Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Role of Antioxidant Molecules and Polymers in Prevention of Bacterial Growth and Biofilm Formation

Author(s): Iolanda Francolini* and Antonella Piozzi*

Volume 27, Issue 29, 2020

Page: [4882 - 4904] Pages: 23

DOI: 10.2174/0929867326666190409120409

Price: $65

Abstract

Background: Antioxidants are multifaceted molecules playing a crucial role in several cellular functions. There is by now a well-established knowledge about their involvement in numerous processes associated with aging, including vascular damage, neurodegenerative diseases and cancer. An emerging area of application has been lately identified for these compounds in relation to the recent findings indicating their ability to affect biofilm formation by some microbial pathogens, including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.

Methods: A structured search of bibliographic databases for peer-reviewed research literature was performed using a focused review question. The quality of retrieved papers was appraised using standard tools.

Results: One hundred sixty-five papers extracted from pubmed database and published in the last fifteen years were included in this review focused on the assessment of the antimicrobial and antibiofilm activity of antioxidant compounds, including vitamins, flavonoids, non-flavonoid polyphenols, and antioxidant polymers. Mechanisms of action of some important antioxidant compounds, especially for vitamin C and phenolic acids, were identified.

Conclusions: The findings of this review confirm the potential benefits of the use of natural antioxidants as antimicrobial/antibiofilm compounds. Generally, gram-positive bacteria were found to be more sensitive to antioxidants than gram-negatives. Antioxidant polymeric systems have also been developed mainly derived from functionalization of polysaccharides with antioxidant molecules. The application of such systems in clinics may permit to overcome some issues related to the systemic delivery of antioxidants, such as poor absorption, loss of bioactivity, and limited half-life. However, investigations focused on the study of antibiofilm activity of antioxidant polymers are still very limited in number and therefore they are strongly encouraged in order to lay the foundations for application of antioxidant polymers in treatment of biofilm-based infections.

Keywords: Natural antioxidants, antioxidant polymers, ascorbic acid, polyphenols, flavonoids, microbial biofilm, infections.

« Previous
[1]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[2]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[3]
Mihai, M.M.; Holban, A.M.; Giurcaneanu, C.; Popa, L.G.; Oanea, R.M.; Lazar, V.; Chifiriuc, M.C.; Popa, M.; Popa, M.I. Microbial biofilms: impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr. Top. Med. Chem., 2015, 15(16), 1552-1576.
[http://dx.doi.org/10.2174/1568026615666150414123800] [PMID: 25877092]
[4]
Francolini, I.; Donelli, G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol., 2010, 59(3), 227-238.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00665.x] [PMID: 20412300]
[5]
Paiva, C.N.; Bozza, M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal., 2014, 20(6), 1000-1037.
[http://dx.doi.org/10.1089/ars.2013.5447] [PMID: 23992156]
[6]
Elswaifi, S.F.; Palmieri, J.R.; Hockey, K.S.; Rzigalinski, B.A. Antioxidant nanoparticles for control of infectious disease. Infect. Disord. Drug Targets, 2009, 9(4), 445-452.
[http://dx.doi.org/10.2174/187152609788922528] [PMID: 19689385]
[7]
Managò, A.; Becker, K.A.; Carpinteiro, A.; Wilker, B.; Soddemann, M.; Seitz, A.P.; Edwards, M.J.; Grassmé, H.; Szabò, I.; Gulbins, E. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid. Redox Signal., 2015, 22(13), 1097-1110.
[http://dx.doi.org/10.1089/ars.2014.5979] [PMID: 25686490]
[8]
Ciofu, O.; Riis, B.; Pressler, T.; Poulsen, H.E.; Høiby, N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob. Agents Chemother., 2005, 49(6), 2276-2282.
[http://dx.doi.org/10.1128/AAC.49.6.2276-2282.2005] [PMID: 15917521]
[9]
Boles, B.R.; Singh, P.K. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12503-12508.
[http://dx.doi.org/10.1073/pnas.0801499105] [PMID: 18719125]
[10]
Sabra, W.; Kim, E.J.; Zeng, A.P. Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology, 2002, 148(Pt 10), 3195-3202.
[http://dx.doi.org/10.1099/00221287-148-10-3195] [PMID: 12368453]
[11]
Dhall, S.; Do, D.; Garcia, M.; Wijesinghe, D.S.; Brandon, A.; Kim, J.; Sanchez, A.; Lyubovitsky, J.; Gallagher, S.; Nothnagel, E.A.; Chalfant, C.E.; Patel, R.P.; Schiller, N.; Martins-Green, M. A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. PLoS One, 2014, 9(10)e109848
[http://dx.doi.org/10.1371/journal.pone.0109848] [PMID: 25313558]
[12]
Dhall, S.; Do, D.C.; Garcia, M.; Kim, J.; Mirebrahim, S.H.; Lyubovitsky, J.; Lonardi, S.; Nothnagel, E.A.; Schiller, N.; Martins-Green, M. Generating and reversing chronic wounds in diabetic mice by manipulating wound redox parameters. J. Diabetes Res., 2014, 2014562625
[http://dx.doi.org/10.1155/2014/562625] [PMID: 25587545]
[13]
Trivedi, S.; Lal, N. Antioxidant enzymes in periodontitis. J. Oral Biol. Craniofac. Res., 2017, 7(1), 54-57.
[http://dx.doi.org/10.1016/j.jobcr.2016.08.001] [PMID: 28316923]
[14]
Gristina, A.G. Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin. Orthop. Relat. Res., 1994, (298), 106-118.
[http://dx.doi.org/10.1097/00003086-199401000-00016] [PMID: 8118964]
[15]
Geier, H.; Mostowy, S.; Cangelosi, G.A.; Behr, M.A.; Ford, T.E. Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl. Environ. Microbiol., 2008, 74(6), 1798-1804.
[http://dx.doi.org/10.1128/AEM.02066-07] [PMID: 18245256]
[16]
Coppo, E.; Marchese, A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol., 2014, 15(4), 380-390.
[http://dx.doi.org/10.2174/138920101504140825121142] [PMID: 25312620]
[17]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[18]
Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med., 1995, 18(1), 125-126.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[19]
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(Pt 5), 1147-1150.
[http://dx.doi.org/10.1042/BST0351147] [PMID: 17956298]
[20]
Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta, 2013, 1830(5), 3289-3303.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.020] [PMID: 23201771]
[21]
Kodydková, J.; Vávrová, L.; Kocík, M.; Žák, A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol. (Praha), 2014, 60(4), 153-167.
[PMID: 25152049]
[22]
Miller, A.F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett., 2012, 586(5), 585-595.
[http://dx.doi.org/10.1016/j.febslet.2011.10.048] [PMID: 22079668]
[23]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[24]
Palace, V.P.; Khaper, N.; Qin, Q.; Singal, P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med., 1999, 26(5-6), 746-761.
[http://dx.doi.org/10.1016/S0891-5849(98)00266-4] [PMID: 10218665]
[25]
Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients, 2017, 9(11), 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[26]
Niki, E.; Traber, M.G. A history of vitamin E. Ann. Nutr. Metab., 2012, 61(3), 207-212.
[http://dx.doi.org/10.1159/000343106] [PMID: 23183290]
[27]
González, R.; Ballester, I.; López-Posadas, R.; Suárez, M.D.; Zarzuelo, A.; Martínez-Augustin, O.; Sánchez de Medina, F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 331-362.
[http://dx.doi.org/10.1080/10408390903584094] [PMID: 21432698]
[28]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[29]
Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta, 2012, 1826(2), 443-457.
[PMID: 22728050]
[30]
Linster, C.L.; Van Schaftingen, E.; Vitamin, C.; Vitamin, C.; Vitamin, C. Biosynthesis, recycling and degradation in mammals. FEBS J., 2007, 274(1), 1-22.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05607.x] [PMID: 17222174]
[31]
Hemilä, H.; Louhiala, P. Vitamin C may affect lung infections. J. R. Soc. Med., 2007, 100(11), 495-498.
[http://dx.doi.org/10.1177/014107680710001109] [PMID: 18048704]
[32]
Hemilä, H. Vitamin C and Infections. Nutrients, 2017, 9(4), 339.
[http://dx.doi.org/10.3390/nu9040339] [PMID: 28353648]
[33]
Mei, H.; Tu, H. Vitamin C and Helicobacter pylori infection: Current knowledge and future prospects. Front Physiol., 2018, 9, 1103.Jarosz, M.; Dzieniszewski, J.; Dabrowska-Ufniarz, E.; Wartanowicz, M.; Ziemlamski, S.; Reed, P.I. Effects of high dose vitamic C treatment on Helicobacter pylori infection and total vitamin C concentration in gastric juice. Eur. J. Cancer Prev., 1998, 7(6), 449-454.
[PMID: 9926292]
[34]
Li, G.; Li, L.; Yu, C.; Chen, L. Effect of vitamins C and E supplementation on Helicobacter pylori eradication: a meta-analysis. Br. J. Nutr., 2011, 106(11), 1632-1637.
[http://dx.doi.org/10.1017/S0007114511003813] [PMID: 21810287]
[35]
Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Metab., 2006, 50(2), 85-94.
[http://dx.doi.org/10.1159/000090495] [PMID: 16373990]
[36]
Giannuzzi, L.; Zaritzky, N.E. Effect of ascorbic acid in comparison to citric and lactic acid on Listeria monocytogenes inhibition at refrigeration temperatures. Lebensm. Wiss. Technol., 1996, 29, 278-285.
[http://dx.doi.org/10.1006/fstl.1996.0041]
[37]
Ogden, S.K.; Taylor, A.J.; Dodd, C.E.R.; Guerrero, I.; Buendia, H.E.; Gallardo, F. The effect of combining propionic and ascorbic acid on the keeping qualities of fresh minced pork during storage. Lebensm. Wiss. Technol., 1996, 29, 227-233.
[http://dx.doi.org/10.1006/fstl.1996.0033]
[38]
Zambuchini, B.; Fiorini, D.; Verdenelli, M.C.; Orpianesi, C.; Ballini, R. Inhibition of microbiological activity during sole (Solea solea L.) chilled storage by applying ellagic and ascorbic acids. Lebensm. Wiss. Technol., 2008, 41, 1733-1738.
[http://dx.doi.org/10.1016/j.lwt.2007.11.004]
[39]
Tajkarimi, M.; Ibrahim, S.A. Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Control, 2011, 22(6), 801-804.
[http://dx.doi.org/10.1016/j.foodcont.2010.11.030]
[40]
Kallio, J.; Jaakkola, M.; Mäki, M.; Kilpeläinen, P.; Virtanen, V. Vitamin C inhibits staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta Med., 2012, 78(17), 1824-1830.
[http://dx.doi.org/10.1055/s-0032-1315388] [PMID: 23059632]
[41]
Vilchèze, C.; Hartman, T.; Weinrick, B.; Jacobs, W.R. Jr Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun., 2013, 4, 1881.
[http://dx.doi.org/10.1038/ncomms2898] [PMID: 23695675]
[42]
Shatzer, A.N.; Espey, M.G.; Chavez, M.; Tu, H.; Levine, M.; Cohen, J.I. Ascorbic acid kills Epstein-Barr virus positive Burkitt lymphoma cells and Epstein-Barr virus transformed B-cells in vitro, but not in vivo. Leuk. Lymphoma, 2013, 54(5), 1069-1078.
[http://dx.doi.org/10.3109/10428194.2012.739686] [PMID: 23067008]
[43]
Syal, K.; Bhardwaj, N.; Chatterji, D. Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis. FEMS Microbiol. Lett., 2017, 364(1)fnw282
[http://dx.doi.org/10.1093/femsle/fnw282] [PMID: 27986825]
[44]
Avci, P.; Freire, F.; Banvolgyi, A.; Mylonakis, E.; Wikonkal, N.M.; Hamblin, M.R. Sodium ascorbate kills Candida albicans in vitro via iron-catalyzed Fenton reaction: importance of oxygenation and metabolism. Future Microbiol., 2016, 11(12), 1535-1547.
[http://dx.doi.org/10.2217/fmb-2016-0063] [PMID: 27855492]
[45]
Cross, J.B.; Currier, R.P.; Torraco, D.J.; Vanderberg, L.A.; Wagner, G.L.; Gladen, P.D. Killing of bacillus spores by aqueous dissolved oxygen, ascorbic acid, and copper ions. Appl. Environ. Microbiol., 2003, 69(4), 2245-2252.
[http://dx.doi.org/10.1128/AEM.69.4.2245-2252.2003] [PMID: 12676707]
[46]
Holloway, A.C.; Mueller-Harvey, I.; Gould, S.W.; Fielder, M.D.; Naughton, D.P.; Kelly, A.F. The effect of copper(II), iron(II) sulphate, and vitamin C combinations on the weak antimicrobial activity of (+)-catechin against Staphylococcus aureus and other microbes. Metallomics, 2012, 4(12), 1280-1286.
[http://dx.doi.org/10.1039/c2mt20143g] [PMID: 23138340]
[47]
Ali Mirani, Z.; Khan, M.N.; Siddiqui, A.; Khan, F.; Aziz, M.; Naz, S.; Ahmed, A.; Khan, S.I. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus. Iran. J. Basic Med. Sci., 2018, 21(2), 175-180.
[PMID: 29456814]
[48]
Vaishampayan, A.; de Jong, A.; Wight, D.J.; Kok, J.; Grohmann, E. A novel antimicrobial coating represses biofilm and virulence-related genes in methicillin-resistant Staphylococcus aureus. Front. Microbiol., 2018, 9, 221.
[http://dx.doi.org/10.3389/fmicb.2018.00221] [PMID: 29497410]
[49]
El-Mowafy, S.A.; Shaaban, M.I.; Abd El Galil, K.H. Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J. Appl. Microbiol., 2014, 117(5), 1388-1399.
[http://dx.doi.org/10.1111/jam.12631] [PMID: 25175797]
[50]
Pandit, S.; Ravikumar, V.; Abdel-Haleem, A.M.; Derouiche, A.; Mokkapati, V.R.S.S.; Sihlbom, C.; Mineta, K.; Gojobori, T.; Gao, X.; Westerlund, F.; Mijakovic, I. Low Concentrations of Vitamin C reduce the synthesis of extracellular polymers and destabilize Bacterial Biofilms. Front. Microbiol., 2017, 8, 2599.
[http://dx.doi.org/10.3389/fmicb.2017.02599] [PMID: 29317857]
[51]
Helgadóttir, S.; Pandit, S.; Mokkapati, V.R.; Westerlund, F.; Apell, P.; Mijakovic, I. Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma. Front. Cell. Infect. Microbiol., 2017, 7, 43.
[http://dx.doi.org/10.3389/fcimb.2017.00043] [PMID: 28275584]
[52]
Masadeh, M.M.; Mhaidat, N.M.; Alzoubi, K.H.; Al-Azzam, S.I.; Shaweesh, A.I. Ciprofloxacin-induced antibacterial activity is reversed by vitamin E and vitamin C. Curr. Microbiol., 2012, 64(5), 457-462.
[http://dx.doi.org/10.1007/s00284-012-0094-7] [PMID: 22349957]
[53]
Rodrigues, C.F.; Henriques, M. Oral mucositis caused by Candida glabrata biofilms: failure of the concomitant use of fluconazole and ascorbic acid. Ther. Adv. Infect. Dis., 2017, 4(1), 10-17.
[http://dx.doi.org/10.1177/2049936116684477] [PMID: 28357061]
[54]
Cursino, L.; Chartone-Souza, E.; Amaral Nascimento, A.A. Synergic interaction between ascorbic acid and antibiotics against Pseudomonas aeruginosa. Braz. Arch. Biol. Technol., 2005, 48, 379-384.
[http://dx.doi.org/10.1590/S1516-89132005000300007]
[55]
Biswas, S.; Thomas, N.; Mandal, A.; Mullick, A.; Chandra, D.; Mukherjee, S.; Sett, S.; Mitra, A.K. In vitro analysis of antibacterial activity of vitamin C alone and in combination with antibiotics on gram positive rod isolated from soil of a dumping site of Kolkata. Int. J. Pharma Bio Sci., 2013, 3, 101-110.
[56]
Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep., 2013, 15(5), 324.
[http://dx.doi.org/10.1007/s11883-013-0324-x] [PMID: 23512608]
[57]
Lall, R.K.; Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Dietary polyphenols in prevention and treatment of prostate cancer. Int. J. Mol. Sci., 2015, 16(2), 3350-3376.
[http://dx.doi.org/10.3390/ijms16023350] [PMID: 25654230]
[58]
Mocanu, M.M.; Nagy, P.; Szöllősi, J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules, 2015, 20(12), 22578-22620.
[http://dx.doi.org/10.3390/molecules201219864] [PMID: 26694341]
[59]
Caruana, M.; Vassallo, N. Tea polyphenols in Parkinson’s disease. Adv. Exp. Med. Biol., 2015, 863, 117-137.
[http://dx.doi.org/10.1007/978-3-319-18365-7_6] [PMID: 26092629]
[60]
Cos, P.; Rajan, P.; Vedernikova, I.; Calomme, M.; Pieters, L.; Vlietinck, A.J.; Augustyns, K.; Haemers, A.; Vanden Berghe, D. In vitro antioxidant profile of phenolic acid derivatives. Free Radic. Res., 2002, 36(6), 711-716.
[http://dx.doi.org/10.1080/10715760290029182] [PMID: 12180197]
[61]
Amato, A.; Migneco, L.M.; Martinelli, A.; Pietrelli, L.; Piozzi, A.; Francolini, I. Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis. Carbohydr. Polym., 2018, 179, 273-281.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.073] [PMID: 29111051]
[62]
Hsu, S.S.; Chou, C.T.; Liao, W.C.; Shieh, P.; Kuo, D.H.; Kuo, C.C.; Jan, C.R.; Liang, W.Z. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem. Biol. Interact., 2016, 252, 61-73.
[http://dx.doi.org/10.1016/j.cbi.2016.04.010] [PMID: 27060209]
[63]
Moridani, M.Y.; Scobie, H.; Jamshidzadeh, A.; Salehi, P.; O’Brien, P.J. Caffeic acid, chlorogenic acid, and dihydrocaffeic acid metabolism: glutathione conjugate formation. Drug Metab. Dispos., 2001, 29(11), 1432-1439.
[PMID: 11602518]
[64]
Choi, J.H.; Park, J.K.; Kim, K.M.; Lee, H.J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol., 2018, 32(1)
[http://dx.doi.org/10.1002/jbt.22004]] [PMID: 29077251]
[65]
Kwon, Y-I.; Apostolidis, E.; Labbe, R.G.; Shetty, K. Inhibition of Staphylococcus aureus by phenolic phytochemicals of selected clonal herbs species of Lamiaceae family and likely mode of action through proline oxidation. Food Biotechnol., 2007, 21(1), 71-89.
[http://dx.doi.org/10.1080/08905430701191205]
[66]
Luís, Â.; Silva, F.; Sousa, S.; Duarte, A.P.; Domingues, F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 2014, 30(1), 69-79.
[http://dx.doi.org/10.1080/08927014.2013.845878] [PMID: 24228999]
[67]
Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 2012, 28(7), 755-767.
[http://dx.doi.org/10.1080/08927014.2012.706751] [PMID: 22823343]
[68]
Silva, S.; Costa, E.M.; Horta, B.; Calhau, C.; Morais, R.M.; Pintado, M.M. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties. Biofouling, 2016, 32(8), 853-860.
[http://dx.doi.org/10.1080/08927014.2016.1208183] [PMID: 27434592]
[69]
Zimmer, K.R.; Blum-Silva, C.H.; Souza, A.L.; Wulffschuch, M.; Reginatto, F.H.; Pereira, C.M.; Macedo, A.J.; Lencina, C.L. The antibiofilm effect of blueberry fruit cultivars against Staphylococcus epidermidis and Pseudomonas aeruginosa. J. Med. Food, 2014, 17(3), 324-331.
[http://dx.doi.org/10.1089/jmf.2013.0037] [PMID: 24476224]
[70]
Teodoro, G.R.; Gontijo, A.V.L.; Salvador, M.J.; Tanaka, M.H.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Koga-Ito, C.Y. Effects of acetone fraction from Buchenavia tomentosa aqueous extract and gallic acid on Candida albicans biofilms and virulence factors. Front. Microbiol., 2018, 9, 647.
[http://dx.doi.org/10.3389/fmicb.2018.00647] [PMID: 29675005]
[71]
Panzella, L.; Napolitano, A. Natural phenol polymers: Recent advances in food and health applications. Antioxidants, 2017, 6(2), 2.
[http://dx.doi.org/10.3390/antiox6020030] [PMID: 28420078]
[72]
Uyama, H.; Kobayashi, S. Enzymatic synthesis of polyphenols. Curr. Org. Chem., 2003, 7, 1387-1397.
[http://dx.doi.org/10.2174/1385272033486459]
[73]
Ambrogi, V.; Panzella, L.; Persico, P.; Cerruti, P.; Lonz, C.A.; Carfagna, C.; Verotta, L.; Caneva, E.; Napolitano, A.; d’Ischia, M. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene. Biomacromolecules, 2014, 15(1), 302-310.
[http://dx.doi.org/10.1021/bm4015478] [PMID: 24313867]
[74]
Zheng, K.; Zhang, L.; Gao, Y.; Wu, Y.; Zhao, W.; Cui, Y. Enzymatic oxidative polymerization of pyrogallic acid for preparation of hindered phenol antioxidant. J. Appl. Polym. Sci., 2015, 132, 41591.
[75]
Li, T.; Xu, J.; Zhao, L.; Shen, S.; Yuan, M.; Liu, W.; Tu, Q.; Yu, R.; Wang, J. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta, 2016, 159, 356-364.
[http://dx.doi.org/10.1016/j.talanta.2016.06.044] [PMID: 27474318]
[76]
Lee, P.T.; Ward, K.R.; Tschulik, K.; Chapman, G.; Compton, R.G. Electrochemical detection of glutathione using a poly(caffeic acid) nanocarbon composite modified electrode. Electroanalysis, 2014, 26, 366-373.
[http://dx.doi.org/10.1002/elan.201300486]
[77]
Tóth, I.Y.; Szekeres, M.; Turcu, R.; Sáringer, S.; Illés, E.; Nesztor, D.; Tombácz, E. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles. Langmuir, 2014, 30(51), 15451-15461.
[http://dx.doi.org/10.1021/la5038102] [PMID: 25517214]
[78]
Liu, J.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydr. Polym., 2017, 174, 999-1017.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.014] [PMID: 28821158]
[79]
Aytekin, A.O.; Morimura, S.; Kida, K. Synthesis of chitosan-caffeic acid derivatives and evaluation of their antioxidant activities. J. Biosci. Bioeng., 2011, 111(2), 212-216.
[http://dx.doi.org/10.1016/j.jbiosc.2010.09.018] [PMID: 21035393]
[80]
Yang, T.S.; Liu, T.T.; Lin, I.H. Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion. Food Chem., 2017, 228, 541-549.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.035] [PMID: 28317761]
[81]
Xie, M.; Hu, B.; Wang, Y.; Zeng, X. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J. Agric. Food Chem., 2014, 62(37), 9128-9136.
[http://dx.doi.org/10.1021/jf503207s] [PMID: 25198516]
[82]
Woranuch, S.; Yoksan, R.; Akashi, M. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydr. Polym., 2015, 115, 744-751.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.074] [PMID: 25439957]
[83]
Zheng, M.; Zhang, C.; Zhou, Y.; Lu, Z.; Zhao, H.; Bie, X.; Lu, F. Preparation of gallic acid-grafted chitosan using recombinant bacterial laccase and its application in chilled meat preservation. Front. Microbiol., 2018, 9, 1729.
[http://dx.doi.org/10.3389/fmicb.2018.01729] [PMID: 30123192]
[84]
Abdel-Wahhab, M.A.; Aljawish, A.; Kenawy, A.M.; El-Nekeety, A.A.; Hamed, H.S.; Abdel-Aziem, S.H. Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus). Environ. Toxicol. Pharmacol., 2016, 41, 279-288.
[http://dx.doi.org/10.1016/j.etap.2015.12.005] [PMID: 26774075]
[85]
Božič, M.; Gorgieva, S.; Kokol, V. Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties. Carbohydr. Polym., 2012, 87, 2388-2398.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.006]
[86]
Yang, C.; Zhou, Y.; Zheng, Y.; Li, C.; Sheng, S.; Wang, J.; Wu, F. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum. Int. J. Biol. Macromol., 2016, 87, 577-585.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.023] [PMID: 26993531]
[87]
Aljawish, A.; Chevalot, I.; Jasniewski, J.; Revol-Junelles, A.M.; Scher, J.; Muniglia, L. Laccase-catalysed functionalisation of chitosan by ferulic acid and ethyl ferulate: evaluation of physicochemical and biofunctional properties. Food Chem., 2014, 161, 279-287.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.076] [PMID: 24837951]
[88]
Gim, S.Y.; Hong, S.; Kim, M.J.; Lee, J. Gallic acid grafted chitosan has enhanced oxidative stability in bulk oils. J. Food Sci., 2017, 82(7), 1608-1613.
[http://dx.doi.org/10.1111/1750-3841.13751] [PMID: 28585728]
[89]
Ahn, C.B.; Jung, W.K.; Park, S.J.; Kim, Y.T.; Kim, W.S.; Je, J.Y. Gallic acid-g-chitosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-κB, AP-1, and MAPK pathways. Inflammation, 2016, 39(1), 366-374.
[http://dx.doi.org/10.1007/s10753-015-0258-2] [PMID: 26412258]
[90]
Hu, Q.; Wang, T.; Zhou, M.; Xue, J.; Luo, Y. In Vitro antioxidant-activity evaluation of gallic-acid-grafted chitosan conjugate synthesized by free-radical-induced grafting method. J. Agric. Food Chem., 2016, 64(29), 5893-5900.
[http://dx.doi.org/10.1021/acs.jafc.6b02255] [PMID: 27379913]
[91]
Lee, D.S.; Je, J.Y. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J. Agric. Food Chem., 2013, 61(26), 6574-6579.
[http://dx.doi.org/10.1021/jf401254g] [PMID: 23635088]
[92]
Lee, D.S.; Eom, S.H.; Kim, Y.M.; Kim, H.S.; Yim, M.J.; Lee, S.H.; Kim, D.H.; Je, J.Y. Antibacterial and synergic effects of gallic acid-grafted-chitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA). Can. J. Microbiol., 2014, 60(10), 629-638.
[http://dx.doi.org/10.1139/cjm-2014-0286] [PMID: 25216286]
[93]
Liu, J.; Lu, J.F.; Kan, J.; Tang, Y.Q.; Jin, C.H. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. Int. J. Biol. Macromol., 2013, 62, 85-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.040] [PMID: 23994782]
[94]
Ren, J.; Li, Q.; Dong, F.; Feng, Y.; Guo, Z. Phenolic antioxidants-functionalized quaternized chitosan: synthesis and antioxidant properties. Int. J. Biol. Macromol., 2013, 53, 77-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.011] [PMID: 23164754]
[95]
Liu, J.; Lu, J.F.; Kan, J.; Jin, C.H. Synthesis of chitosan-gallic acid conjugate: structure characterization and in vitro anti-diabetic potential. Int. J. Biol. Macromol., 2013, 62, 321-329.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.032] [PMID: 24076198]
[96]
Cho, Y.S.; Kim, S.K.; Je, J.Y. Chitosan gallate as potential antioxidant biomaterial. Bioorg. Med. Chem. Lett., 2011, 21(10), 3070-3073.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.033] [PMID: 21486693]
[97]
Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O.I.; Cirillo, G.; Spizzirri, U.G.; Picci, N. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J. Agric. Food Chem., 2009, 57(13), 5933-5938.
[http://dx.doi.org/10.1021/jf900778u] [PMID: 19566085]
[98]
Liu, J.; Pu, H.; Chen, C.; Liu, Y.; Bai, R.; Kan, J.; Jin, C. Reaction mechanisms and structural and physicochemical properties of caffeic acid grafted chitosan synthesized in ascorbic acid and hydroxyl peroxide redox system. J. Agric. Food Chem., 2018, 66(1), 279-289.
[http://dx.doi.org/10.1021/acs.jafc.7b05135] [PMID: 29199827]
[99]
Kim, G.; Dasagrandhi, C.; Kang, E.H.; Eom, S.H.; Kim, Y.M. In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes 3 Biotech, 2018, 8(10), 439.
[100]
Lee, D.S.; Woo, J.Y.; Ahn, C.B.; Je, J.Y. Chitosan-hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity. Food Chem., 2014, 148, 97-104.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.019] [PMID: 24262532]
[101]
Dasagrandhi, C.; Park, S.; Jung, W.K.; Kim, Y.M. Antibacterial and biofilm modulating potential of ferulic acid-grafted chitosan against human pathogenic bacteria. Int. J. Mol. Sci., 2018, 19(8)E2157
[http://dx.doi.org/10.3390/ijms19082157]] [PMID: 30042337]
[102]
Li, C.; Li, J.B. Preparation of chitosan-ferulic acid conjugate: Structure characterization and in the application of pharmaceuticals. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1539-1543.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.103] [PMID: 28526347]
[103]
Eom, S.H.; Kang, S.K.; Lee, D.S.; Myeong, J.I.; Lee, J.; Kim, H.W.; Kim, K.H.; Je, J.Y.; Jung, W.K.; Kim, Y.M. Synergistic antibacterial effect and antibacterial action mode of chitosan-ferulic acid conjugate against methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol., 2016, 26(4), 784-789.
[http://dx.doi.org/10.4014/jmb.1511.11046] [PMID: 26718468]
[104]
Chatterjee, N.S.; Anandan, R.; Navitha, M.; Asha, K.K.; Kumar, K.A.; Mathew, S.; Ravishankar, C.N. Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation. J. Food Sci. Technol., 2016, 53(1), 551-560.
[http://dx.doi.org/10.1007/s13197-015-2044-4] [PMID: 26787974]
[105]
Francolini, I.; Donelli, G.; Crisante, F.; Taresco, V.; Piozzi, A. Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives. Adv. Exp. Med. Biol., 2015, 831, 93-117.
[http://dx.doi.org/10.1007/978-3-319-09782-4_7] [PMID: 25384665]
[106]
Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and antimicrobial biomaterials: an overview. APMIS, 2017, 125(4), 392-417.
[http://dx.doi.org/10.1111/apm.12675] [PMID: 28407425]
[107]
Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. Int. J. Pharm. Sci. Tech., 2011, 6(1), 12-35.
[108]
Singh, R.K.; Nath, G. Antimicrobial activity of Elaeocarpus sphaericus. Phytother. Res., 1999, 13(5), 448-450.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<448:AID-PTR480>3.0.CO;2-6] [PMID: 10441793]
[109]
Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol., 2000, 56(1), 3-12.
[http://dx.doi.org/10.1016/S0168-1605(00)00218-X] [PMID: 10857921]
[110]
Nostro, A.; Guerrini, A.; Marino, A.; Tacchini, M.; Di Giulio, M.; Grandini, A.; Akin, M.; Cellini, L.; Bisignano, G.; Saraçoğlu, H.T. In vitro activity of plant extracts against biofilm-producing food-related bacteria. Int. J. Food Microbiol., 2016, 238, 33-39.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.024] [PMID: 27591384]
[111]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[112]
Sato, Y.; Suzaki, S.; Nishikawa, T.; Kihara, M.; Shibata, H.; Higuti, T. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 2000, 72(3), 483-488.
[http://dx.doi.org/10.1016/S0378-8741(00)00265-8] [PMID: 10996290]
[113]
Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo Cobianchi, R.; Vuotto, M.L.; Ferrara, L. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia, 2000, 71(Suppl. 1), S110-S116.
[http://dx.doi.org/10.1016/S0367-326X(00)00185-4] [PMID: 10930721]
[114]
Cushnie, T.P.T.; Hamilton, V.E.S.; Lamb, A.J. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol. Res., 2003, 158(4), 281-289.
[http://dx.doi.org/10.1078/0944-5013-00206] [PMID: 14717448]
[115]
Morimoto, Y.; Baba, T.; Sasaki, T.; Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents, 2015, 46(6), 666-673.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.09.006] [PMID: 26526895]
[116]
Nayaka, H.B.; Londonkar, R.L.; Umesh, M.K.; Tukappa, A. Antibacterial attributes of apigenin, isolated from Portulaca oleracea. Int. J. Bacteriol., 2014, 2014175851
[http://dx.doi.org/10.1155/2014/175851]] [PMID: 26904730]
[117]
Eumkeb, G.; Siriwong, S.; Thumanu, K. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J. Photochem. Photobiol. B, 2012, 117, 247-253.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.10.006] [PMID: 23159507]
[118]
Cha, S-M.; Kim, G-U.; Cha, J-D. Synergistic antimicrobial activity of apigenin against oral pathogens. IJOER, 2016, 2, 27-37.
[119]
Danihelová, M.; Veverka, M.; Sturdík, E.; Jantová, S. Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercetin derivatives. Interdiscip. Toxicol., 2013, 6(4), 209-216.
[http://dx.doi.org/10.2478/intox-2013-0031] [PMID: 24678260]
[120]
Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep., 2016, 6, 24049.
[http://dx.doi.org/10.1038/srep24049] [PMID: 27068577]
[121]
Babich, H.; Zuckerbraun, H.L.; Weinerman, S.M. In vitro cytotoxicity of (-)-catechin gallate, a minor polyphenol in green tea. Toxicol. Lett., 2007, 171(3), 171-180.
[http://dx.doi.org/10.1016/j.toxlet.2007.05.125] [PMID: 17606338]
[122]
Lee, J.H.; Park, J.H.; Cho, H.S.; Joo, S.W.; Cho, M.H.; Lee, J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling, 2013, 29(5), 491-499.
[http://dx.doi.org/10.1080/08927014.2013.788692] [PMID: 23668380]
[123]
Shahzad, M.; Millhouse, E.; Culshaw, S.; Edwards, C.A.; Ramage, G.; Combet, E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct., 2015, 6(3), 719-729.
[http://dx.doi.org/10.1039/C4FO01087F] [PMID: 25585200]
[124]
Jaisinghani, R.N. Antibacterial properties of quercetin. Microbiol. Res., 2017, 8(1), 6877.
[125]
Koru, O.; Toksoy, F.; Acikel, C.H.; Tunca, Y.M.; Baysallar, M.; Uskudar Guclu, A.; Akca, E.; Ozkok Tuylu, A.; Sorkun, K.; Tanyuksel, M.; Salih, B. In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe, 2007, 13(3-4), 140-145.
[http://dx.doi.org/10.1016/j.anaerobe.2007.02.001] [PMID: 17475517]
[126]
Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot., 2018, 81(1), 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[127]
Farrag, Y.; Ide, W.; Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R. Starch films loaded with donut-shaped starch-quercetin microparticles: Characterization and release kinetics Int. J. Biol. Macromol, 2018, 118(Pt B), 2201-2207.
[128]
Machado, G.H.A.; Marques, T.R.; de Carvalho, T.C.L.; Duarte, A.C.; de Oliveira, F.C.; Gonçalves, M.C.; Piccoli, R.H.; Corrêa, A.D. Antibacterial activity and in vivo wound healing potential of phenolic extracts from jaboticaba skin. Chem. Biol. Drug Des., 2018, 92(1), 1333-1343.
[http://dx.doi.org/10.1111/cbdd.13198] [PMID: 29603906]
[129]
Nadaf, N.H.; Parulekar, R.S.; Patil, R.S.; Gade, T.K.; Momin, A.A.; Waghmare, S.R.; Dhanavade, M.J.; Arvindekar, A.U.; Sonawane, K.D. Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. J. Ethnopharmacol., 2018, 222, 121-132.
[http://dx.doi.org/10.1016/j.jep.2018.04.031] [PMID: 29698774]
[130]
Cirillo, G.; Puoci, F.; Iemma, F.; Curcio, M.; Parisi, O.I.; Spizzirri, U.G.; Altimari, I.; Picci, N. Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharm. Dev. Technol., 2012, 17(4), 466-476.
[http://dx.doi.org/10.3109/10837450.2010.546413] [PMID: 21226550]
[131]
Lv, X.; Ye, F.; Li, J.; Ming, J.; Zhao, G. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin. Carbohydr. Polym., 2016, 152, 317-326.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.023] [PMID: 27516278]
[132]
Liu, J.; Wang, X.; Yong, H.; Kan, J.; Zhang, N.; Jin, C. Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch. Int. J. Biol. Macromol., 2018, 114, 130-136.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.101] [PMID: 29572138]
[133]
Zhu, W.; Zhang, Z. Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int. J. Biol. Macromol., 2014, 70, 150-155.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.047] [PMID: 24995632]
[134]
Spizzirri, U.G.; Iemma, F.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Picci, N. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules, 2009, 10(7), 1923-1930.
[http://dx.doi.org/10.1021/bm900325t] [PMID: 19413362]
[135]
Liu, J.; Lu, J.F.; Kan, J.; Wen, X.Y.; Jin, C.H. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. Int. J. Biol. Macromol., 2014, 64, 76-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.028] [PMID: 24315946]
[136]
Liu, J.; Lu, J.F.; Wen, X.Y.; Kan, J.; Jin, C.H. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. Int. J. Biol. Macromol., 2015, 72, 1479-1484.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.066] [PMID: 25316429]
[137]
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, •••2014186864
[PMID: 24877064]
[138]
Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One, 2015, 10(3)e0121313
[http://dx.doi.org/10.1371/journal.pone.0121313]] [PMID: 25811596]
[139]
Teow, S.Y.; Liew, K.; Ali, S.A.; Khoo, A.S.; Peh, S.C. Antibacterial action of curcumin against Staphylococcus aureus: a brief review. J. Trop. Med., 2016, 20162853045
[http://dx.doi.org/10.1155/2016/2853045]] [PMID: 27956904]
[140]
Moghaddam, K.; Iranshahi, M.; Yazdi, M.; Shahverdi, A. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Intern. J. Green Pharm., 2009, 3(2), 141-143.
[http://dx.doi.org/10.4103/0973-8258.54906]
[141]
Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kim, Y.C.; Lee, D.S.; Shin, D.W.; Kweon, K.T.; Kwon, D.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine, 2013, 20(8-9), 714-718.
[http://dx.doi.org/10.1016/j.phymed.2013.02.006] [PMID: 23537748]
[142]
da Silva, A.C.; de Freitas Santos, P.D.; do Prado Silva, J.T.; Leimann, F.V.; Bracht, L.; Gonçalves, O.H. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci. Technol., 2018, 72, 74-82.
[http://dx.doi.org/10.1016/j.tifs.2017.12.004]
[143]
Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J. Transl. Med., 2014, 12, 219.
[http://dx.doi.org/10.1186/s12967-014-0219-9] [PMID: 25086598]
[144]
Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol., 1999, 51(8), 971-974.
[http://dx.doi.org/10.1211/0022357991773258] [PMID: 10504039]
[145]
Medina-Martínez, M.S.; Truchado, P.; Castro-Ibáñez, I.; Allende, A. Antimicrobial activity of hydroxytyrosol: a current controversy. Biosci. Biotechnol. Biochem., 2016, 80(4), 801-810.
[http://dx.doi.org/10.1080/09168451.2015.1116924] [PMID: 26679750]
[146]
Zoric, N.; Horvat, I.; Kopjar, N.; Vucemilovic, A.; Kremer, D.; Tomic, S.; Kosalec, I. Hydroxytyrosol expresses antifungal activity in vitro. Curr. Drug Targets, 2013, 14(9), 992-998.
[http://dx.doi.org/10.2174/13894501113149990167] [PMID: 23721186]
[147]
Crisante, F.; Taresco, V.; Donelli, G.; Vuotto, C.; Martinelli, A.; D’Ilario, L.; Pietrelli, L.; Francolini, I.; Piozzi, A. Antioxidant hydroxytyrosol-based polyacrylate with antimicrobial and antiadhesive activity versus Staphylococcus epidermidis. Adv. Exp. Med. Biol., 2016, 901, 25-36.
[http://dx.doi.org/10.1007/5584_2015_5013] [PMID: 26542603]
[148]
Taresco, V.; Crisante, F.; Francolini, I.; Martinelli, A.; D’Ilario, L.; Ricci-Vitiani, L.; Buccarelli, M.; Pietrelli, L.; Piozzi, A. Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater., 2015, 22, 131-140.
[http://dx.doi.org/10.1016/j.actbio.2015.04.023] [PMID: 25917843]
[149]
Taresco, V.; Gontrani, L.; Crisante, F.; Francolini, I.; Martinelli, A.; D’Ilario, L.; Bordi, F.; Piozzi, A. Self-assembly of catecholic moiety-containing cationic random acrylic copolymers. J. Phys. Chem. B, 2015, 119(26), 8369-8379.
[http://dx.doi.org/10.1021/acs.jpcb.5b05022] [PMID: 26075948]
[150]
Kim, Y.J.; Chung, S.O.; Kim, J.K.; Park, S.U. Recent studies on resveratrol and its biological and pharmacological activity. EXCLI J., 2017, 16, 602-608.
[PMID: 28694761]
[151]
Ma, D.S.L.; Tan, L.T-H.; Chan, K-G.; Yap, W.H.; Pusparajah, P.; Chuah, L-H.; Ming, L.C.; Khan, T.M.; Lee, L-H.; Goh, B-H. Resveratrol-potential antibacterial agent against foodborne pathogens. Front. Pharmacol., 2018, 9, 102.
[http://dx.doi.org/10.3389/fphar.2018.00102] [PMID: 29515440]
[152]
Paulo, L.; Ferreira, S.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol., 2010, 26, 1533-1538.
[http://dx.doi.org/10.1007/s11274-010-0325-7]
[153]
Kumar, S.N.; Siji, J.V.; Rajasekharan, K.N.; Nambisan, B.; Mohandas, C. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett. Appl. Microbiol., 2012, 54(5), 410-417.
[http://dx.doi.org/10.1111/j.1472-765X.2012.03223.x] [PMID: 22332977]
[154]
Qin, N.; Tan, X.; Jiao, Y.; Liu, L.; Zhao, W.; Yang, S.; Jia, A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep., 2014, 4, 5467.
[http://dx.doi.org/10.1038/srep05467] [PMID: 24970710]
[155]
Seukep, J.A.; Sandjo, L.P.; Ngadjui, B.T.; Kuete, V. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complement. Altern. Med., 2016, 16, 193.
[http://dx.doi.org/10.1186/s12906-016-1173-2] [PMID: 27386848]
[156]
Lai, L.J.; Chiu, J.M.; Chiou, R.Y. Fresh preservation of alfalfa sprouts and mushroom slices by soaking with thymol and resveratrol solutions. Food Sci. Nutr., 2017, 5(3), 776-783.
[http://dx.doi.org/10.1002/fsn3.458] [PMID: 28572968]
[157]
Cho, H.S.; Lee, J-H.; Cho, M.H.; Lee, J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling, 2015, 31(1), 1-11.
[http://dx.doi.org/10.1080/08927014.2014.991319] [PMID: 25535776]
[158]
Kirimer, N.; Baser, K.H.C.; Tumen, G. Carvacrol rich plants in Turkey. Chem. Nat. Compd., 1995, 31, 37-42.
[http://dx.doi.org/10.1007/BF01167568]
[159]
Hajhashemi, V.; Ghannadi, A.; Pezeshkian, S.K. Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. J. Ethnopharmacol., 2002, 82(2-3), 83-87.
[http://dx.doi.org/10.1016/S0378-8741(02)00137-X] [PMID: 12241981]
[160]
Prieto, J.M.; Jacopini, P.; Cioni, P.; Chericoni, S. In vitro activity of the essential oils of Origanum vulgare, Satureja montana and their main constituents in peroxynitrite-induced oxidative processes. Food Chem., 2007, 104, 889-895.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.064]
[161]
Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Metsios, A.; Lekkas, P.; Evangelou, A.M.; Kotsis, N.; Skoufos, I. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol., 2006, 28(2), 121-125.
[PMID: 16837902]
[162]
Nostro, A.; Papalia, T. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov, 2012, 7(1), 28-35.
[http://dx.doi.org/10.2174/157489112799829684] [PMID: 22044355]
[163]
Nostro, A.; Blanco, A.R.; Cannatelli, M.A.; Enea, V.; Flamini, G.; Morelli, I.; Sudano Roccaro, A.; Alonzo, V. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol. Lett., 2004, 230(2), 191-195.
[http://dx.doi.org/10.1016/S0378-1097(03)00890-5] [PMID: 14757239]
[164]
Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res., 2007, 40(3), 349-356.
[http://dx.doi.org/10.1590/S0100-879X2007000300010] [PMID: 17334532]
[165]
Magi, G.; Marini, E.; Facinelli, B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front. Microbiol., 2015, 6, 165.
[http://dx.doi.org/10.3389/fmicb.2015.00165] [PMID: 25784902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy