General Review Article

当前纳米医学中的自组装肽:用于药物输送的多功能纳米材料。

卷 27, 期 29, 2020

页: [4855 - 4881] 页: 27

弟呕挨: 10.2174/0929867326666190712154021

价格: $65

摘要

背景:现代纳米医学的发展很大程度上取决于新型材料作为药物输送系统的参与。 为了最大化药物的治疗效果并最小化其副作用,已经广泛研究了许多天然或合成材料用于药物递送。 在这些材料中,仿生自组装肽(SAP)近年来受到越来越多的关注。 考虑到为药物输送而设计的SAP数量迅速增长,对基于SAP的药物输送系统的设计方式进行总结将是有益的。 方法:我们概述了已作为不同药物的载体进行研究的不同SAP的研究工作,重点是SAP纳米材料的设计以及它们在不同策略中如何用于药物递送。 结果:根据化学互补性和结构相容性的基本规律,可以设计离子自互补肽,肽两亲性和表面活性剂样肽等SAP。 根据肽材料和所递送药物的特性,可以采用不同的策略(例如水凝胶包埋,疏水相互作用,静电相互作用,共价结合或它们的组合)来制备SAPs-药物复合物,从而实现缓慢释放, 有针对性或对环境敏感的药物交付。 此外,某些SAP也可以与其他类型的材料组合以进行药物输送,甚至可以自己充当药物。 结论:已经按照各种策略设计了各种类型的SAP,并将其用于药物输送,这表明SAP作为一类通用的纳米材料在纳米医学领域具有广阔的发展潜力。

关键词: 自组装,肽,水凝胶,纳米颗粒,药物载体,控释,靶向递送。

[1]
Ho, B.N.; Pfeffer, C.M.; Singh, A.T.K. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment. Anticancer Res., 2017, 37(11), 5975-5981.
[PMID: 29061776]
[2]
Marik, P.E. Propofol: therapeutic indications and side-effects. Curr. Pharm. Des., 2004, 10(29), 3639-3649.
[http://dx.doi.org/10.2174/1381612043382846] [PMID: 15579060]
[3]
Mueller, C.; Altenburger, U.; Mohl, S. Challenges for the pharmaceutical technical development of protein coformulations. J. Pharm. Pharmacol., 2018, 70(5), 666-674.
[http://dx.doi.org/10.1111/jphp.12731] [PMID: 28470967]
[4]
Wagner, A.M.; Gran, M.P.; Peppas, N.A. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm. Sin. B, 2018, 8(2), 147-164.
[http://dx.doi.org/10.1016/j.apsb.2018.01.013] [PMID: 29719776]
[5]
Santamaria, C.M.; Woodruff, A.; Yang, R.; Kohane, D.S. Drug delivery systems for prolonged duration local anesthesia. Mater Today (Kidlington), 2017, 20(1), 22-31.
[http://dx.doi.org/10.1016/j.mattod.2016.11.019] [PMID: 28970739]
[6]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[7]
Shakya, A.K.; Nandakumar, K.S. Antigen-Specific Tolerization and Targeted Delivery as Therapeutic Strategies for Autoimmune Diseases. Trends Biotechnol., 2018, 36(7), 686-699.
[http://dx.doi.org/10.1016/j.tibtech.2018.02.008] [PMID: 29588069]
[8]
Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[9]
Giovagnoli, S.; Luca, G.; Blasi, P.; Mancuso, F.; Schoubben, A.; Arato, I.; Calvitti, M.; Falabella, G.; Basta, G.; Bodo, M.; Calafiore, R.; Ricci, M. Alginates in Pharmaceutics and Biomedicine: Is the Future so Bright? Curr. Pharm. Des., 2015, 21(33), 4917-4935.
[http://dx.doi.org/10.2174/1381612821666150820105639] [PMID: 26290204]
[10]
Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules, 2018, 23(10)E2661
[http://dx.doi.org/10.3390/molecules23102661]] [PMID: 30332830]
[11]
Cova, T.F.; Murtinho, D.; Pais, A.A.C.C.; Valente, A.J.M. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Front Chem., 2018, 6, 271.
[http://dx.doi.org/10.3389/fchem.2018.00271] [PMID: 30027091]
[12]
Adeoye, O.; Cabral-Marques, H. Cyclodextrin nanosystems in oral drug delivery: A mini review. Int. J. Pharm., 2017, 531(2), 521-531.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.050] [PMID: 28455134]
[13]
Noreen, A.; Nazli, Z.I.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol., 2017, 101, 254-272.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.029] [PMID: 28300586]
[14]
Musyanovych, A.; Landfester, K. Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol. Biosci., 2014, 14(4), 458-477.
[http://dx.doi.org/10.1002/mabi.201300551] [PMID: 24616298]
[15]
Wuttke, S.; Lismont, M.; Escudero, A.; Rungtaweevoranit, B.; Parak, W.J. Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.025] [PMID: 28182958]
[16]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[17]
Aigner, T.B.; DeSimone, E.; Scheibel, T. Biomedical Applications of Recombinant Silk-Based Materials. Adv. Mater., 2018, 30(19)e1704636
[http://dx.doi.org/10.1002/adma.201704636]] [PMID: 29436028]
[18]
Noori, A.; Ashrafi, S.J.; Vaez-Ghaemi, R.; Hatamian-Zaremi, A.; Webster, T.J. A review of fibrin and fibrin composites for bone tissue engineering. Int. J. Nanomedicine, 2017, 12, 4937-4961.
[http://dx.doi.org/10.2147/IJN.S124671] [PMID: 28761338]
[19]
Kyle, S.; Aggeli, A.; Ingham, E.; McPherson, M.J. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol., 2009, 27(7), 423-433.
[http://dx.doi.org/10.1016/j.tibtech.2009.04.002] [PMID: 19497631]
[20]
Fung, S.Y.; Yang, H.; Chen, P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf. B Biointerfaces, 2007, 55(2), 200-211.
[http://dx.doi.org/10.1016/j.colsurfb.2006.12.002] [PMID: 17234393]
[21]
Wang, M.; Adikane, H.V.; Duhamel, J.; Chen, P. Protection of oligodeoxynucleotides against nuclease degradation through association with self-assembling peptides. Biomaterials, 2008, 29(8), 1099-1108.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.049] [PMID: 18022687]
[22]
Fung, S.Y.; Yang, H.; Chen, P. Sequence effect of self-assembling peptides on the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine. PLoS One, 2008, 3(4)e1956
[http://dx.doi.org/10.1371/journal.pone.0001956]] [PMID: 18398476]
[23]
Horii, A.; Wang, X.; Gelain, F.; Zhang, S. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One, 2007, 2(2)e190
[http://dx.doi.org/10.1371/journal.pone.0000190]] [PMID: 17285144]
[24]
Worthington, P.; Pochan, D.J.; Langhans, S.A. Peptide Hydrogels - Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front. Oncol., 2015, 5, 92.
[http://dx.doi.org/10.3389/fonc.2015.00092] [PMID: 25941663]
[25]
Scott, C.M.; Forster, C.L.; Kokkoli, E. Three-Dimensional Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels. Langmuir, 2015, 31(22), 6122-6129.
[http://dx.doi.org/10.1021/acs.langmuir.5b00196] [PMID: 25970351]
[26]
Hogrebe, N.J.; Gooch, K.J. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. J. Biomed. Mater. Res. A, 2016, 104(9), 2356-2368.
[http://dx.doi.org/10.1002/jbm.a.35755] [PMID: 27163888]
[27]
Koss, K.M.; Unsworth, L.D. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater., 2016, 44, 2-15.
[http://dx.doi.org/10.1016/j.actbio.2016.08.026] [PMID: 27544809]
[28]
Wan, S.; Borland, S.; Richardson, S.M.; Merry, C.L.R.; Saiani, A.; Gough, J.E. Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater., 2016, 46, 29-40.
[http://dx.doi.org/10.1016/j.actbio.2016.09.033] [PMID: 27677593]
[29]
Koutsopoulos, S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J. Biomed. Mater. Res. Part A, 2015, 104(4), 1002-1016.
[30]
Schneider, A.; Garlick, J.A.; Egles, C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One, 2008, 3(1)e1410
[http://dx.doi.org/10.1371/journal.pone.0001410]] [PMID: 18183291]
[31]
Zhang, H.; Xin, X.; Sun, J.; Zhao, L.; Shen, J.; Song, Z.; Yuan, S. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from d- or l-threonine and application as a template for the synthesis of Au and Ag nanoparticles. J. Colloid Interface Sci., 2016, 484, 97-106.
[http://dx.doi.org/10.1016/j.jcis.2016.08.052] [PMID: 27592190]
[32]
Xing, Z.; Chen, Y.; Tang, C.; Gong, X.; Qiu, F. Fabrication of Peptide Self-assembled Monolayer on Mica Surface and its Application in Atomic Force Microscopy Nanolithography. Curr. Nanosci., 2014, 10(2), 297-301.
[http://dx.doi.org/10.2174/15734137113096660111]
[33]
Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3334-3338.
[http://dx.doi.org/10.1073/pnas.90.8.3334] [PMID: 7682699]
[34]
Zhang, S. Emerging biological materials through molecular self-assembly. Biotechnol. Adv., 2002, 20(5-6), 321-339.
[http://dx.doi.org/10.1016/S0734-9750(02)00026-5] [PMID: 14550019]
[35]
Webber, M.J.; Berns, E.J.; Stupp, S.I. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine. Isr. J. Chem., 2013, 53(8), 530-554.
[http://dx.doi.org/10.1002/ijch.201300046] [PMID: 24532851]
[36]
Niece, K.L.; Hartgerink, J.D.; Donners, J.J.J.M.; Stupp, S.I. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc., 2003, 125(24), 7146-7147.
[http://dx.doi.org/10.1021/ja028215r] [PMID: 12797766]
[37]
Harrington, D.A.; Cheng, E.Y.; Guler, M.O.; Lee, L.K.; Donovan, J.L.; Claussen, R.C.; Stupp, S.I. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J. Biomed. Mater. Res. Part A, 2006, 78A(1), 157-167.
[38]
Guler, M.O.; Hsu, L.; Soukasene, S.; Harrington, D.A.; Hulvat, J.F.; Stupp, S.I. Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles. Biomacromolecules, 2006, 7(6), 1855-1863.
[http://dx.doi.org/10.1021/bm060161g] [PMID: 16768407]
[39]
Guler, M.O.; Soukasene, S.; Hulvat, J.F.; Stupp, S.I. Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. Nano Lett., 2005, 5(2), 249-252.
[http://dx.doi.org/10.1021/nl048238z] [PMID: 15794605]
[40]
Claussen, R.C.; Rabatic, B.M.; Stupp, S.I. Aqueous self-assembly of unsymmetric Peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J. Am. Chem. Soc., 2003, 125(42), 12680-12681.
[http://dx.doi.org/10.1021/ja035882r] [PMID: 14558795]
[41]
von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. Positively Charged Surfactant-like Peptides Self-assemble into Nanostructures. Langmuir, 2003, 19(10), 4332-4337.
[http://dx.doi.org/10.1021/la026526+]
[42]
Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5355-5360.
[http://dx.doi.org/10.1073/pnas.072089599] [PMID: 11929973]
[43]
Santoso, S.; Hwang, W.; Hartman, H.; Zhang, S. Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to Form Nanotubes and Nanovesicles. Nano Lett., 2002, 2(7), 687-691.
[http://dx.doi.org/10.1021/nl025563i]
[44]
Qiu, F.; Chen, Y.; Tang, C.; Zhou, Q.; Wang, C.; Shi, Y-K.; Zhao, X. De novo design of a bolaamphiphilic peptide with only natural amino acids. Macromol. Biosci., 2008, 8(11), 1053-1059.
[http://dx.doi.org/10.1002/mabi.200800180] [PMID: 18830953]
[45]
Cao, M.; Cao, C.; Zhou, P.; Wang, N.; Wang, D.; Wang, J.; Xia, D.; Xu, H. Self-assembly of amphiphilic peptides: Effects of the single-chain-to-gemini structural transition and the side chain groups. Colloids Surf., A Phy. Chem. Eng. Asp., 2015, 469, 263-270.
[http://dx.doi.org/10.1016/j.colsurfa.2015.01.044]
[46]
Chen, Y.; Qiu, F.; Lu, Y.; Shi, Y-K.; Zhao, X. Geometrical Shape of Hydrophobic Section Determines the Self-Assembling Structure of Peptide Detergents and Bolaamphiphilic Peptides. Curr. Nanosci., 2009, 5(1), 69-74.
[http://dx.doi.org/10.2174/157341309787314683]
[47]
Qiu, F.; Tang, C.; Chen, Y. Amyloid-like aggregation of designer bolaamphiphilic peptides: Effect of hydrophobic section and hydrophilic heads. J. Pept. Sci., 2018, 24(2)e3062
[http://dx.doi.org/10.1002/psc.3062]] [PMID: 29239498]
[48]
Qiu, F.; Chen, Y.; Zhao, X. Comparative studies on the self-assembling behaviors of cationic and catanionic surfactant-like peptides. J. Colloid Interface Sci., 2009, 336(2), 477-484.
[http://dx.doi.org/10.1016/j.jcis.2009.04.014] [PMID: 19447403]
[49]
Pan, F.; Zhao, X.; Perumal, S.; Waigh, T.A.; Lu, J.R.; Webster, J.R.P. Interfacial dynamic adsorption and structure of molecular layers of peptide surfactants. Langmuir, 2010, 26(8), 5690-5696.
[http://dx.doi.org/10.1021/la9037952] [PMID: 19928974]
[50]
Yokoi, H.; Kinoshita, T.; Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA, 2005, 102(24), 8414-8419.
[http://dx.doi.org/10.1073/pnas.0407843102] [PMID: 15939888]
[51]
Gyles, D.A.; Castro, L.D.; Silva, J.O.C.; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J., 2017, 88, 373-392.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.027]
[52]
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 2003, 21(10), 1171-1178.
[http://dx.doi.org/10.1038/nbt874] [PMID: 14520402]
[53]
Yu, Z.; Xu, Q.; Dong, C.; Lee, S.S.; Gao, L.; Li, Y.; D’Ortenzio, M.; Wu, J. Self-Assembling Peptide Nanofibrous Hydrogel as a Versatile Drug Delivery Platform. Curr. Pharm. Des., 2015, 21(29), 4342-4354.
[http://dx.doi.org/10.2174/1381612821666150901104821] [PMID: 26323419]
[54]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[55]
Gelain, F.; Unsworth, L.D.; Zhang, S. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J. Control. Release, 2010, 145(3), 231-239.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.026] [PMID: 20447427]
[56]
Karavasili, C.; Panteris, E.; Vizirianakis, I.S.; Koutsopoulos, S.; Fatouros, D.G. Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma. Pharm. Res., 2018, 35(8), 166.
[http://dx.doi.org/10.1007/s11095-018-2442-1] [PMID: 29943122]
[57]
Ashwanikumar, N.; Kumar, N.A.; Saneesh Babu, P.S.; Sivakumar, K.C.; Vadakkan, M.V.; Nair, P.; Hema Saranya, I.; Asha Nair, S.; Vinod Kumar, G.S. Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. Int. J. Nanomedicine, 2016, 11, 5583-5594.
[http://dx.doi.org/10.2147/IJN.S104707] [PMID: 27822037]
[58]
Acar, H.; Srivastava, S.; Chung, E.J.; Schnorenberg, M.R.; Barrett, J.C.; LaBelle, J.L.; Tirrell, M. Self-assembling peptide-based building blocks in medical applications. Adv. Drug Deliv. Rev., 2017, 110-111, 65-79.
[http://dx.doi.org/10.1016/j.addr.2016.08.006] [PMID: 27535485]
[59]
Qiu, F.; Chen, Y.; Tang, C.; Zhao, X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int. J. Nanomedicine, 2018, 13, 5003-5022.
[http://dx.doi.org/10.2147/IJN.S166403] [PMID: 30214203]
[60]
Wu, M.; Ye, Z.; Liu, Y.; Liu, B.; Zhao, X. Release of hydrophobic anticancer drug from a newly designed self-assembling peptide. Mol. Biosyst., 2011, 7(6), 2040-2047.
[http://dx.doi.org/10.1039/c0mb00271b] [PMID: 21491031]
[61]
Liu, J.; Zhang, L.; Yang, Z.; Zhao, X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int. J. Nanomedicine, 2011, 6, 2143-2153.
[http://dx.doi.org/10.2147/IJN.S24038] [PMID: 22114478]
[62]
Bruggeman, K.F.; Rodriguez, A.L.; Parish, C.L.; Williams, R.J.; Nisbet, D.R. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel. Nanotechnology, 2016, 27(38)385102
[http://dx.doi.org/10.1088/0957-4484/27/38/385102]] [PMID: 27517970]
[63]
Florine, E.M.; Miller, R.E.; Liebesny, P.H.; Mroszczyk, K.A.; Lee, R.T.; Patwari, P.; Grodzinsky, A.J. Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels. Tissue Eng. Part A, 2015, 21(3-4), 637-646.
[http://dx.doi.org/10.1089/ten.tea.2013.0679] [PMID: 25231349]
[64]
Kopesky, P.W.; Byun, S.; Vanderploeg, E.J.; Kisiday, J.D.; Frisbie, D.D.; Grodzinsky, A.J. Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells. J. Biomed. Mater. Res. A, 2014, 102(5), 1275-1285.
[http://dx.doi.org/10.1002/jbm.a.34789] [PMID: 23650117]
[65]
Liebesny, P.H.; Byun, S.; Hung, H-H.; Pancoast, J.R.; Mroszczyk, K.A.; Young, W.T.; Lee, R.T.; Frisbie, D.D.; Kisiday, J.D.; Grodzinsky, A.J. Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment. Tissue Eng. Part A, 2016, 22(13-14), 917-927.
[http://dx.doi.org/10.1089/ten.tea.2015.0524] [PMID: 27268956]
[66]
Zhou, A.; Chen, S.; He, B.; Zhao, W.; Chen, X.; Jiang, D. Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds. Drug Des. Devel. Ther., 2016, 10, 3043-3051.
[http://dx.doi.org/10.2147/DDDT.S109545] [PMID: 27703332]
[67]
Rodriguez, A.L.; Bruggeman, K.F.; Wang, Y.; Wang, T.Y.; Williams, R.J.; Parish, C.L.; Nisbet, D.R. Using minimalist self-assembling peptides as hierarchical scaffolds to stabilise growth factors and promote stem cell integration in the injured brain. J. Tissue Eng. Regen. Med., 2018, 12(3), e1571-e1579.
[http://dx.doi.org/10.1002/term.2582] [PMID: 28987031]
[68]
Ikeno, M.; Hibi, H.; Kinoshita, K.; Hattori, H.; Ueda, M. Effects of self-assembling peptide hydrogel scaffold on bone regeneration with recombinant human bone morphogenetic protein-2. Int. J. Oral Maxillofac. Implants, 2013, 28(5), e283-e289.
[http://dx.doi.org/10.11607/jomi.te09] [PMID: 24066345]
[69]
Phipps, M.C.; Monte, F.; Mehta, M.; Kim, H.K.W. Intraosseous Delivery of Bone Morphogenic Protein-2 Using a Self-Assembling Peptide Hydrogel. Biomacromolecules, 2016, 17(7), 2329-2336.
[http://dx.doi.org/10.1021/acs.biomac.6b00101] [PMID: 27285121]
[70]
Bond, C.W.; Angeloni, N.L.; Harrington, D.A.; Stupp, S.I.; McKenna, K.E.; Podlasek, C.A. Peptide amphiphile nanofiber delivery of sonic hedgehog protein to reduce smooth muscle apoptosis in the penis after cavernous nerve resection. J. Sex. Med., 2011, 8(1), 78-89.
[http://dx.doi.org/10.1111/j.1743-6109.2010.02001.x] [PMID: 20807324]
[71]
Angeloni, N.L.; Bond, C.W.; Tang, Y.; Harrington, D.A.; Zhang, S.; Stupp, S.I.; McKenna, K.E.; Podlasek, C.A. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials, 2011, 32(4), 1091-1101.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.003] [PMID: 20971506]
[72]
Choe, S.; Veliceasa, D.; Bond, C.W.; Harrington, D.A.; Stupp, S.I.; McVary, K.T.; Podlasek, C.A. Sonic hedgehog delivery from self-assembled nanofiber hydrogels reduces the fibrotic response in models of erectile dysfunction. Acta Biomater., 2016, 32, 89-99.
[http://dx.doi.org/10.1016/j.actbio.2016.01.014] [PMID: 26776147]
[73]
Choe, S.; Bond, C.W.; Harrington, D.A.; Stupp, S.I.; McVary, K.T.; Podlasek, C.A. Peptide amphiphile nanofiber hydrogel delivery of sonic hedgehog protein to the cavernous nerve to promote regeneration and prevent erectile dysfunction. Nanomedicine (Lond.), 2017, 13(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2016.08.032] [PMID: 27609775]
[74]
Dobbs, R.; Choe, S.; Kalmanek, E.; Harrington, D.A.; Stupp, S.I.; McVary, K.T.; Podlasek, C.A. Peptide amphiphile delivery of sonic hedgehog protein promotes neurite formation in penile projecting neurons. Nanomedicine (Lond.), 2018, 14(7), 2087-2094.
[http://dx.doi.org/10.1016/j.nano.2018.06.006] [PMID: 30037776]
[75]
Carballo-Molina, O.A.; Sánchez-Navarro, A.; López-Ornelas, A.; Lara-Rodarte, R.; Salazar, P.; Campos-Romo, A.; Ramos-Mejía, V.; Velasco, I. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Eng. Part A, 2016, 22(11-12), 850-861.
[http://dx.doi.org/10.1089/ten.tea.2016.0008] [PMID: 27174503]
[76]
Altunbas, A.; Lee, S.J.; Rajasekaran, S.A.; Schneider, J.P.; Pochan, D.J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011, 32(25), 5906-5914.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.069] [PMID: 21601921]
[77]
Qi, Y.; Min, H.; Mujeeb, A.; Zhang, Y.; Han, X.; Zhao, X.; Anderson, G.J.; Zhao, Y.; Nie, G. Injectable Hexapeptide Hydrogel for Localized Chemotherapy Prevents Breast Cancer Recurrence. ACS Appl. Mater. Interfaces, 2018, 10(8), 6972-6981.
[http://dx.doi.org/10.1021/acsami.7b19258] [PMID: 29409316]
[78]
Sun, J.E.P.; Stewart, B.; Litan, A.; Lee, S.J.; Schneider, J.P.; Langhans, S.A.; Pochan, D.J. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel. Biomater. Sci., 2016, 4(5), 839-848.
[http://dx.doi.org/10.1039/C5BM00538H] [PMID: 26906463]
[79]
Yin, Y.; Wu, C.; Wang, J.; Song, F.; Yue, W.; Zhong, W. A simply triggered peptide-based hydrogel as an injectable nanocarrier of tanshinone IIA and tanshinones. Chem. Commun. (Camb.), 2017, 53(3), 529-532.
[http://dx.doi.org/10.1039/C6CC08502D] [PMID: 27966687]
[80]
Briuglia, M-L.; Urquhart, A.J.; Lamprou, D.A. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel. Int. J. Pharm., 2014, 474(1-2), 103-111.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.025] [PMID: 25148727]
[81]
Tang, C.; Miller, A.F.; Saiani, A. Peptide hydrogels as mucoadhesives for local drug delivery. Int. J. Pharm., 2014, 465(1-2), 427-435.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.039] [PMID: 24576596]
[82]
Zhao, M.; Zhou, Y.; Liu, S.; Li, L.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. Control release of mitochondria-targeted antioxidant by injectable self-assembling peptide hydrogel ameliorated persistent mitochondrial dysfunction and inflammation after acute kidney injury. Drug Deliv., 2018, 25(1), 546-554.
[http://dx.doi.org/10.1080/10717544.2018.1440445] [PMID: 29451033]
[83]
Lammi, C.; Bollati, C.; Gelain, F.; Arnoldi, A.; Pugliese, R. Enhancement of the Stability and Anti-DPPIV Activity of Hempseed Hydrolysates Through Self-Assembling Peptide-Based Hydrogels. Front Chem., 2019, 6, 670.
[http://dx.doi.org/10.3389/fchem.2018.00670] [PMID: 30733941]
[84]
Medina, S.H.; Li, S.; Howard, O.M.Z.; Dunlap, M.; Trivett, A.; Schneider, J.P.; Oppenheim, J.J. Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials, 2015, 53, 545-553.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.125] [PMID: 25890750]
[85]
Rey-Rico, A.; Venkatesan, J.K.; Frisch, J.; Schmitt, G.; Monge-Marcet, A.; Lopez-Chicon, P.; Mata, A.; Semino, C.; Madry, H.; Cucchiarini, M. Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Acta Biomater., 2015, 18, 118-127.
[http://dx.doi.org/10.1016/j.actbio.2015.02.013] [PMID: 25712390]
[86]
Hauser, C.A.E.; Zhang, S. Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev., 2010, 39(8), 2780-2790.
[http://dx.doi.org/10.1039/b921448h] [PMID: 20520907]
[87]
Nagai, Y.; Yokoi, H.; Kaihara, K.; Naruse, K. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel. Biomaterials, 2012, 33(4), 1044-1051.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.049] [PMID: 22056753]
[88]
Wu, X.; He, L.; Li, W.; Li, H.; Wong, W.M.; Ramakrishna, S.; Wu, W. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen. Biomater., 2017, 4(1), 21-30.
[http://dx.doi.org/10.1093/rb/rbw034] [PMID: 28149526]
[89]
Lindsey, S.; Piatt, J.H.; Worthington, P.; Sönmez, C.; Satheye, S.; Schneider, J.P.; Pochan, D.J.; Langhans, S.A. Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery. Biomacromolecules, 2015, 16(9), 2672-2683.
[http://dx.doi.org/10.1021/acs.biomac.5b00541] [PMID: 26225909]
[90]
Hu, C.; Liu, X.; Ran, W.; Meng, J.; Zhai, Y.; Zhang, P.; Yin, Q.; Yu, H.; Zhang, Z.; Li, Y. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 2017, 144, 60-72.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.009] [PMID: 28823844]
[91]
Li, I.C.; Moore, A.N.; Hartgerink, J.D. “Missing Tooth” Multidomain Peptide Nanofibers for Delivery of Small Molecule Drugs. Biomacromolecules, 2016, 17(6), 2087-2095.
[http://dx.doi.org/10.1021/acs.biomac.6b00309] [PMID: 27253735]
[92]
Ischakov, R.; Adler-Abramovich, L.; Buzhansky, L.; Shekhter, T.; Gazit, E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorg. Med. Chem., 2013, 21(12), 3517-3522.
[http://dx.doi.org/10.1016/j.bmc.2013.03.012] [PMID: 23566763]
[93]
Thota, C.K.; Yadav, N.; Chauhan, V.S. A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide. Sci. Rep., 2016, 6, 31167.
[http://dx.doi.org/10.1038/srep31167] [PMID: 27507432]
[94]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front. Pharmacol., 2017, 8, 261.
[http://dx.doi.org/10.3389/fphar.2017.00261] [PMID: 28559844]
[95]
El-Sayed, N.S.; Shirazi, A.N.; Sajid, M.I.; Park, S.E.; Parang, K.; Tiwari, R.K. Synthesis and Antiproliferative Activities of Conjugates of Paclitaxel and Camptothecin with a Cyclic Cell-Penetrating Peptide. Molecules, 2019, 24(7), 1427.
[http://dx.doi.org/10.3390/molecules24071427] [PMID: 30978971]
[96]
Qureshi, M.; Al-Suhaimi, E.A.; Wahid, F.; Shehzad, O.; Shehzad, A. Therapeutic potential of curcumin for multiple sclerosis. Neurol. Sci., 2018, 39(2), 207-214.
[http://dx.doi.org/10.1007/s10072-017-3149-5] [PMID: 29079885]
[97]
Chen, Y.; Tang, C.; Zhang, J.; Gong, M.; Su, B.; Qiu, F. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs. Int. J. Nanomedicine, 2015, 10, 847-858.
[PMID: 25670898]
[98]
Garbett, N.C.; Graves, D.E. Extending nature’s leads: the anticancer agent ellipticine. Curr. Med. Chem. Anticancer Agents, 2004, 4(2), 149-172.
[http://dx.doi.org/10.2174/1568011043482070] [PMID: 15032720]
[99]
Lu, S.; Wang, H.; Sheng, Y.; Liu, M.; Chen, P. Molecular binding of self-assembling peptide EAK16-II with anticancer agent EPT and its implication in cancer cell inhibition. J. Control. Release, 2012, 160(1), 33-40.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.009] [PMID: 22465389]
[100]
Sadatmousavi, P.; Mamo, T.; Chen, P. Diethylene glycol functionalized self-assembling peptide nanofibers and their hydrophobic drug delivery potential. Acta Biomater., 2012, 8(9), 3241-3250.
[http://dx.doi.org/10.1016/j.actbio.2012.05.021] [PMID: 22641104]
[101]
Wu, Y.; Sadatmousavi, P.; Wang, R.; Lu, S.; Yuan, Y.F.; Chen, P. Self-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int. J. Nanomedicine, 2012, 7, 3221-3233.
[PMID: 22802684]
[102]
Wan, Z.; Lu, S.; Zhao, D.; Ding, Y.; Chen, P. Arginine-rich ionic complementary peptides as potential drug carriers: Impact of peptide sequence on size, shape and cell specificity. Nanomedicine (Lond.), 2016, 12(6), 1479-1488.
[http://dx.doi.org/10.1016/j.nano.2016.01.008] [PMID: 26949161]
[103]
Bawa, R.; Fung, S-Y.; Shiozaki, A.; Yang, H.; Zheng, G.; Keshavjee, S.; Liu, M. Self-assembling peptide-based nanoparticles enhance cellular delivery of the hydrophobic anticancer drug ellipticine through caveolae-dependent endocytosis. Nanomedicine (Lond.), 2012, 8(5), 647-654.
[http://dx.doi.org/10.1016/j.nano.2011.08.007] [PMID: 21889478]
[104]
Soukasene, S.; Toft, D.J.; Moyer, T.J.; Lu, H.; Lee, H-K.; Standley, S.M.; Cryns, V.L.; Stupp, S.I. Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano, 2011, 5(11), 9113-9121.
[http://dx.doi.org/10.1021/nn203343z] [PMID: 22044255]
[105]
Pacheco, S.; Kanou, T.; Fung, S-Y.; Chen, K.; Lee, D.; Bai, X.; Keshavjee, S.; Liu, M. Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery. J. Control. Release, 2016, 239, 211-222.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.038] [PMID: 27586187]
[106]
Pacheco, S.; Fung, S-Y.; Liu, M. Solubility of Hydrophobic Compounds in Aqueous Solution Using Combinations of Self-assembling Peptide and Amino Acid. J. Vis. Exp., 2017, e56158(127)
[http://dx.doi.org/10.3791/56158]] [PMID: 28994806]
[107]
Chen, Y.; Xing, Z.; Liao, D.; Qiu, F. Neglected Hydrophobicity of Dimethanediyl Group in Peptide Self-Assembly: A Hint from Amyloid-like Peptide GNNQQNY and Its Derivatives. J. Phys. Chem. B, 2018, 122(46), 10470-10477.
[http://dx.doi.org/10.1021/acs.jpcb.8b09220] [PMID: 30372075]
[108]
Stoddard, B.L.; Khvorova, A.; Corey, D.R.; Dynan, W.S.; Fox, K.R. Editorial: Nucleic Acids Research and Nucleic Acid Therapeutics. Nucleic Acids Res., 2018, 46(4), 1563-1564.
[http://dx.doi.org/10.1093/nar/gky059] [PMID: 29506274]
[109]
Hardee, C.L.; Arévalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel), 2017, 8(2)E65
[http://dx.doi.org/10.3390/genes8020065]] [PMID: 28208635]
[110]
Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med., 2018, 20(5)e3015
[http://dx.doi.org/10.1002/jgm.3015]] [PMID: 29575374]
[111]
Rydström, A.; Deshayes, S.; Konate, K.; Crombez, L.; Padari, K.; Boukhaddaoui, H.; Aldrian, G.; Pooga, M.; Divita, G. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PLoS One, 2011, 6(10)e25924
[http://dx.doi.org/10.1371/journal.pone.0025924]] [PMID: 21998722]
[112]
Wyman, T.B.; Nicol, F.; Zelphati, O.; Scaria, P.V.; Plank, C.; Szoka, F.C. Jr Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10), 3008-3017.
[http://dx.doi.org/10.1021/bi9618474] [PMID: 9062132]
[113]
Gottschalk, S.; Sparrow, J.T.; Hauer, J.; Mims, M.P.; Leland, F.E.; Woo, S.L.; Smith, L.C. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther., 1996, 3(5), 448-457.
[PMID: 9156807]
[114]
Li, W.; Nicol, F.; Szoka, F.C. Jr GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev., 2004, 56(7), 967-985.
[http://dx.doi.org/10.1016/j.addr.2003.10.041] [PMID: 15066755]
[115]
Wiradharma, N.; Khan, M.; Tong, Y.W.; Wang, S.; Yang, Y-Y. Self-assembled Cationic Peptide Nanoparticles Capable of Inducing Efficient Gene Expression In Vitro. Adv. Funct. Mater., 2008, 18(6), 943-951.
[http://dx.doi.org/10.1002/adfm.200700884]
[116]
Seow, W.Y.; Yang, Y-Y. A Class of Cationic Triblock Amphiphilic Oligopeptides as Efficient Gene-Delivery Vectors. Adv. Mater., 2009, 21(1), 86-90.
[http://dx.doi.org/10.1002/adma.200800928]
[117]
Langlet-Bertin, B.; Leborgne, C.; Scherman, D.; Bechinger, B.; Mason, A.J.; Kichler, A. Design and evaluation of histidine-rich amphipathic peptides for siRNA delivery. Pharm. Res., 2010, 27(7), 1426-1436.
[http://dx.doi.org/10.1007/s11095-010-0138-2] [PMID: 20393870]
[118]
Lam, J.K.W.; Liang, W.; Lan, Y.; Chaudhuri, P.; Chow, M.Y.T.; Witt, K.; Kudsiova, L.; Mason, A.J. Effective endogenous gene silencing mediated by pH responsive peptides proceeds via multiple pathways. J. Control. Release, 2012, 158(2), 293-303.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.024] [PMID: 22138072]
[119]
Konate, K.; Rydstrom, A.; Divita, G.; Deshayes, S. Everything you always wanted to know about CADY-mediated siRNA delivery* (* but afraid to ask). Curr. Pharm. Des., 2013, 19(16), 2869-2877.
[http://dx.doi.org/10.2174/1381612811319160004] [PMID: 23140452]
[120]
Deshayes, S.; Konate, K.; Rydström, A.; Crombez, L.; Godefroy, C.; Milhiet, P-E.; Thomas, A.; Brasseur, R.; Aldrian, G.; Heitz, F.; Muñoz-Morris, M.A.; Devoisselle, J-M.; Divita, G. Self-assembling peptide-based nanoparticles for siRNA delivery in primary cell lines. Small, 2012, 8(14), 2184-2188.
[http://dx.doi.org/10.1002/smll.201102413] [PMID: 22514050]
[121]
Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Q.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther., 2009, 17(1), 95-103.
[http://dx.doi.org/10.1038/mt.2008.215] [PMID: 18957965]
[122]
Zhou, H.F.; Yan, H.; Pan, H.; Hou, K.K.; Akk, A.; Springer, L.E.; Hu, Y.; Allen, J.S.; Wickline, S.A.; Pham, C.T.N. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J. Clin. Invest., 2014, 124(10), 4363-4374.
[http://dx.doi.org/10.1172/JCI75673] [PMID: 25157820]
[123]
Hou, K.K.; Pan, H.; Lanza, G.M.; Wickline, S.A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials, 2013, 34(12), 3110-3119.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.037] [PMID: 23380356]
[124]
Mills, K.A.; Quinn, J.M.; Roach, S.T.; Palisoul, M.; Hagemann, A.R.; Thaker, P.H.; Powell, M.A.; Mutch, D.G.; Wickline, S.; Pan, H.; Fuh, K.C. A novel nanoparticle platform, p5RHH-siAXL, inhibits metastasis in gynecologic serous cancers. Gynecol. Oncol., 2018, 149, 69-70.
[http://dx.doi.org/10.1016/j.ygyno.2018.04.158]
[125]
Yi, N.; Oh, B.; Kim, H.A.; Lee, M. Combined delivery of BCNU and VEGF siRNA using amphiphilic peptides for glioblastoma. J. Drug Target., 2014, 22(2), 156-164.
[http://dx.doi.org/10.3109/1061186X.2013.850502] [PMID: 24219243]
[126]
Hwang, H-J.; Lee, M.; Park, J.H.; Jung, H.S.; Kang, J.G.; Kim, C.S.; Lee, S.J.; Ihm, S-H. Improved islet transplantation outcome by the co-delivery of siRNAs for iNOS and 17β-estradiol using an R3V6 peptide carrier. Biomaterials, 2015, 38, 36-42.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.060] [PMID: 25457981]
[127]
Oh, B.; Song, H.; Lee, D.; Oh, J.; Kim, G.; Ihm, S-H.; Lee, M. Anti-cancer effect of R3V6 peptide-mediated delivery of an anti-microRNA-21 antisense-oligodeoxynucleotide in a glioblastoma animal model. J. Drug Target., 2017, 25(2), 132-139.
[http://dx.doi.org/10.1080/1061186X.2016.1207648] [PMID: 27355932]
[128]
Alhakamy, N.A.; Dhar, P.; Berkland, C.J. Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection. Mol. Pharm., 2016, 13(3), 1047-1057.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00871] [PMID: 26878305]
[129]
Qiu, Y.; Chow, M.Y.T.; Liang, W.; Chung, W.W.Y.; Mak, J.C.W.; Lam, J.K.W. From Pulmonary Surfactant, Synthetic KL4 Peptide as Effective siRNA Delivery Vector for Pulmonary Delivery. Mol. Pharm., 2017, 14(12), 4606-4617.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00725] [PMID: 29121767]
[130]
Shinkai, Y.; Kashihara, S.; Minematsu, G.; Fujii, H.; Naemura, M.; Kotake, Y.; Morita, Y.; Ohnuki, K.; Fokina, A.A.; Stetsenko, D.A.; Filichev, V.V.; Fujii, M. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates. Nucleic Acid Ther., 2017, 27(3), 168-175.
[http://dx.doi.org/10.1089/nat.2016.0647] [PMID: 28355131]
[131]
Cao, M.; Wang, Y.; Zhao, W.; Qi, R.; Han, Y.; Wu, R.; Wang, Y.; Xu, H. Peptide-Induced DNA Condensation into Virus-Mimicking Nanostructures. ACS Appl. Mater. Interfaces, 2018, 10(29), 24349-24360.
[http://dx.doi.org/10.1021/acsami.8b00246] [PMID: 29979028]
[132]
Avila, L.A.; Aps, L.R.M.M.; Ploscariu, N.; Sukthankar, P.; Guo, R.; Wilkinson, K.E.; Games, P.; Szoszkiewicz, R.; Alves, R.P.S.; Diniz, M.O.; Fang, Y.; Ferreira, L.C.S.; Tomich, J.M. Gene delivery and immunomodulatory effects of plasmid DNA associated with Branched Amphiphilic Peptide Capsules. J. Control. Release, 2016, 241, 15-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.042] [PMID: 27592740]
[133]
Kudsiova, L.; Welser, K.; Campbell, F.; Mohammadi, A.; Dawson, N.; Cui, L.; Hailes, H.C.; Lawrence, M.J.; Tabor, A.B. Delivery of siRNA using ternary complexes containing branched cationic peptides: the role of peptide sequence, branching and targeting. Mol. Biosyst., 2016, 12(3), 934-951.
[http://dx.doi.org/10.1039/C5MB00754B] [PMID: 26794416]
[134]
Tagalakis, A.D.; Saraiva, L.; McCarthy, D.; Gustafsson, K.T.; Hart, S.L. Comparison of nanocomplexes with branched and linear peptides for siRNA delivery. Biomacromolecules, 2013, 14(3), 761-770.
[http://dx.doi.org/10.1021/bm301842j] [PMID: 23339543]
[135]
Kwok, A.; Eggimann, G.A.; Heitz, M.; Reymond, J-L.; Hollfelder, F.; Darbre, T. Efficient Transfection of siRNA by Peptide Dendrimer-Lipid Conjugates. ChemBioChem, 2016, 17(23), 2223-2229.
[http://dx.doi.org/10.1002/cbic.201600485] [PMID: 27862758]
[136]
Ahlers, P.; Frisch, H.; Holm, R.; Spitzer, D.; Barz, M.; Besenius, P. Tuning the pH-Switch of Supramolecular Polymer Carriers for siRNA to Physiologically Relevant pH. Macromol. Biosci., 2017, 17(10)1700111
[http://dx.doi.org/10.1002/mabi.201700111]] [PMID: 28671760]
[137]
Guo, X.D.; Tandiono, F.; Wiradharma, N.; Khor, D.; Tan, C.G.; Khan, M.; Qian, Y.; Yang, Y-Y. Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector. Biomaterials, 2008, 29(36), 4838-4846.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.053] [PMID: 18829102]
[138]
Tang, Q.; Cao, B.; Wu, H.; Cheng, G. Cholesterol-peptide hybrids to form liposome-like vesicles for gene delivery. PLoS One, 2013, 8(1)e54460
[http://dx.doi.org/10.1371/journal.pone.0054460]] [PMID: 23382899]
[139]
Arabzadeh, S.; Amiri Tehranizadeh, Z.; Moalemzadeh Haghighi, H.; Charbgoo, F.; Ramezani, M.; Soltani, F. Design, Synthesis, and In Vitro Evaluation of Low Molecular Weight Protamine (LMWP)-Based Amphiphilic Conjugates as Gene Delivery Carriers. AAPS PharmSciTech, 2019, 20(3), 111.
[http://dx.doi.org/10.1208/s12249-018-1235-5] [PMID: 30756255]
[140]
Qin, B.; Chen, Z.; Jin, W.; Cheng, K. Development of cholesteryl peptide micelles for siRNA delivery. J. Control. Release, 2013, 172(1), 159-168.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.033] [PMID: 23968830]
[141]
Chen, B.; Pan, R.; Askhatova, D.; Chen, P. Effective small interfering RNA delivery in vitro via a new stearylated cationic peptide. Int. J. Nanomedicine, 2015, 10, 3303-3314.
[http://dx.doi.org/10.2147/IJN.S79306] [PMID: 25999710]
[142]
Wan, Y.; Moyle, P.M.; Gn, P.Z.; Toth, I. Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine (Lond.), 2017, 12(4), 281-293.
[http://dx.doi.org/10.2217/nnm-2016-0354] [PMID: 28093948]
[143]
Vasconcelos, L.; Lehto, T.; Madani, F.; Radoi, V.; Hällbrink, M.; Vukojević, V.; Langel, Ü. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. Biochim. Biophys. Acta Biomembr., 2018, 1860(2), 491-504.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.024] [PMID: 28962904]
[144]
Miura, N.; Tange, K.; Nakai, Y.; Yoshioka, H.; Harashima, H.; Akita, H. Identification and Evaluation of the Minimum Unit of a KALA Peptide Required for Gene Delivery and Immune Activation. J. Pharm. Sci., 2017, 106(10), 3113-3119.
[http://dx.doi.org/10.1016/j.xphs.2017.05.014] [PMID: 28535977]
[145]
Bang, E-K.; Cho, H.; Jeon, S.S.H.; Tran, N.L.; Lim, D-K.; Hur, W.; Sim, T. Amphiphilic small peptides for delivery of plasmid DNAs and siRNAs. Chem. Biol. Drug Des., 2018, 91(2), 575-587.
[http://dx.doi.org/10.1111/cbdd.13122] [PMID: 29052961]
[146]
Mazza, M.; Hadjidemetriou, M.; de Lázaro, I.; Bussy, C.; Kostarelos, K. Peptide nanofiber complexes with siRNA for deep brain gene silencing by stereotactic neurosurgery. ACS Nano, 2015, 9(2), 1137-1149.
[http://dx.doi.org/10.1021/nn5044838] [PMID: 25574683]
[147]
Mumcuoglu, D.; Sardan Ekiz, M.; Gunay, G.; Tekinay, T.; Tekinay, A.B.; Guler, M.O. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres. ACS Appl. Mater. Interfaces, 2016, 8(18), 11280-11287.
[http://dx.doi.org/10.1021/acsami.6b01526] [PMID: 27097153]
[148]
Mumcuoglu, D.; Sardan, M.; Tekinay, T.; Guler, M.O.; Tekinay, A.B. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres. Mol. Pharm., 2015, 12(5), 1584-1591.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00007] [PMID: 25828697]
[149]
Bulut, S.; Erkal, T.S.; Toksoz, S.; Tekinay, A.B.; Tekinay, T.; Guler, M.O. Slow release and delivery of antisense oligonucleotide drug by self-assembled peptide amphiphile nanofibers. Biomacromolecules, 2011, 12(8), 3007-3014.
[http://dx.doi.org/10.1021/bm200641e] [PMID: 21707109]
[150]
Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One, 2006, 1(1)e119
[http://dx.doi.org/10.1371/journal.pone.0000119]] [PMID: 17205123]
[151]
Tao, H.; Wu, Y.; Li, H.; Wang, C.; Zhang, Y.; Li, C.; Wen, T.; Wang, X.; He, Q.; Wang, D.; Ruan, D. BMP7-Based Functionalized Self-Assembling Peptides for Nucleus Pulposus Tissue Engineering. ACS Appl. Mater. Interfaces, 2015, 7(31), 17076-17087.
[http://dx.doi.org/10.1021/acsami.5b03605] [PMID: 26197234]
[152]
Matson, J.B.; Stupp, S.I. Drug release from hydrazone-containing peptide amphiphiles. Chem. Commun. (Camb.), 2011, 47(28), 7962-7964.
[http://dx.doi.org/10.1039/c1cc12570b] [PMID: 21674107]
[153]
Webber, M.J.; Matson, J.B.; Tamboli, V.K.; Stupp, S.I. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials, 2012, 33(28), 6823-6832.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.003] [PMID: 22748768]
[154]
Matson, J.B.; Newcomb, C.J.; Bitton, R.; Stupp, S.I. Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter, 2012, 8(13), 3586-3595.
[http://dx.doi.org/10.1039/c2sm07420f] [PMID: 23130084]
[155]
Matson, J.B.; Webber, M.J.; Tamboli, V.K.; Weber, B.; Stupp, S.I. A peptide-based material for therapeutic carbon monoxide delivery. Soft Matter, 2012, 8(25), 2689-2692.
[http://dx.doi.org/10.1039/c2sm25785h] [PMID: 22707978]
[156]
Rubert Pérez, C.M.; Álvarez, Z.; Chen, F.; Aytun, T.; Stupp, S.I. Mimicking the Bioactivity of Fibroblast Growth Factor-2 Using Supramolecular Nanoribbons. ACS Biomater. Sci. Eng., 2017, 3(9), 2166-2175.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00347] [PMID: 28920077]
[157]
Edelbrock, A.N.; Àlvarez, Z.; Simkin, D.; Fyrner, T.; Chin, S.M.; Sato, K.; Kiskinis, E.; Stupp, S.I. Supramolecular Nanostructure Activates TrkB Receptor Signaling of Neuronal Cells by Mimicking Brain-Derived Neurotrophic Factor. Nano Lett., 2018, 18(10), 6237-6247.
[http://dx.doi.org/10.1021/acs.nanolett.8b02317] [PMID: 30211565]
[158]
Lin, R.; Cheetham, A.G.; Zhang, P.; Lin, Y.A.; Cui, H. Supramolecular filaments containing a fixed 41% paclitaxel loading. Chem. Commun. (Camb.), 2013, 49(43), 4968-4970.
[http://dx.doi.org/10.1039/c3cc41896k] [PMID: 23612448]
[159]
Chen, Z.; Xing, L.; Fan, Q.; Cheetham, A.G.; Lin, R.; Holt, B.; Chen, L.; Xiao, Y.; Cui, H. Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics, 2017, 7(7), 2003-2014.
[http://dx.doi.org/10.7150/thno.19404] [PMID: 28656057]
[160]
Yu, X.; Zhang, Z.; Yu, J.; Chen, H.; Li, X. Self-assembly of a ibuprofen-peptide conjugate to suppress ocular inflammation. Nanomedicine (Lond.), 2018, 14(1), 185-193.
[http://dx.doi.org/10.1016/j.nano.2017.09.010] [PMID: 28970131]
[161]
Martin, C.; Dumitrascuta, M.; Mannes, M.; Lantero, A.; Bucher, D.; Walker, K.; Van Wanseele, Y.; Oyen, E.; Hernot, S.; Van Eeckhaut, A.; Madder, A.; Hoogenboom, R.; Spetea, M.; Ballet, S. Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. J. Med. Chem., 2018, 61(21), 9784-9789.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01282] [PMID: 30351003]
[162]
Cheng, H.; Fan, G-L.; Fan, J-H.; Zheng, R-R.; Zhao, L-P.; Yuan, P.; Zhao, X-Y.; Yu, X-Y.; Li, S-Y. A Self-Delivery Chimeric Peptide for Photodynamic Therapy Amplified Immunotherapy. Macromol. Biosci., 2019, 19(4)e1800410
[http://dx.doi.org/10.1002/mabi.201800410]] [PMID: 30576082]
[163]
Tao, M.; Liu, J.; He, S.; Xu, K.; Zhong, W. In situ hydrogelation of forky peptides in prostate tissue for drug delivery. Soft Matter, 2019, 15(20), 4200-4207.
[http://dx.doi.org/10.1039/C9SM00196D] [PMID: 31070656]
[164]
He, S.; Mei, L.; Wu, C.; Tao, M.; Zhai, Z.; Xu, K.; Zhong, W. In situ hydrogelation of bicalutamide-peptide conjugates at prostate tissue for smart drug release based on pH and enzymatic activity. Nanoscale, 2019, 11(11), 5030-5037.
[http://dx.doi.org/10.1039/C8NR10528F] [PMID: 30839985]
[165]
Segers, V.F.; Revin, V.; Wu, W.; Qiu, H.; Yan, Z.; Lee, R.T.; Sandrasagra, A. Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease. Circulation, 2011, 123(12), 1306-1315.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.991786] [PMID: 21403096]
[166]
Li, Y.; Cui, T.; Kong, X.; Yi, X.; Kong, D.; Zhang, J.; Liu, C.; Gong, M. Nanoparticles induced by embedding self-assembling cassette into glucagon-like peptide 1 for improving in vivo stability. FASEB J., 2018, 32(6), 2992-3004.
[http://dx.doi.org/10.1096/fj.201701033RRR] [PMID: 29401602]
[167]
Tavakol, S.; Saber, R.; Hoveizi, E.; Aligholi, H.; Ai, J.; Rezayat, S.M. Chimeric Self-assembling Nanofiber Containing Bone Marrow Homing Peptide’s Motif Induces Motor Neuron Recovery in Animal Model of Chronic Spinal Cord Injury; an In Vitro and In Vivo Investigation. Mol. Neurobiol., 2016, 53(5), 3298-3308.
[http://dx.doi.org/10.1007/s12035-015-9266-3] [PMID: 26063594]
[168]
Tavakol, S.; Rasoulian, B.; Ramezani, F.; Hoveizi, E.; Tavakol, B.; Rezayat, S.M. Core and biological motif of self-assembling peptide nanofiber induce a stronger electrostatic interaction than BMP2 with BMP2 receptor 1A. Mater. Sci. Eng. C, 2019, 101, 148-158.
[http://dx.doi.org/10.1016/j.msec.2019.03.097] [PMID: 31029307]
[169]
Boopathy, A.V.; Martinez, M.D.; Smith, A.W.; Brown, M.E.; García, A.J.; Davis, M.E. Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng. Part A, 2015, 21(17-18), 2315-2322.
[http://dx.doi.org/10.1089/ten.tea.2014.0622] [PMID: 25982380]
[170]
Li, J.; Kuang, Y.; Gao, Y.; Du, X.; Shi, J.; Xu, B. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J. Am. Chem. Soc., 2013, 135(2), 542-545.
[http://dx.doi.org/10.1021/ja310019x] [PMID: 23136972]
[171]
Rudra, J.S.; Tian, Y.F.; Jung, J.P.; Collier, J.H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl. Acad. Sci. USA, 2010, 107(2), 622-627.
[http://dx.doi.org/10.1073/pnas.0912124107] [PMID: 20080728]
[172]
Rudra, J.S.; Sun, T.; Bird, K.C.; Daniels, M.D.; Gasiorowski, J.Z.; Chong, A.S.; Collier, J.H. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano, 2012, 6(2), 1557-1564.
[http://dx.doi.org/10.1021/nn204530r] [PMID: 22273009]
[173]
Huang, Z-H.; Shi, L.; Ma, J-W.; Sun, Z-Y.; Cai, H.; Chen, Y-X.; Zhao, Y-F.; Li, Y-M. A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J. Am. Chem. Soc., 2012, 134(21), 8730-8733.
[http://dx.doi.org/10.1021/ja211725s] [PMID: 22587010]
[174]
Rudra, J.S.; Ding, Y.; Neelakantan, H.; Ding, C.; Appavu, R.; Stutz, S.; Snook, J.D.; Chen, H.; Cunningham, K.A.; Zhou, J. Suppression of Cocaine-Evoked Hyperactivity by Self-Adjuvanting and Multivalent Peptide Nanofiber Vaccines. ACS Chem. Neurosci., 2016, 7(5), 546-552.
[http://dx.doi.org/10.1021/acschemneuro.5b00345] [PMID: 26926328]
[175]
Rad-Malekshahi, M.; Fransen, M.F.; Krawczyk, M.; Mansourian, M.; Bourajjaj, M.; Chen, J.; Ossendorp, F.; Hennink, W.E.; Mastrobattista, E.; Amidi, M. Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Mol. Pharm., 2017, 14(5), 1482-1493.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01003] [PMID: 28088862]
[176]
Accardo, A.; Tesauro, D.; Mangiapia, G.; Pedone, C.; Morelli, G. Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers. Biopolymers, 2007, 88(2), 115-121.
[http://dx.doi.org/10.1002/bip.20648] [PMID: 17154288]
[177]
Liu, J.; Liu, J.; Xu, H.; Zhang, Y.; Chu, L.; Liu, Q.; Song, N.; Yang, C. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int. J. Nanomedicine, 2014, 9, 197-207.
[PMID: 24399876]
[178]
Xu, F.; Liu, J.; Tian, J.; Gao, L.; Cheng, X.; Pan, Y.; Sun, Z.; Li, X. Supramolecular Self-Assemblies with Nanoscale RGD Clusters Promote Cell Growth and Intracellular Drug Delivery. ACS Appl. Mater. Interfaces, 2016, 8(44), 29906-29914.
[http://dx.doi.org/10.1021/acsami.6b08624] [PMID: 27759366]
[179]
Shu, C.; Sabi-Mouka, E.M.B.; Wang, X.; Ding, L. Self-assembly hydrogels as multifunctional drug delivery of paclitaxel for synergistic tumour-targeting and biocompatibility in vitro and in vivo. J. Pharm. Pharmacol., 2017, 69(8), 967-977.
[http://dx.doi.org/10.1111/jphp.12732] [PMID: 28464225]
[180]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[181]
Moyer, T.J.; Finbloom, J.A.; Chen, F.; Toft, D.J.; Cryns, V.L.; Stupp, S.I. pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies. J. Am. Chem. Soc., 2014, 136(42), 14746-14752.
[http://dx.doi.org/10.1021/ja5042429] [PMID: 25310840]
[182]
Wang, T-W.; Yeh, C-W.; Kuan, C-H.; Wang, L-W.; Chen, L-H.; Wu, H-C.; Sun, J-S. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Acta Biomater., 2017, 58, 54-66.
[http://dx.doi.org/10.1016/j.actbio.2017.06.008] [PMID: 28606810]
[183]
Raza, F.; Zhu, Y.; Chen, L.; You, X.; Zhang, J.; Khan, A.; Khan, M.W.; Hasnat, M.; Zafar, H.; Wu, J.; Ge, L. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater. Sci., 2019, 7(5), 2023-2036.
[http://dx.doi.org/10.1039/C9BM00139E] [PMID: 30839983]
[184]
Kim, J-K.; Anderson, J.; Jun, H-W.; Repka, M.A.; Jo, S. Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery. Mol. Pharm., 2009, 6(3), 978-985.
[http://dx.doi.org/10.1021/mp900009n] [PMID: 19281184]
[185]
Hua, D.; Kong, W.; Zheng, X.; Zhou, Z.; Yu, B.; Li, Y.; Wang, Y.; Yang, X.; Liu, C.; Tang, L.; Li, Y.; Gong, M. Potent tumor targeting drug release system comprising MMP-2 specific peptide fragment with self-assembling characteristics. Drug Des. Devel. Ther., 2014, 8, 1839-1849.
[PMID: 25342883]
[186]
Chen, C.; Zhang, Y.; Hou, Z.; Cui, X.; Zhao, Y.; Xu, H. Rational Design of Short Peptide-Based Hydrogels with MMP-2 Responsiveness for Controlled Anticancer Peptide Delivery. Biomacromolecules, 2017, 18(11), 3563-3571.
[http://dx.doi.org/10.1021/acs.biomac.7b00911] [PMID: 28828862]
[187]
Cao, M.; Lu, S.; Wang, N.; Xu, H.; Cox, H.; Li, R.; Waigh, T.; Han, Y.; Wang, Y.; Lu, J.R. Enzyme-Triggered Morphological Transition of Peptide Nanostructures for Tumor-Targeted Drug Delivery and Enhanced Cancer Therapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16357-16366.
[http://dx.doi.org/10.1021/acsami.9b03519] [PMID: 30991000]
[188]
Zhang, P.; Cheetham, A.G.; Lin, Y.A.; Cui, H. Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano, 2013, 7(7), 5965-5977.
[http://dx.doi.org/10.1021/nn401667z] [PMID: 23758167]
[189]
Chen, Z.; Zhang, P.; Cheetham, A.G.; Moon, J.H.; Moxley, J.W., Jr; Lin, Y.A.; Cui, H. Controlled release of free doxorubicin from peptide-drug conjugates by drug loading. J. Control. Release, 2014, 191, 123-130.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.051] [PMID: 24892976]
[190]
Ashwanikumar, N.; Plaut, J.S.; Mostofian, B.; Patel, S.; Kwak, P.; Sun, C.; McPhail, K.; Zuckerman, D.M.; Esener, S.C.; Sahay, G. Supramolecular self assembly of nanodrill-like structures for intracellular delivery. J. Control. Release, 2018, 282, 76-89.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.041] [PMID: 29501722]
[191]
Zhou, J.; Xu, B. Enzyme-instructed self-assembly: a multistep process for potential cancer therapy. Bioconjug. Chem., 2015, 26(6), 987-999.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00196] [PMID: 25933032]
[192]
Huang, Z.; Gao, Y. In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Wang, H.; Li, L.-L; Singapore, S., Ed.; Singapore, 2018, pp. 89-114.
[http://dx.doi.org/10.1007/978-981-10-6913-0_4]
[193]
Zhou, J.; Du, X.; Yamagata, N.; Xu, B. Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells. J. Am. Chem. Soc., 2016, 138(11), 3813-3823.
[http://dx.doi.org/10.1021/jacs.5b13541] [PMID: 26966844]
[194]
Haburcak, R.; Shi, J.; Du, X.; Yuan, D.; Xu, B. Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. J. Am. Chem. Soc., 2016, 138(47), 15397-15404.
[http://dx.doi.org/10.1021/jacs.6b07677] [PMID: 27797504]
[195]
Feng, Z.; Wang, H.; Chen, X.; Xu, B. Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. J. Am. Chem. Soc., 2017, 139(43), 15377-15384.
[http://dx.doi.org/10.1021/jacs.7b07147] [PMID: 28990765]
[196]
Zhou, J.; Du, X.; Chen, X.; Wang, J.; Zhou, N.; Wu, D.; Xu, B. Enzymatic Self-Assembly Confers Exceptionally Strong Synergism with NF-κB Targeting for Selective Necroptosis of Cancer Cells. J. Am. Chem. Soc., 2018, 140(6), 2301-2308.
[http://dx.doi.org/10.1021/jacs.7b12368] [PMID: 29377688]
[197]
Li, J.; Bullara, D.; Du, X.; He, H.; Sofou, S.; Kevrekidis, I.G.; Epstein, I.R.; Xu, B. Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS Nano, 2018, 12(4), 3804-3815.
[http://dx.doi.org/10.1021/acsnano.8b01016] [PMID: 29537820]
[198]
Wang, H.; Feng, Z.; Wang, Y.; Zhou, R.; Yang, Z.; Xu, B. Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. J. Am. Chem. Soc., 2016, 138(49), 16046-16055.
[http://dx.doi.org/10.1021/jacs.6b09783] [PMID: 27960313]
[199]
Mei, B.; Miao, Q.; Tang, A.; Liang, G. Enzyme-instructed self-assembly of taxol promotes axonal branching. Nanoscale, 2015, 7(38), 15605-15608.
[http://dx.doi.org/10.1039/C5NR04563K] [PMID: 26359218]
[200]
Liang, C.; Zheng, D.; Shi, F.; Xu, T.; Yang, C.; Liu, J.; Wang, L.; Yang, Z. Enzyme-assisted peptide folding, assembly and anti-cancer properties. Nanoscale, 2017, 9(33), 11987-11993.
[http://dx.doi.org/10.1039/C7NR04370H] [PMID: 28792044]
[201]
Liang, C.; Zhang, L.; Zhao, W.; Xu, L.; Chen, Y.; Long, J.; Wang, F.; Wang, L.; Yang, Z. Supramolecular Nanofibers of Drug-Peptide Amphiphile and Affibody Suppress HER2+ Tumor Growth. Adv. Healthc. Mater., 2018, 7(22)e1800899
[http://dx.doi.org/10.1002/adhm.201800899]] [PMID: 30302950]
[202]
Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Maruyama, T. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J. Am. Chem. Soc., 2015, 137(2), 770-775.
[http://dx.doi.org/10.1021/ja510156v] [PMID: 25521540]
[203]
Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, J.B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res., 1986, 46(6), 2845-2848.
[PMID: 2421885]
[204]
Yang, C.; Li, D.; Fengzhao, Q.; Wang, L.; Wang, L.; Yang, Z. Disulfide bond reduction-triggered molecular hydrogels of folic acid-Taxol conjugates. Org. Biomol. Chem., 2013, 11(40), 6946-6951.
[http://dx.doi.org/10.1039/c3ob40969d] [PMID: 23989242]
[205]
Li, X.; Yang, C.; Zhang, Z.; Wu, Z.; Deng, Y.; Liang, G.; Yang, Z.; Chen, H. Folic acid as a versatile motif to construct molecular hydrogelators through conjugations with hydrophobic therapeutic agents. J. Mater. Chem., 2012, 22(41), 21838-21840.
[http://dx.doi.org/10.1039/c2jm35329f]
[206]
Wang, H.; Lv, L.; Xu, G.; Yang, C.; Sun, J.; Yang, Z. Molecular hydrogelators consist of Taxol and short peptides/amino acids. J. Mater. Chem., 2012, 22(33), 16933-16938.
[http://dx.doi.org/10.1039/c2jm32203j]
[207]
Yang, C.; Wang, Z.; Ou, C.; Chen, M.; Wang, L.; Yang, Z. A supramolecular hydrogelator of curcumin. Chem. Commun. (Camb.), 2014, 50(66), 9413-9415.
[http://dx.doi.org/10.1039/C4CC03139C] [PMID: 25007863]
[208]
Mao, L.; Wang, H.; Tan, M.; Ou, L.; Kong, D.; Yang, Z. Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chem. Commun. (Camb.), 2012, 48(3), 395-397.
[http://dx.doi.org/10.1039/C1CC16250K] [PMID: 22080052]
[209]
Chen, G.; Li, J.; Cai, Y.; Zhan, J.; Gao, J.; Song, M.; Shi, Y.; Yang, Z. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy. Sci. Rep., 2017, 7, 44210.
[http://dx.doi.org/10.1038/srep44210] [PMID: 28281678]
[210]
Wiradharma, N.; Tong, Y.W.; Yang, Y-Y. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials, 2009, 30(17), 3100-3109.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.006] [PMID: 19342093]
[211]
Han, K.; Chen, S.; Chen, W-H.; Lei, Q.; Liu, Y.; Zhuo, R-X.; Zhang, X-Z. Synergistic gene and drug tumor therapy using a chimeric peptide. Biomaterials, 2013, 34(19), 4680-4689.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.010] [PMID: 23537665]
[212]
Park, J.H.; Kim, H.A.; Park, J.H.; Lee, M. Amphiphilic peptide carrier for the combined delivery of curcumin and plasmid DNA into the lungs. Biomaterials, 2012, 33(27), 6542-6550.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.046] [PMID: 22687757]
[213]
Park, J.H.; Kim, H.A.; Cho, S.H.; Lee, M. Characterization of hydrophobic anti-cancer drug-loaded amphiphilic peptides as a gene carrier. J. Cell. Biochem., 2012, 113(5), 1645-1653.
[PMID: 22189718]
[214]
Liang, X.; Shi, B.; Wang, K.; Fan, M.; Jiao, D.; Ao, J.; Song, N.; Wang, C.; Gu, J.; Li, Z. Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials, 2016, 82, 194-207.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.015] [PMID: 26763734]
[215]
Ding, Y.; Liu, J.; Lu, S.; Igweze, J.; Xu, W.; Kuang, D.; Zealey, C.; Liu, D.; Gregor, A.; Bozorgzad, A.; Zhang, L.; Yue, E.; Mujib, S.; Ostrowski, M.; Chen, P. Self-assembling peptide for co-delivery of HIV-1 CD8+ T cells epitope and Toll-like receptor 7/8 agonists R848 to induce maturation of monocyte derived dendritic cell and augment polyfunctional cytotoxic T lymphocyte (CTL) response. J. Control. Release, 2016, 236, 22-30.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.019] [PMID: 27297778]
[216]
Yang, L.; Zhang, C.; Ren, C.; Liu, J.; Zhang, Y.; Wang, J.; Huang, F.; Zhang, L.; Liu, J. Supramolecular Hydrogel Based on Chlorambucil and Peptide Drug for Cancer Combination Therapy. ACS Appl. Mater. Interfaces, 2019, 11(1), 331-339.
[http://dx.doi.org/10.1021/acsami.8b18425] [PMID: 30560665]
[217]
Cai, Y.; Shen, H.; Zhan, J.; Lin, M.; Dai, L.; Ren, C.; Shi, Y.; Liu, J.; Gao, J.; Yang, Z. Supramolecular “Trojan Horse” for Nuclear Delivery of Dual Anticancer Drugs. J. Am. Chem. Soc., 2017, 139(8), 2876-2879.
[http://dx.doi.org/10.1021/jacs.6b12322] [PMID: 28191948]
[218]
Jin, H.; Zhao, G.; Hu, J.; Ren, Q.; Yang, K.; Wan, C.; Huang, A.; Li, P.; Feng, J-P.; Chen, J.; Zou, Z. Melittin-Containing Hybrid Peptide Hydrogels for Enhanced Photothermal Therapy of Glioblastoma. ACS Appl. Mater. Interfaces, 2017, 9(31), 25755-25766.
[http://dx.doi.org/10.1021/acsami.7b06431] [PMID: 28714303]
[219]
Zhang, R.; Kramer, J.S.; Smith, J.D.; Allen, B.N.; Leeper, C.N.; Li, X.; Morton, L.D.; Gallazzi, F.; Ulery, B.D. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity. AAPS J., 2018, 20(4), 73.
[http://dx.doi.org/10.1208/s12248-018-0233-6] [PMID: 29858738]
[220]
Mei, L.; He, S.; Liu, Z.; Xu, K.; Zhong, W. Co-assembled supramolecular hydrogels of doxorubicin and indomethacin-derived peptide conjugates for synergistic inhibition of cancer cell growth. Chem. Commun. (Camb.), 2019, 55(30), 4411-4414.
[http://dx.doi.org/10.1039/C9CC00590K] [PMID: 30916078]
[221]
Sapra, P.; Allen, T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res., 2003, 42(5), 439-462.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[222]
Turk, M.J.; Reddy, J.A.; Chmielewski, J.A.; Low, P.S. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta, 2002, 1559(1), 56-68.
[http://dx.doi.org/10.1016/S0005-2736(01)00441-2] [PMID: 11825588]
[223]
Torchilin, V.P.; Rammohan, R.; Weissig, V.; Levchenko, T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8786-8791.
[http://dx.doi.org/10.1073/pnas.151247498] [PMID: 11438707]
[224]
Rea, J.C.; Gibly, R.F.; Barron, A.E.; Shea, L.D. Self-assembling peptide-lipoplexes for substrate-mediated gene delivery. Acta Biomater., 2009, 5(3), 903-912.
[http://dx.doi.org/10.1016/j.actbio.2008.10.003] [PMID: 18990615]
[225]
Kenny, G.D.; Bienemann, A.S.; Tagalakis, A.D.; Pugh, J.A.; Welser, K.; Campbell, F.; Tabor, A.B.; Hailes, H.C.; Gill, S.S.; Lythgoe, M.F.; McLeod, C.W.; White, E.A.; Hart, S.L. Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the brain. Biomaterials, 2013, 34(36), 9190-9200.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.081] [PMID: 23948162]
[226]
Tagalakis, A.D.; Lee, D.H.D.; Bienemann, A.S.; Zhou, H.; Munye, M.M.; Saraiva, L.; McCarthy, D.; Du, Z.; Vink, C.A.; Maeshima, R.; White, E.A.; Gustafsson, K.; Hart, S.L. Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials, 2014, 35(29), 8406-8415.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.003] [PMID: 24985735]
[227]
Jiang, T.; Wang, T.; Li, T.; Ma, Y.; Shen, S.; He, B.; Mo, R. Enhanced Transdermal Drug Delivery by Transfersome-Embedded Oligopeptide Hydrogel for Topical Chemotherapy of Melanoma. ACS Nano, 2018, 12(10), 9693-9701.
[http://dx.doi.org/10.1021/acsnano.8b03800] [PMID: 30183253]
[228]
Chronopoulou, L.; Sennato, S.; Bordi, F.; Giannella, D.; Di Nitto, A.; Barbetta, A.; Dentini, M.; Togna, A.R.; Togna, G.I.; Moschini, S.; Palocci, C. Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties. Soft Matter, 2014, 10(12), 1944-1952.
[http://dx.doi.org/10.1039/c3sm52457d] [PMID: 24651999]
[229]
Lu, L.; Unsworth, L.D. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds. Biomacromolecules, 2016, 17(4), 1425-1436.
[http://dx.doi.org/10.1021/acs.biomac.6b00040] [PMID: 26938197]
[230]
Aviv, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Buzhansky, L.; Mironi-Harpaz, I.; Seliktar, D.; Einav, S.; Nevo, Z.; Adler-Abramovich, L. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix. ACS Appl. Mater. Interfaces, 2018, 10(49), 41883-41891.
[http://dx.doi.org/10.1021/acsami.8b08423] [PMID: 30211538]
[231]
Das Mahapatra, R.; Dey, J.; Weiss, R.G. Poly(vinyl alcohol)-induced thixotropy of an l-carnosine-based cytocompatible, tripeptidic hydrogel. Soft Matter, 2019, 15(3), 433-441.
[http://dx.doi.org/10.1039/C8SM01766B] [PMID: 30570630]
[232]
Li, R.; Pang, Z.; He, H.; Lee, S.; Qin, J.; Wu, J.; Pang, L.; Wang, J.; Yang, V.C. Drug depot-anchoring hydrogel: A self-assembling scaffold for localized drug release and enhanced stem cell differentiation. J. Control. Release, 2017, 261, 234-245.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.008] [PMID: 28694033]
[233]
Li, R.; Liang, J.; He, Y.; Qin, J.; He, H.; Lee, S.; Pang, Z.; Wang, J. Sustained Release of Immunosuppressant by Nanoparticle-anchoring Hydrogel Scaffold Improved the Survival of Transplanted Stem Cells and Tissue Regeneration. Theranostics, 2018, 8(4), 878-893.
[http://dx.doi.org/10.7150/thno.22072] [PMID: 29463988]
[234]
Bruggeman, K.F.; Wang, Y.; Maclean, F.L.; Parish, C.L.; Williams, R.J.; Nisbet, D.R. Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold. Nanoscale, 2017, 9(36), 13661-13669.
[http://dx.doi.org/10.1039/C7NR05004F] [PMID: 28876347]
[235]
Lu, S.; Zhao, F.; Zhang, Q.; Chen, P. Therapeutic Peptide Amphiphile as a Drug Carrier with ATP-Triggered Release for Synergistic Effect, Improved Therapeutic Index, and Penetration of 3D Cancer Cell Spheroids. Int. J. Mol. Sci., 2018, 19(9)E2773
[http://dx.doi.org/10.3390/ijms19092773]] [PMID: 30223518]
[236]
Poletaeva, J.; Dovydenko, I.; Epanchintseva, A.; Korchagina, K.; Pyshnyi, D.; Apartsin, E.; Ryabchikova, E.; Pyshnaya, I. Non-Covalent Associates of siRNAs and AuNPs Enveloped with Lipid Layer and Doped with Amphiphilic Peptide for Efficient siRNA Delivery. Int. J. Mol. Sci., 2018, 19(7)E2096
[http://dx.doi.org/10.3390/ijms19072096]] [PMID: 30029512]
[237]
Zhao, F.; Zhang, C.; Zhao, C.; Gao, W.; Fan, X.; Wu, G. A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly. Colloids Surf. B Biointerfaces, 2019, 179, 352-362.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.019] [PMID: 30991215]
[238]
Carvalho, A.; Gallo, J.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Hilliou, L.; Ferreira, P.M.T.; Bañobre-López, M.; Martins, J.A. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials (Basel), 2019, 9(4), 541.
[http://dx.doi.org/10.3390/nano9040541] [PMID: 30987203]
[239]
Du, X.; Zhou, J.; Wang, H.; Shi, J.; Kuang, Y.; Zeng, W.; Yang, Z.; Xu, B. In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis., 2017, 8(2)e2614
[PMID: 28206986] [http://dx.doi.org/10.1038/cddis.2016.466]]
[240]
Yang, Z.M.; Xu, K.M.; Guo, Z.F.; Guo, Z.H.; Xu, B. Intracellular Enzymatic Formation of Nanofibers Results in Hydrogelation and Regulated Cell Death. Adv. Mater., 2007, 19(20), 3152-3156.
[http://dx.doi.org/10.1002/adma.200701971]
[241]
Yang, Z.; Liang, G.; Guo, Z.; Guo, Z.; Xu, B. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8216-8219.
[http://dx.doi.org/10.1002/anie.200701697] [PMID: 17705321]
[242]
Kuang, Y.; Xu, B. Disruption of the dynamics of microtubules and selective inhibition of glioblastoma cells by nanofibers of small hydrophobic molecules. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 6944-6948.
[http://dx.doi.org/10.1002/anie.201302658] [PMID: 23686848]
[243]
Kuang, Y.; Du, X.; Zhou, J.; Xu, B. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo. Adv. Healthc. Mater., 2014, 3(8), 1217-1221.
[http://dx.doi.org/10.1002/adhm.201300645] [PMID: 24574174]
[244]
Kuang, Y.; Long, M.J.C.; Zhou, J.; Shi, J.; Gao, Y.; Xu, C.; Hedstrom, L.; Xu, B. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics. J. Biol. Chem., 2014, 289(42), 29208-29218.
[http://dx.doi.org/10.1074/jbc.M114.600288] [PMID: 25157102]
[245]
Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K.A.; Xu, Q.; Xu, B. Pericellular hydrogel/nanonets inhibit cancer cells. Angew. Chem. Int. Ed. Engl., 2014, 53(31), 8104-8107.
[http://dx.doi.org/10.1002/anie.201402216] [PMID: 24820524]
[246]
Yang, W.S.; Park, Y.C.; Kim, J.H.; Kim, H.R.; Yu, T.; Byeon, S.E.; Unsworth, L.D.; Lee, J.; Cho, J.Y. Nanostructured, Self-Assembling Peptide K5 Blocks TNF-α and PGE2 Production by Suppression of the AP-1/p38 Pathway. Mediators Inflamm., 2012, 2012, 8.
[http://dx.doi.org/10.1155/2012/489810]
[247]
Yang, W.S.; Son, Y-J.; Kim, M-Y.; Kim, S.; Kim, J-H.; Cho, J.Y. AP-1-Targeted Anti-Inflammatory Activities of the Nanostructured, Self-Assembling S5 Peptide. Mediators Inflamm., 2015, 2015451957
[http://dx.doi.org/10.1155/2015/451957]] [PMID: 26074678]
[248]
Bury, M.I.; Fuller, N.J.; Meisner, J.W.; Hofer, M.D.; Webber, M.J.; Chow, L.W.; Prasad, S.; Thaker, H.; Yue, X.; Menon, V.S.; Diaz, E.C.; Stupp, S.I.; Cheng, E.Y.; Sharma, A.K. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials, 2014, 35(34), 9311-9321.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.057] [PMID: 25145852]
[249]
Cui, G.H.; Shao, S.J.; Yang, J.J.; Liu, J.R.; Guo, H.D. Designer Self-Assemble Peptides Maximize the Therapeutic Benefits of Neural Stem Cell Transplantation for Alzheimer’s Disease via Enhancing Neuron Differentiation and Paracrine Action. Mol. Neurobiol., 2016, 53(2), 1108-1123.
[http://dx.doi.org/10.1007/s12035-014-9069-y] [PMID: 25586060]
[250]
Xing, R.; Li, S.; Zhang, N.; Shen, G.; Möhwald, H.; Yan, X. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Biomacromolecules, 2017, 18(11), 3514-3523.
[http://dx.doi.org/10.1021/acs.biomac.7b00787] [PMID: 28721731]
[251]
Grozdanovic, M.; Laffey, K.G.; Abdelkarim, H.; Hitchinson, B.; Harijith, A.; Moon, H-G.; Park, G.Y.; Rousslang, L.K.; Masterson, J.C.; Furuta, G.T.; Tarasova, N.I.; Gaponenko, V.; Ackerman, S.J. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J. Allergy Clin. Immunol., 2019, 143(2), 669-680.e12.
[http://dx.doi.org/10.1016/j.jaci.2018.05.003] [PMID: 29778505]
[252]
Salick, D.A.; Kretsinger, J.K.; Pochan, D.J.; Schneider, J.P. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J. Am. Chem. Soc., 2007, 129(47), 14793-14799.
[http://dx.doi.org/10.1021/ja076300z] [PMID: 17985907]
[253]
Tripathi, J.K.; Pal, S.; Awasthi, B.; Kumar, A.; Tandon, A.; Mitra, K.; Chattopadhyay, N.; Ghosh, J.K. Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Biomaterials, 2015, 56, 92-103.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.046] [PMID: 25934283]
[254]
Chesson, C.B.; Huante, M.; Nusbaum, R.J.; Walker, A.G.; Clover, T.M.; Chinnaswamy, J.; Endsley, J.J.; Rudra, J.S. Nanoscale Peptide Self-assemblies Boost BCG-primed Cellular Immunity Against Mycobacterium tuberculosis. Sci. Rep., 2018, 8(1), 12519.
[http://dx.doi.org/10.1038/s41598-018-31089-y] [PMID: 30131591]
[255]
Beter, M.; Kara, H.K.; Topal, A.E.; Dana, A.; Tekinay, A.B.; Guler, M.O. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity. Mol. Pharm., 2017, 14(11), 3660-3668.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00434] [PMID: 29020766]
[256]
Chang, R.; Subramanian, K.; Wang, M.; Webster, T.J. Enhanced Antibacterial Properties of Self-Assembling Peptide Amphiphiles Functionalized with Heparin-Binding Cardin-Motifs. ACS Appl. Mater. Interfaces, 2017, 9(27), 22350-22360.
[http://dx.doi.org/10.1021/acsami.7b07506] [PMID: 28628296]
[257]
Bai, J.; Chen, C.; Wang, J.; Zhang, Y.; Cox, H.; Zhang, J.; Wang, Y.; Penny, J.; Waigh, T.; Lu, J.R.; Xu, H. Enzymatic Regulation of Self-Assembling Peptide A9K2 Nanostructures and Hydrogelation with Highly Selective Antibacterial Activities. ACS Appl. Mater. Interfaces, 2016, 8(24), 15093-15102.
[http://dx.doi.org/10.1021/acsami.6b03770] [PMID: 27243270]
[258]
Chen, L.; Patrone, N.; Liang, J.F. Peptide self-assembly on cell membranes to induce cell lysis. Biomacromolecules, 2012, 13(10), 3327-3333.
[http://dx.doi.org/10.1021/bm301106p] [PMID: 22934601]
[259]
Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; Gazit, E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365.
[http://dx.doi.org/10.1038/s41467-017-01447-x] [PMID: 29118336]
[260]
Boldbaatar, D.; Gunasekera, S.; El-Seedi, H.R.; Göransson, U. Synthesis, Structural Characterization, and Bioactivity of the Stable Peptide RCB-1 from Ricinus communis. J. Nat. Prod., 2015, 78(11), 2545-2551.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00463] [PMID: 26509914]
[261]
Malekkhaiat Häffner, S.; Malmsten, M. Influence of self-assembly on the performance of antimicrobial peptides. Curr. Opin. Colloid Interface Sci., 2018, 38, 56-79.
[http://dx.doi.org/10.1016/j.cocis.2018.09.002]
[262]
Albadr, A.A.; Coulter, M.S.; Porter, L.S.; Thakur, R.R.; Laverty, G. Ultrashort Self-Assembling Peptide Hydrogel for the Treatment of Fungal Infections. Gels., 2018, 4(2)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy