.
[34]
Lau KM, Lai KK, Liu CL, et al. Synergistic interaction between Astragali Radix and Rehmanniae Radix in a Chinese herbal formula to promote diabetic wound healing. J Ethnopharmacol 2012; 141(1): 250-6.
[35]
Wang ZJ, Wo SK, Wang L, et al. Simultaneous quantification of active components in the herbs and products of Si-Wu-Tang by high performance liquid chromatography-mass spectrometry. J Pharma Biomed Anal 2009; 50(2): 232-44.
[36]
Xia X, Yan J, Shen Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One 2011; 6(2) e16556
[37]
Huang WY, Dong H. Coptidis rhizoma - Contained traditional formulae for insomnia: A potential to prevent diabetes? Chin J Integr Med 2018; 24(10): 785-8.
[38]
Bawadi HA, Maghaydah SN, Tayyem RF, et al. The postprandial hypoglycemic activity of fenugreek seed and seeds’ extract in type 2 diabetics: A pilot study. Pharmacog Mag 2009; 5(18): 134.
[39]
Lu FR, Shen L, Qin Y. et al Clinical observation on trigonella foenum-graecum L. total saponins in combination with sulfonylureas in the treatment of type 2 diabetes mellitus. Chin J Integr Med 2008; 14(1): 56-60.
[40]
Khan MA, Rahman AA, Islam S, et al. A comparative study on the antioxidant activity of methanolic extracts from different parts of Morus alba L. (Moraceae). BMC Res Notes 2013; 6(1): 24.
[41]
Cai S, Sun W, Fan Y, et al. Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm Biol 2016; 54(11): 2685-91.
[42]
Cao G, Zhang C, Zhang Y. et al Screening and identification of potential active components in crude Fructus Corni using solid-phase extraction and LC-LTQ-linear ion trap mass spectrometry. Pharm Biol 2012; 50(3): 278-83.
[43]
Qian D, Zhu Y, Zhu Q. Effect of alcohol extract of Cornus officinalis Sieb. et Zucc on GLUT4 expression in skeletal muscle in type 2 (non-insulindependent) diabetic mellitus rats. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China J Chinese Materia Medica 2001; 26(12): 859-62.
[44]
Salehi B, Abu-Darwish MS, Tarawneh AH, et al. Thymus spp. plants-Food applications and phytopharmacy properties. Trends Food Sci Technol 2019.
[45]
Taleb A, Qannadi F, Changizi AS, et al. The effect of aqueous extract thymus kotschyanus boiss. Et hohen on glycemic control and dyslipidemia associated with type II diabetes: A randomized controlled trial. Iran J Endocrinol Metabol 2017; 19(4): 234-43.
[46]
de Almeida RF, Trevisan MTS, Thomaziello RA, et al. Nutraceutical compounds: Echinoids, flavonoids, xanthones and caffeine identified and quantitated in the leaves of Coffea arabica trees from three regions of Brazil. Food Res Int (Ottawa, Ont) 2019; 115: 493-503.
[47]
Felberg I, Farah A, Monteiro MC, et al. Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. J Funct Foods 2015; 19: 688-99.
[48]
Hu H, Zhao Q, Xie J. et al Polysaccharides from pineapple pomace: new insight into ultrasonic-cellulase synergistic extraction and hypoglycemic activities. Int J Biol Macromol 2019; 121: 1213-26.
[49]
Lu A, Yu M, Fang Z, et al. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. Int J Biol Macromol 2019; 121: 261-9.
[50]
Guex CG, Reginato FZ, de Jesus PR. et al Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J Ethnopharmacol 2019; 235: 1-7.
[51]
Wu G-J, Liu D, Wan Y-J, et al. Comparison of hypoglycemic effects of polysaccharides from four legume species. Food Hydrocoll 2019; 90: 299-304.
[52]
Tang G-Y, Li X-J, Zhang H-Y. Antidiabetic components contained in vegetables and legumes. Mol 2008; 13(5): 1189-94.
[53]
Jia-Qi X, Ni F, Bo-Yang Y. et al Biotransformation of quercetin by Gliocladium deliquescens NRRL 1086. Chin J Nat Med 2017; 15(8): 615-24.
[54]
Bule M, Abdurahman A, Nikfar S. et al Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem Toxicol 2019.
[55]
Shannon S. Handbook of Complementary and Alternative Therapies in Mental Health. Elsevier 2002.
[56]
Tsao JC. Effectiveness of massage therapy for chronic, non-malignant pain: a review. Evid-based Complement Altern Med 2007; 4(2): 165-79.
[57]
Elson DF, Meredith M. Therapy for type 2 diabetes mellitus. WMJ Official Publication of the State Medical Society of Wisconsin 1998; 97(3): 49-54.
[58]
Ezzo J, Donner T, Nickols D, et al. Is massage useful in the management of diabetes? A Syst Rev. Diabetes Spectr 2001; 14(4): 218-24.
[59]
Sahay BK. Role of yoga in diabetes. JAPI 2007; 55: 121-6.
[60]
Škrha J, Šindelka G, Kvasnička J. et al Insulin action and fibrinolysis influenced by vitamin E in obese Type 2 diabetes mellitus. Diabetes Res Clin Pract 1999; 44(1): 27-33.
[61]
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2000; 78(10): 829-47.
[62]
Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr 1998; 17(6): 548-55.
[63]
Baker B. Chromium supplements tied to glucose control. Fam Pract News 1996; 15(5)
[64]
Saikot F, Khan A, Hasan M. Antimicrobial and cytotoxic activities of Abroma augusta Lnn. leaves extract. Asian Pac J Trop Biomed 2012; 2(3): S1418-22.
[65]
Krisanapun C, Lee S-H, Peungvicha P, et al. Antidiabetic activities of Abutilon indicum (L.) sweet are mediated by enhancement of adipocyte differentiation and activation of the GLUT1 promoter. Evidence- Based Complementary and Alternative Medicine. 2011 2011.
[66]
Lawrence R, Jeyakumar E, Gupta A. Antibacterial activity of Acacia arabica (Bark) extract against selected multi drug resistant pathogenic bacteria. Int J Curr Microbiol Appl Sci 2015; 1: 213-22.
[67]
Singh N, Jaswal SS. Alkaloids of aconitum palmatum: carbon skeleton of vakognavine. Tetrahedron Lett 1968; (9)18: 2219-22.
[68]
Arawwawala M, Jayaratne M. Aegle marmelos (L.) correa as a potential candidate for treatment of diabetes mellitus: A review. J Herb Med Pharmacol 2017; 6(4): 141-7.
[69]
Vijaya C, Ramanathan M, Suresh B. Lipid lowering activity of ethanolic extract of leaves of Aegle marmelos (Linn.) in hyperlipidaemic models of Wistar albino rats 2009.
[70]
Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008; 53(4): 163-6.
[71]
Kotha P, Marella S, Allagadda R. et al Evaluation of biochemical mechanisms of anti-diabetic functions of Anisomeles malabarica. Biomed Pharmacother 2019; 112 108598
[72]
Negi JS, Singh P, Joshi GP. et al Chemical constituents of Asparagus. Pharmacogn Rev 2010; 4(8): 215.
[73]
Sinmisola A, Oluwasesan BM, Chukwuemeka AP. Blighia sapida KD Koenig: A Review on its Phyto Chemistry, Pharmacological and Nutritional Properties 2019.
[74]
Bhavsar C, Talele GS. Potential anti-diabetic activity of Bombax ceiba. Bangladesh J Pharmacol 2013; 8(2): 102-6.
[75]
Kannur DM, Hukkeri VI, Akki KS. Antidiabetic activity of Caesalpinia bonducella seed extracts in rats. Fitoterapia 2006; 77(7): 546-9.
[76]
Wu N, Fu K, Fu Y-J, et al. Antioxidant activities of extracts and main components of Pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Mol 2009; 14(3): 1032-43.
[77]
Zia-Ul-Haq M, Ćavar S, Qayum M. et al Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int J Mol Sci 2011; 12(12): 8846-61.
[78]
Piero N, Eliud N, Susan K, et al. In vivo antidiabetic activity and safety in rats of Cissampelos pareira traditionally used in the management of diabetes mellitus in Embu County, Kenya. J Drug Metab Toxicol 2015; 6: 184.
[79]
Al-Snafi AE. Chemical constituents and pharmacological effects of Citrullus colocynthis - A review. IOSR J Pharm 2016; 6(3): 57-67.
[80]
Rekha SS, Pradeepkiran JA, Bhaskar M. Bioflavonoid hesperidin possesses the anti-hyperglycemic and hypolipidemic property in STZ induced diabetic myocardial infarction (DMI) in male Wister rats. J Nutr Intermed Metab 2019; 15: 58-64.
[81]
Venkateswaran S, Pari L. Effect of Coccinia indica on blood glucose, insulin and key hepatic enzymes in experimental diabetes. Pharm Biol 2002; 40(3): 165-70.
[82]
Mahesh Kumar P, Venkataranganna MV, Manjunath K. et al Momordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice. Iran J Basic Med Sci 2018; 21(10): 1083-90.
[83]
Meng Q, Chen F, Xiao T. et al Inhibitory effects of polysaccharide from Diaphragma juglandis fructus on α-amylase and α-d-glucosidase activity, streptozotocin-induced hyperglycemia model, advanced glycation end-products formation, and H2O2-induced oxidative damage. Int J Biol Macromol 2019; 124: 1080-9.
[84]
Songa A, Wang Y, Liua Y. Study on the chemical constituents of the essential oil of the leaves of Eucalyptus globulus Labill from China. Asian J Tradit Med 2009; 4(4): 134-40.
[85]
Ji X, Han L, Liu F. et al A mini-review of isolation, chemical properties and bioactivities of polysaccharides from buckwheat (Fagopyrum Mill). Int J Biol Macromol 2019; 127: 204-9.
[86]
Latifi E, Mohammadpour AA, Fatih B. et al Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed Pharmacother 2019; 110: 197-202.
[87]
Kalita S, Kumar G, Karthik L, et al. A review on medicinal properties of Lantana camara Linn. Res J Pharm Technol 2012; 5(6): 711.
[88]
Mawa J, Rahman MA, Hashem M. et al Leea macrophylla root extract upregulates the mRNA expression for antioxidative enzymes and repairs the necrosis of pancreatic β-cell and kidney tissues in fructose-fed Type 2 diabetic rats. Biomed Pharmacother 2019; 110: 74-84.
[89]
Shah KA, Patel MB, Patel RJ. et al Mangifera indica (mango). Pharmacogn Rev 2010; 4(7): 42-8.
[90]
Murugesan S, Pannerselvam A, Tangavelou AC. Phytochemical screening and antimicrobial activity of the leaves of Memecylon umbellatum burm F J Appl Pharma Sci 2011; 1(1)
[91]
Agbafor KN, Nwachukwu N. Phytochemical analysis and antioxidant property of leaf extracts of Vitex doniana and Mucuna pruriens. Biochem Res Int 2011; 2011 459839
[92]
Immam M, Akter S. Musa paradisiaca L. and Musa sapientum L. A phytochemical and pharmacological review. J Appl Pharm Sci 2011; 1(05): 14-20.
[93]
Mukherjee PK, Mukherjee D, Maji AK. The sacred lotus (Nelumbo nucifera) - phytochemical and therapeutic profile. J Pharm Pharmacol 2009; 61(4): 407-22.
[94]
Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 2005; 49(2): 125.
[95]
Beidokhti NM, Andersen MV, Eid HM, et al. Investigation of antidiabetic potential of Phyllanthus niruri L. using assays for alpha-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis. Biochem Biophys Res Commun 2017; 493(1): 869-74.
[96]
Sheehan EW, Zemaitis MA, Slatkin DJ. et al A constituent of Pterocarpus marsupium, (-)-Epicatechin, as a potential antidiabetic agent. J Nat Prod 1983; 46(2): 232-4.
[97]
Nandini H, Naik PR. Action of corilagin on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Chemico-biological Interact 2019; 299: 186-93.
[98]
Huang T, He L, Qin Q, et al. Salacia oblonga root decreases cardiac hypertrophy in Zucker diabetic fatty rats: inhibition of cardiac expression of angiotensin II type 1 receptor. Diabetes Obes Metab 2008; 10(7): 574-85.
[99]
Semwal D, Bamola A, Rawat U. et al Chemical constituents of some antidiabetic plants. Univ J Phytochem Ayur Heig 2007; 2(3): 40-8.
[100]
Patel D, Prasad SK, Kumar R. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[101]
Oguntibeju OO, Aboua Y, Goboza M. Vindoline - A natural product from Catharanthus roseus reduces hyperlipidemia and renal pathophysiology in experimental type 2 diabetes Biomed 2019; 7(3)
[102]
Li Y, Tran VH, Duke CC, et al. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evid-Based Complement Alter Med 2012 2012.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy