[1]
Mathew, A.; George, P.S. K M, J.K.; Vasudevan, D.; James, F.V. Transition of cancer in populations in India. Cancer Epidemiol., 2019, 58, 111-120. [http://dx.doi.org/10.1016/j.canep.2018.12.003]. [PMID: 30537646].
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer, 2018, 103, 356-387. [http://dx.doi.org/10.1016/j.ejca.2018.07.005]. [PMID: 30100160].
[3]
Allen, B.C.; Crump, K.S.; Shipp, A.M. Correlation between carcinogenic potency of chemicals in animals and humans. Risk Anal., 1988, 8(4), 531-544. [http://dx.doi.org/10.1111/j.1539-6924.1988.tb01193.x]. [PMID: 3266676].
[4]
Hecht, S.S. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch. Surg., 2006, 391(6), 603-613. [http://dx.doi.org/10.1007/s00423-006-0111-z]. [PMID: 17031696].
[5]
Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; Campbell, P.J.; Vineis, P.; Phillips, D.H.; Stratton, M.R. Mutational signatures associated with tobacco smoking in human cancer. Science, 2016, 354(6312), 618-622. [http://dx.doi.org/10.1126/science.aag0299]. [PMID: 27811275].
[6]
Connor, J. Alcohol consumption as a cause of cancer. Addiction, 2017, 112(2), 222-228. [http://dx.doi.org/10.1111/add.13477]. [PMID: 27442501].
[7]
Praud, D.; Rota, M.; Rehm, J.; Shield, K.; Zatoński, W.; Hashibe, M.; La Vecchia, C.; Boffetta, P. Cancer incidence and mortality attributable to alcohol consumption. Int. J. Cancer, 2016, 138(6), 1380-1387. [http://dx.doi.org/10.1002/ijc.29890]. [PMID: 26455822].
[8]
Pearson-Stuttard, J.; Zhou, B.; Kontis, V.; Bentham, J.; Gunter, M.J.; Ezzati, M. Worldwide burden of cancer attributable to diabetes and high body-mass index: A comparative risk assessment. Lancet Diabetes Endocrinol., 2018, 6(6), e6-e15. [http://dx.doi.org/10.1016/S2213-8587(18)30150-5]. [PMID: 29803268].
[9]
Wang, X.; Lin, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G.; Pan, A.; Hu, F.B. Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health Nutr., 2016, 19(5), 893-905. [http://dx.doi.org/10.1017/S1368980015002062]. [PMID: 26143683].
[10]
Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H-J.; Tveit, K-M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer, 2015, 14(1), 1-10. [http://dx.doi.org/10.1016/j.clcc.2014.11.002]. [PMID: 25579803].
[11]
Hutchinson, A.D.; Hosking, J.R.; Kichenadasse, G.; Mattiske, J.K.; Wilson, C. Objective and subjective cognitive impairment following chemotherapy for cancer: A systematic review. Cancer Treat. Rev., 2012, 38(7), 926-934. [http://dx.doi.org/10.1016/j.ctrv.2012.05.002]. [PMID: 22658913].
[12]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 2005, 104(6), 1129-1137. [http://dx.doi.org/10.1002/cncr.21324]. [PMID: 16080176].
[13]
Baker, S.; Dahele, M.; Lagerwaard, F.J.; Senan, S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat. Oncol., 2016, 11(1), 115. [http://dx.doi.org/10.1186/s13014-016-0693-8]. [PMID: 27600665].
[14]
Pisarska, M.; Małczak, P.; Major, P.; Wysocki, M.; Budzyński, A.; Pędziwiatr, M. Enhanced recovery after surgery protocol in oesophageal cancer surgery: Systematic review and meta-analysis. PLoS One, 2017, 12(3)e0174382 [http://dx.doi.org/10.1371/journal.pone.0174382]. [PMID: 28350805].
[15]
Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced recovery after surgery: A review. JAMA Surg., 2017, 152(3), 292-298. [http://dx.doi.org/10.1001/jamasurg.2016.4952]. [PMID: 28097305].
[16]
Nie, J.; Zhao, C.; Deng, L.I.; Chen, J.; Yu, B.; Wu, X.; Pang, P.; Chen, X. Efficacy of traditional Chinese medicine in treating cancer. Biomed. Rep., 2016, 4(1), 3-14. [http://dx.doi.org/10.3892/br.2015.537]. [PMID: 26870326].
[17]
Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic effects of chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol., 2016, 7, 201. [http://dx.doi.org/10.3389/fphar.2016.00201]. [PMID: 27462269].
[18]
Ye, L.; Jia, Y.; Ji, K.E.; Sanders, A.J.; Xue, K.; Ji, J.; Mason, M.D.; Jiang, W.G. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol. Lett., 2015, 10(3), 1240-1250. [http://dx.doi.org/10.3892/ol.2015.3459]. [PMID: 26622657].
[19]
Crafton, S.M.; Salani, R. Beyond chemotherapy: An overview and review of targeted therapy in cervical cancer. Clin. Ther., 2016, 38(3), 449-458. [http://dx.doi.org/10.1016/j.clinthera.2016.02.007]. [PMID: 26926322].
[21]
Azim, H.A., Jr; de Azambuja, E.; Colozza, M.; Bines, J.; Piccart, M.J. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann. Oncol., 2011, 22(9), 1939-1947. [http://dx.doi.org/10.1093/annonc/mdq683]. [PMID: 21289366].
[22]
De Ruyck, K.; Van Eijkeren, M.; Claes, K.; Morthier, R.; De Paepe, A.; Vral, A.; De Ridder, L.; Thierens, H. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int. J. Radiat. Oncol. Biol. Phys., 2005, 62(4), 1140-1149.
[23]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196. [http://dx.doi.org/10.1016/j.ejphar.2018.07.034]. [PMID: 30031797].
[24]
Chan, B.A.; Hughes, B.G.M. Targeted therapy for non-small cell lung cancer: Current standards and the promise of the future. Transl. Lung Cancer Res., 2015, 4(1), 36-54. [PMID: 25806345].
[25]
Sapiezynski, J.; Taratula, O.; Rodriguez-Rodriguez, L.; Minko, T. Precision targeted therapy of ovarian cancer. J. Control. Release, 2016, 243, 250-268. [http://dx.doi.org/10.1016/j.jconrel.2016.10.014]. [PMID: 27746277].
[26]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39. [http://dx.doi.org/10.1038/nrc2559]. [PMID: 19104514].
[27]
Harris, M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol., 2004, 5(5), 292-302. [http://dx.doi.org/10.1016/S1470-2045(04)01467-6]. [PMID: 15120666].
[28]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355. [http://dx.doi.org/10.1126/science.aar4060]. [PMID: 29567705].
[29]
Graham, D.K.; DeRyckere, D.; Davies, K.D.; Earp, H.S. The TAM family: Phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer, 2014, 14(12), 769-785. [http://dx.doi.org/10.1038/nrc3847]. [PMID: 25568918].
[30]
Ran, A.; Bo, H.; Lang, X.; Qiao, C.; Chang, H. Axl-targeting drugs in tumor therapy: Research advances. J. Int. Pharm. Res., 2016, 43(3), 420-424. [DOI: 10.18632/oncotarget.2542].
[31]
Tsukita, Y.; Fujino, N.; Miyauchi, E.; Saito, R.; Fujishima, F.; Itakura, K.; Kyogoku, Y.; Okutomo, K.; Yamada, M.; Okazaki, T.; Sugiura, H.; Inoue, A.; Okada, Y.; Ichinose, M. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol. Cancer, 2019, 18(1), 24. [http://dx.doi.org/10.1186/s12943-019-0953-y]. [PMID: 30744655].
[32]
Nagata, K.; Ohashi, K.; Nakano, T.; Arita, H.; Zong, C.; Hanafusa, H.; Mizuno, K. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J. Biol. Chem., 1996, 271(47), 30022-30027. [http://dx.doi.org/10.1074/jbc.271.47.30022]. [PMID: 8939948].
[33]
Linger, R.M.; Keating, A.K.; Earp, H.S.; Graham, D.K. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv. Cancer Res., 2008, 100, 35-83. [http://dx.doi.org/10.1016/S0065-230X(08)00002-X]. [PMID: 18620092].
[34]
Elkabets, M.; Pazarentzos, E.; Juric, D.; Sheng, Q.; Pelossof, R.A.; Brook, S.; Benzaken, A.O.; Rodon, J.; Morse, N.; Yan, J.J.; Liu, M.; Das, R.; Chen, Y.; Tam, A.; Wang, H.; Liang, J.; Gurski, J.M.; Kerr, D.A.; Rosell, R.; Teixidó, C.; Huang, A.; Ghossein, R.A.; Rosen, N.; Bivona, T.G.; Scaltriti, M.; Baselga, J. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell, 2015, 27(4), 533-546. [http://dx.doi.org/10.1016/j.ccell.2015.03.010]. [PMID: 25873175].
[35]
Müller, J.; Krijgsman, O.; Tsoi, J.; Robert, L.; Hugo, W.; Song, C.; Kong, X.; Possik, P.A.; Cornelissen-Steijger, P.D.; Geukes Foppen, M.H.; Kemper, K.; Goding, C.R.; McDermott, U.; Blank, C.; Haanen, J.; Graeber, T.G.; Ribas, A.; Lo, R.S.; Peeper, D.S. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun., 2014, 5, 5712. [http://dx.doi.org/10.1038/ncomms6712]. [PMID: 25502142].
[36]
Debruyne, D.N.; Bhatnagar, N.; Sharma, B.; Luther, W.; Moore, N.F.; Cheung, N-K.; Gray, N.S.; George, R.E. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene, 2016, 35(28), 3681-3691. [http://dx.doi.org/10.1038/onc.2015.434]. [PMID: 26616860].
[37]
Giles, K.M.; Kalinowski, F.C.; Candy, P.A.; Epis, M.R.; Zhang, P.M.; Redfern, A.D.; Stuart, L.M.; Goodall, G.J.; Leedman, P.J. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol. Cancer Ther., 2013, 12(11), 2541-2558. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0170]. [PMID: 24026012].
[38]
Brand, T.M.; Iida, M.; Stein, A.P.; Corrigan, K.L.; Braverman, C.M.; Luthar, N.; Toulany, M.; Gill, P.S.; Salgia, R.; Kimple, R.J.; Wheeler, D.L. AXL mediates resistance to cetuximab therapy. Cancer Res., 2014, 74(18), 5152-5164. [http://dx.doi.org/10.1158/0008-5472.CAN-14-0294]. [PMID: 25136066].
[39]
Zhang, Z.; Lee, J.C.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44(8), 852-860. [http://dx.doi.org/10.1038/ng.2330]. [PMID: 22751098].
[40]
Brand, T.M.; Iida, M.; Corrigan, K.L.; Braverman, C.M.; Coan, J.P.; Flanigan, B.G.; Stein, A.P.; Salgia, R.; Rolff, J.; Kimple, R.J.; Wheeler, D.L. The receptor tyrosine kinase AXL mediates nuclear translocation of the epidermal growth factor receptor. Sci. Signal., 2017, 10(460)eaag1064 [http://dx.doi.org/10.1126/scisignal.aag1064]. [PMID: 28049763].
[41]
Zhao, Z.; Wu, H.; Wang, L.; Liu, Y.; Knapp, S.; Liu, Q.; Gray, N.S. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chem. Biol., 2014, 9(6), 1230-1241. [http://dx.doi.org/10.1021/cb500129t]. [PMID: 24730530].
[42]
Holland, S.J.; Pan, A.; Franci, C.; Hu, Y.; Chang, B.; Li, W.; Duan, M.; Torneros, A.; Yu, J.; Heckrodt, T.J.; Zhang, J.; Ding, P.; Apatira, A.; Chua, J.; Brandt, R.; Pine, P.; Goff, D.; Singh, R.; Payan, D.G.; Hitoshi, Y. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res., 2010, 70(4), 1544-1554. [http://dx.doi.org/10.1158/0008-5472.CAN-09-2997]. [PMID: 20145120].
[43]
Sheridan, C. First Axl inhibitor enters clinical trials. Nat. Biotechnol., 2013, 31(9), 775-776. [http://dx.doi.org/10.1038/nbt0913-775a]. [PMID: 24022140].
[44]
Fleuren, E.D.; Hillebrandt-Roeffen, M.H.; Flucke, U.E.; Te Loo, D.M.W.; Boerman, O.C.; van der Graaf, W.T.; Versleijen-Jonkers, Y.M. The role of AXL and the in vitro activity of the receptor tyrosine kinase inhibitor BGB324 in Ewing sarcoma. Oncotarget, 2014, 5(24), 12753-12768. [http://dx.doi.org/10.18632/oncotarget.2648]. [PMID: 25528764].
[45]
Ben-Batalla, I.; Erdmann, R.; Jørgensen, H.; Mitchell, R.; Ernst, T.; von Amsberg, G.; Schafhausen, P.; Velthaus, J.L.; Rankin, S.; Clark, R.E.; Koschmieder, S.; Schultze, A.; Mitra, S.; Vandenberghe, P.; Brümmendorf, T.H.; Carmeliet, P.; Hochhaus, A.; Pantel, K.; Bokemeyer, C.; Helgason, G.V.; Holyoake, T.L.; Loges, S. Axl blockade by BGB324 inhibits BCR-ABL tyrosine kinase inhibitor-sensitive and -resistant chronic myeloid leukemia. Clin. Cancer Res., 2017, 23(9), 2289-2300. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1930]. [PMID: 27856601].
[46]
Blood, P.; Blood, P. The immunomodulatory activity of bemcentinib (BGB324)–a first-in-class selective, oral AXL inhibitor in patients with relapsed/refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome. J. Clin. Oncol, 2018, 36(5_Suppl.). , 70.
[48]
Schroeder, G.M.; An, Y.; Cai, Z-W.; Chen, X-T.; Clark, C.; Cornelius, L.A.; Dai, J.; Gullo-Brown, J.; Gupta, A.; Henley, B.; Hunt, J.T.; Jeyaseelan, R.; Kamath, A.; Kim, K.; Lippy, J.; Lombardo, L.J.; Manne, V.; Oppenheimer, S.; Sack, J.S.; Schmidt, R.J.; Shen, G.; Stefanski, K.; Tokarski, J.S.; Trainor, G.L.; Wautlet, B.S.; Wei, D.; Williams, D.K.; Zhang, Y.; Zhang, Y.; Fargnoli, J.; Borzilleri, R.M. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily. J. Med. Chem., 2009, 52(5), 1251-1254. [http://dx.doi.org/10.1021/jm801586s]. [PMID: 19260711].
[49]
Zeng, J-Y.; Sharma, S.; Zhou, Y-Q.; Yao, H-P.; Hu, X.; Zhang, R.; Wang, M-H. Synergistic activities of MET/RON inhibitor BMS-777607 and mTOR inhibitor AZD8055 to polyploid cells derived from pancreatic cancer and cancer stem cells. Mol. Cancer Ther., 2014, 13(1), 37-48. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0242]. [PMID: 24233399].
[50]
Nurhayati, R.W.; Ojima, Y.; Taya, M. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells. Hum. Cell, 2015, 28(2), 65-72. [http://dx.doi.org/10.1007/s13577-014-0102-2]. [PMID: 25304900].
[51]
Onken, J.; Torka, R.; Korsing, S.; Radke, J.; Krementeskaia, I.; Nieminen, M.; Bai, X.; Ullrich, A.; Heppner, F.; Vajkoczy, P. Inhibiting receptor tyrosine kinase AXL with small molecule inhibitor BMS-777607 reduces glioblastoma growth, migration, and invasion in vitro and in vivo. Oncotarget, 2016, 7(9), 9876-9889. [http://dx.doi.org/10.18632/oncotarget.7130]. [PMID: 26848524].
[52]
Wu, C-C.; Weng, C-S.; Hsu, Y-T.; Chang, C-L. Antitumor effects of BMS-777607 on ovarian cancer cells with constitutively activated c-MET. Taiwan. J. Obstet. Gynecol., 2019, 58(1), 145-152. [http://dx.doi.org/10.1016/j.tjog.2018.11.027]. [PMID: 30638469].
[53]
Katayama, R.; Kobayashi, Y.; Friboulet, L.; Lockerman, E.L.; Koike, S.; Shaw, A.T.; Engelman, J.A.; Fujita, N. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin. Cancer Res., 2015, 21(1), 166-174. [http://dx.doi.org/10.1158/1078-0432.CCR-14-1385]. [PMID: 25351743].
[54]
Neal, J.W.; Dahlberg, S.E.; Wakelee, H.A.; Aisner, S.C.; Bowden, M.; Huang, Y.; Carbone, D.P.; Gerstner, G.J.; Lerner, R.E.; Rubin, J.L.; Owonikoko, T.K.; Stella, P.J.; Steen, P.D.; Khalid, A.A.; Ramalingam, S.S. ECOG-ACRIN 1512 Investigators Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol., 2016, 17(12), 1661-1671. [http://dx.doi.org/10.1016/S1470-2045(16)30561-7]. [PMID: 27825638].
[55]
Tolaney, S.M.; Ziehr, D.R.; Guo, H.; Ng, M.R.; Barry, W.T.; Higgins, M.J.; Isakoff, S.J.; Brock, J.E.; Ivanova, E.V.; Paweletz, C.P.; Demeo, M.K.; Ramaiya, N.H.; Overmoyer, B.A.; Jain, R.K.; Winer, E.P.; Duda, D.G. Phase II and biomarker study of cabozantinib in metastatic triple‐negative breast cancer patients. Oncologist, 2017, 22(1), 25-32. [http://dx.doi.org/10.1634/theoncologist.2016-0229]. [PMID: 27789775].
[56]
Kelley, R.K.; Verslype, C.; Cohn, A.L.; Yang, T-S.; Su, W-C.; Burris, H.; Braiteh, F.; Vogelzang, N.; Spira, A.; Foster, P.; Lee, Y.; Van Cutsem, E. Cabozantinib in hepatocellular carcinoma: results of a phase 2 placebo-controlled randomized discontinuation study. Ann. Oncol., 2017, 28(3), 528-534. [http://dx.doi.org/10.1093/annonc/mdw651]. [PMID: 28426123].
[57]
Choueiri, T.K.; Escudier, B.; Powles, T.; Tannir, N.M.; Mainwaring, P.N.; Rini, B.I.; Hammers, H.J.; Donskov, F.; Roth, B.J.; Peltola, K.; Lee, J.L.; Heng, D.Y.C.; Schmidinger, M.; Agarwal, N.; Sternberg, C.N.; McDermott, D.F.; Aftab, D.T.; Hessel, C.; Scheffold, C.; Schwab, G.; Hutson, T.E.; Pal, S.; Motzer, R.J. METEOR investigators Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol., 2016, 17(7), 917-927. [http://dx.doi.org/10.1016/S1470-2045(16)30107-3]. [PMID: 27279544].
[58]
Smith, M.; De Bono, J.; Sternberg, C.; Le Moulec, S.; Oudard, S.; De Giorgi, U.; Krainer, M.; Bergman, A.; Hoelzer, W.; De Wit, R.; Bögemann, M.; Saad, F.; Cruciani, G.; Thiery-Vuillemin, A.; Feyerabend, S.; Miller, K.; Houédé, N.; Hussain, S.; Lam, E.; Polikoff, J.; Stenzl, A.; Mainwaring, P.; Ramies, D.; Hessel, C.; Weitzman, A.; Fizazi, K. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J. Clin. Oncol., 2016, 34(25), 3005-3013. [http://dx.doi.org/10.1200/JCO.2015.65.5597]. [PMID: 27400947].
[59]
Schlumberger, M.; Elisei, R.; Müller, S.; Schöffski, P.; Brose, M.; Shah, M.; Licitra, L.; Krajewska, J.; Kreissl, M.C.; Niederle, B.; Cohen, E.E.W.; Wirth, L.; Ali, H.; Clary, D.O.; Yaron, Y.; Mangeshkar, M.; Ball, D.; Nelkin, B.; Sherman, S. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann. Oncol., 2017, 28(11), 2813-2819. [http://dx.doi.org/10.1093/annonc/mdx479]. [PMID: 29045520].
[60]
Abou-Alfa, G.K.; Meyer, T.; Cheng, A-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J-W.; Blanc, J.F.; Bolondi, L.; Klümpen, H.J.; Chan, S.L.; Zagonel, V.; Pressiani, T.; Ryu, M.H.; Venook, A.P.; Hessel, C.; Borgman-Hagey, A.E.; Schwab, G.; Kelley, R.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med., 2018, 379(1), 54-63. [http://dx.doi.org/10.1056/NEJMoa1717002]. [PMID: 29972759].
[61]
Singh, H.; Brave, M.; Beaver, J.A.; Cheng, J.; Tang, S.; Zahalka, E.; Palmby, T.R.; Venugopal, R.; Song, P.; Liu, Q.; Liu, C.; Yu, J.; Chen, X.H.; Wang, X.; Wang, Y.; Kluetz, P.G.; Daniels, S.R.; Papadopoulos, E.J.; Sridhara, R.; McKee, A.E.; Ibrahim, A.; Kim, G.; Pazdur, R. US food and drug administration approval: cabozantinib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res., 2017, 23(2), 330-335. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1073]. [PMID: 27793960].
[62]
Martínez Chanzá, N.; Xie, W.; Asim Bilen, M.; Dzimitrowicz, H.; Burkart, J.; Geynisman, D.M.; Balakrishnan, A.; Bowman, I.A.; Jain, R.; Stadler, W.; Zakharia, Y.; Narayan, V.; Beuselinck, B.; McKay, R.R.; Tripathi, A.; Pachynski, R.; Hahn, A.W.; Hsu, J.; Shah, S.A.; Lam, E.T.; Rose, T.L.; Mega, A.E.; Vogelzang, N.; Harrison, M.R.; Mortazavi, A.; Plimack, E.R.; Vaishampayan, U.; Hammers, H.; George, S.; Haas, N.; Agarwal, N.; Pal, S.K.; Srinivas, S.; Carneiro, B.A.; Heng, D.Y.C.; Bosse, D.; Choueiri, T.K.; Harshman, L.C. Cabozantinib in advanced non-clear-cell renal cell carcinoma: a multicentre, retrospective, cohort study. Lancet Oncol., 2019, 20(4), 581-590. [http://dx.doi.org/10.1016/S1470-2045(18)30907-0]. [PMID: 30827746].
[63]
Zillhardt, M.; Park, S-M.; Romero, I.L.; Sawada, K.; Montag, A.; Krausz, T.; Yamada, S.D.; Peter, M.E.; Lengyel, E. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin. Cancer Res., 2011, 17(12), 4042-4051. [http://dx.doi.org/10.1158/1078-0432.CCR-10-3387]. [PMID: 21551255].
[64]
Davare, M.A.; Saborowski, A.; Eide, C.A.; Tognon, C.; Smith, R.L.; Elferich, J.; Agarwal, A.; Tyner, J.W.; Shinde, U.P.; Lowe, S.W.; Druker, B.J. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19519-19524. [http://dx.doi.org/10.1073/pnas.1319583110]. [PMID: 24218589].
[65]
Faria, C.C.; Golbourn, B.J.; Dubuc, A.M.; Remke, M.; Diaz, R.J.; Agnihotri, S.; Luck, A.; Sabha, N.; Olsen, S.; Wu, X.; Garzia, L.; Ramaswamy, V.; Mack, S.C.; Wang, X.; Leadley, M.; Reynaud, D.; Ermini, L.; Post, M.; Northcott, P.A.; Pfister, S.M.; Croul, S.E.; Kool, M.; Korshunov, A.; Smith, C.A.; Taylor, M.D.; Rutka, J.T. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma. Cancer Res., 2015, 75(1), 134-146. [http://dx.doi.org/10.1158/0008-5472.CAN-13-3629]. [PMID: 25391241].
[66]
Yau, T.C.C.; Lencioni, R.; Sukeepaisarnjaroen, W.; Chao, Y.; Yen, C-J.; Lausoontornsiri, W.; Chen, P-J.; Sanpajit, T.; Camp, A.; Cox, D.S.; Gagnon, R.C.; Liu, Y.; Raffensperger, K.E.; Kulkarni, D.A.; Kallender, H.; Ottesen, L.H.; Poon, R.T.P.; Bottaro, D.P. A phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2017, 23(10), 2405-2413. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1789]. [PMID: 27821605].
[67]
Chen, G-Z.; Dai, W-S.; Zhu, H-C.; Song, H-M.; Yang, X.; Wang, Y-D.; Min, H.; Lu, Q.; Liu, S.; Sun, X-C.; Zeng, X.N. Foretinib enhances the radiosensitivity in esophageal squamous cell carcinoma by inhibiting phosphorylation of c-Met. J. Cancer, 2017, 8(6), 983-992. [http://dx.doi.org/10.7150/jca.18135]. [PMID: 28529610].
[68]
Nishiyama, A.; Yamada, T.; Kita, K.; Wang, R.; Arai, S.; Fukuda, K.; Tanimoto, A.; Takeuchi, S.; Tange, S.; Tajima, A.; Furuya, N.; Kinoshita, T.; Yano, S. Foretinib overcomes entrectinib resistance associated with the NTRK1 G667C Mutation in NTRK1 fusion-positive tumor cells in a brain metastasis model. Clin. Cancer Res., 2018, 24(10), 2357-2369. [http://dx.doi.org/10.1158/1078-0432.CCR-17-1623]. [PMID: 29463555].
[69]
Kogata, Y.; Tanaka, T.; Ono, Y.J.; Hayashi, M.; Terai, Y.; Ohmichi, M. Foretinib (GSK1363089) induces p53-dependent apoptosis in endometrial cancer. Oncotarget, 2018, 9(32), 22769-22784. [http://dx.doi.org/10.18632/oncotarget.25232]. [PMID: 29854314].
[70]
Dratkiewicz, E.; Pietraszek-Gremplewicz, K.; Simiczyjew, A.; Mazur, A.J.; Nowak, D. Gefitinib or lapatinib with foretinib synergistically induce a cytotoxic effect in melanoma cell lines. Oncotarget, 2018, 9(26), 18254-18268. [http://dx.doi.org/10.18632/oncotarget.24810]. [PMID: 29719603].
[71]
Boschelli, F.; Arndt, K.; Gambacorti-Passerini, C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur. J. Cancer, 2010, 46(10), 1781-1789. [http://dx.doi.org/10.1016/j.ejca.2010.02.032]. [PMID: 20399641].
[72]
Gambacorti-Passerini, C.; Kantarjian, H.M.; Kim, D.W.; Khoury, H.J.; Turkina, A.G.; Brümmendorf, T.H.; Matczak, E.; Bardy-Bouxin, N.; Shapiro, M.; Turnbull, K.; Leip, E.; Cortes, J.E. Long-term efficacy and safety of bosutinib in patients with advanced leukemia following resistance/intolerance to imatinib and other tyrosine kinase inhibitors. Am. J. Hematol., 2015, 90(9), 755-768. [http://dx.doi.org/10.1002/ajh.24034]. [PMID: 26040495].
[73]
Cortes, J.E.; Khoury, H.J.; Kantarjian, H.M.; Lipton, J.H.; Kim, D.W.; Schafhausen, P.; Matczak, E.; Leip, E.; Noonan, K.; Brümmendorf, T.H.; Gambacorti-Passerini, C. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am. J. Hematol., 2016, 91(12), 1206-1214. [http://dx.doi.org/10.1002/ajh.24536]. [PMID: 27531525].
[74]
Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D-W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J. Clin. Oncol., 2018, 36(3), 231-237. [http://dx.doi.org/10.1200/JCO.2017.74.7162]. [PMID: 29091516].
[75]
Segrelles, C.; Contreras, D.; Navarro, E.M.; Gutiérrez-Muñoz, C.; García-Escudero, R.; Paramio, J.M.; Lorz, C. Bosutinib Inhibits EGFR activation in head and neck cancer. Int. J. Mol. Sci., 2018, 19(7), 1824. [http://dx.doi.org/10.3390/ijms19071824]. [PMID: 29933569].
[76]
García-Gutiérrez, V.; Milojkovic, D.; Hernandez-Boluda, J.C.; Claudiani, S.; Martin Mateos, M.L.; Casado-Montero, L.F.; González, G.; Jimenez-Velasco, A.; Boque, C.; Martinez-Trillos, A.; Vázquez, I.M.; Payer, Á.R.; Senín, A.; Amustio Díez, E.; García, A.B.; Carrascosa, G.B.; Ortí, G.; Ruiz, B.C.; Fernández, M.Á.; Del Carmen García Garay, M.; Giraldo, P.; Guinea, J.M.; De Las Heras Rodríguez, N.; Hernán, N.; Pérez, A.I.; Piris-Villaespesa, M.; Lorenzo, J.L.L.; Martí-Tutusaus, J.M.M.; Vallansot, R.O.; Ortega Rivas, F.; Puerta, J.M.; Ramirez, M.J.; Romero, E.; Romo, A.; Rosell, A.; Saavedra, S.S.; Sebrango, A.; Tallon, J.; Valencia, S.; Portero, A.; Steegmann, J.L. Grupo español de leucemia mieloide crónica (GELMC). Safety and efficacy of bosutinib in fourth-line therapy of chronic myeloid leukemia patients. Ann. Hematol., 2019, 98(2), 321-330. [http://dx.doi.org/10.1007/s00277-018-3507-2]. [PMID: 30446802].
[77]
Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs, 2017, 35(5), 556-565. [http://dx.doi.org/10.1007/s10637-017-0470-z]. [PMID: 28516360].
[78]
Lee, L.Y.; Hernandez, D.; Rajkhowa, T.; Smith, S.C.; Raman, J.R.; Nguyen, B.; Small, D.; Levis, M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood, 2017, 129(2), 257-260. [http://dx.doi.org/10.1182/blood-2016-10-745133]. [PMID: 27908881].
[79]
Pratz, K.; Cherry, M.; Altman, J.K.; Cooper, B.W.; Cruz, J.C.; Jurcic, J.G.; Levis, M.J.; Lin, T.L.; Perl, A.E.; Podoltsev, N.A. Preliminary results from a phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia (AML). Blood, 2017, 130, 722.
[80]
Pratz, K.W.; Cherry, M.; Altman, J.K.; Cooper, B.; Cruz, J.C.; Jurcic, J.G.; Levis, M.J.; Lin, T.L.; Perl, A.E.; Podoltsev, N.A. Updated results from a phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia (AML). Blood, 2018, 132, 564. [https://doi.org/10.1182/blood-2018-99-110975].
[81]
Dhillon, S. Gilteritinib: First Global Approval. Drugs, 2019, 79(3), 331-339. [http://dx.doi.org/10.1007/s40265-019-1062-3]. [PMID: 30721452].
[82]
Burbridge, M.F.; Bossard, C.J.; Saunier, C.; Fejes, I.; Bruno, A.; Léonce, S.; Ferry, G.; Da Violante, G.; Bouzom, F.; Cattan, V.; Jacquet-Bescond, A.; Comoglio, P.M.; Lockhart, B.P.; Boutin, J.A.; Cordi, A.; Ortuno, J.C.; Pierré, A.; Hickman, J.A.; Cruzalegui, F.H.; Depil, S. S49076 is a novel kinase inhibitor of MET, AXL, and FGFR with strong preclinical activity alone and in association with bevacizumab. Mol. Cancer Ther., 2013, 12(9), 1749-1762. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0075]. [PMID: 23804704].
[83]
Rodon, J.; Postel-Vinay, S.; Hollebecque, A.; Nuciforo, P.; Azaro, A.; Cattan, V.; Marfai, L.; Sudey, I.; Brendel, K.; Delmas, A.; Malasse, S.; Soria, J.C. First-in-human phase I study of oral S49076, a unique MET/AXL/FGFR inhibitor, in advanced solid tumours. Eur. J. Cancer, 2017, 81, 142-150. [http://dx.doi.org/10.1016/j.ejca.2017.05.007]. [PMID: 28624695].
[84]
Clémenson, C.; Chargari, C.; Liu, W.; Mondini, M.; Ferté, C.; Burbridge, M.F.; Cattan, V.; Jacquet-Bescond, A.; Deutsch, E. The MET/AXL/FGFR inhibitor S49076 impairs Aurora B activity and improves the antitumor efficacy of radiotherapy. Mol. Cancer Ther., 2017, 16(10), 2107-2119. [http://dx.doi.org/10.1158/1535-7163.MCT-17-0112]. [PMID: 28619752].
[85]
Bertran-Alamillo, J.; Cattan, V.; Schoumacher, M.; Codony-Servat, J.; Giménez-Capitán, A.; Cantero, F.; Burbridge, M.; Rodríguez, S.; Teixidó, C.; Roman, R.; Castellví, J.; García-Román, S.; Codony-Servat, C.; Viteri, S.; Cardona, A-F.; Karachaliou, N.; Rosell, R.; Molina-Vila, M-A. AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy. Nat. Commun., 2019, 10(1), 1812. [http://dx.doi.org/10.1038/s41467-019-09734-5]. [PMID: 31000705].
[86]
Shahin, M.I.; Roy, J.; Hanafi, M.; Wang, D.; Luesakul, U.; Chai, Y.; Muangsin, N.; Lasheen, D.S.; Abou El Ella, D.A.; Abouzid, K.A.; Neamati, N. Synthesis and biological evaluation of novel 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives for the treatment of esophageal squamous cell carcinoma. Eur. J. Med. Chem., 2018, 155, 516-530. [http://dx.doi.org/10.1016/j.ejmech.2018.05.042]. [PMID: 29908444].
[87]
Şener, N.; Mohammed, H.J.A.; Yerlikaya, S.; Celik Altunoglu, Y.; Gür, M.; Baloglu, M.C.; Şener, İ. Anticancer, antimicrobial, and DNA protection analysis of novel 2,4-dihydroxyquinoline dyes. Dyes Pigments, 2018, 157, 11-19. [http://dx.doi.org/10.1016/j.dyepig.2018.04.040].
[88]
Ma, X.; Wu, Y.I.; Yang, X.; Yang, S.; Li, Y.; Huang, Y.; Lee, R.J.; Bai, T.; Luo, Y. A Novel 1,2-Dihydroquinoline anticancer agent and its delivery to tumor cells using cationic liposomes. Anticancer Res., 2016, 36(5), 2105-2111. [PMID: 27127110].
[89]
Facchinetti, V.; Guimaraes, F.A.; de Souza, M.V.N.; Gomes, C.R.B.; de Souza, M.C.B.; Wardell, J.L.; Wardell, S.M.; Vasconce-los, T.R. Synthesis of novel ethyl (substituted) phenyl‐4‐oxothia-zolidin‐3‐yl)‐1‐ethyl‐4‐oxo‐1, 4‐dihydroquinoline‐3‐carboxylates as potential anticancer agents. J. Heterocycl. Chem., 2015, 52(4), 1245-1252. [http://dx.doi.org/10.1002/jhet.2212].
[90]
Tan, L.; Zhang, Z.; Gao, D.; Luo, J.; Tu, Z-C.; Li, Z.; Peng, L.; Ren, X.; Ding, K. 4-Oxo-1, 4-dihydroquinoline-3-carboxamide derivatives as new Axl kinase inhibitors. J. Med. Chem., 2016, 59(14), 6807-6825. [http://dx.doi.org/10.1021/acs.jmedchem.6b00608]. [PMID: 27379978].
[91]
Keung, W.; Boloor, A.; Brown, J.; Kiryanov, A.; Gangloff, A.; Lawson, J.D.; Skene, R.; Hoffman, I.; Atienza, J.; Kahana, J.; De Jong, R.; Farrell, P.; Balakrishna, D.; Halkowycz, P. Structure-based optimization of 1H-imidazole-2-carboxamides as Axl kinase inhibitors utilizing a Mer mutant surrogate. Bioorg. Med. Chem. Lett., 2017, 27(4), 1099-1104. [http://dx.doi.org/10.1016/j.bmcl.2016.12.024]. [PMID: 28082036].
[92]
Daydé-Cazals, B.; Fauvel, B.; Singer, M.; Feneyrolles, C.; Bestgen, B.; Gassiot, F.; Spenlinhauer, A.; Warnault, P.; Van Hijfte, N.; Borjini, N.; Chevé, G.; Yasri, A. Rational design, synthesis, and biological evaluation of 7-azaindole derivatives as potent focused multi-targeted kinase inhibitors. J. Med. Chem., 2016, 59(8), 3886-3905. [http://dx.doi.org/10.1021/acs.jmedchem.6b00087]. [PMID: 27010810].
[93]
Tang, Q.; Wang, L.; Duan, Y.; Wang, W.; Huang, S.; Zhi, J.; Jia, S.; Zhu, W.; Wang, P.; Luo, R.; Zheng, P. Discovery of novel 7-azaindole derivatives bearing dihydropyridazine moiety as c-Met kinase inhibitors. Eur. J. Med. Chem., 2017, 133, 97-106. [http://dx.doi.org/10.1016/j.ejmech.2017.03.045]. [PMID: 28384549].
[94]
Yang, C.; Zhang, X.; Wang, Y.; Yang, Y.; Liu, X.; Deng, M.; Jia, Y.; Ling, Y.; Meng, L.H.; Zhou, Y. Discovery of a novel series of 7-azaindole scaffold derivatives as PI3K inhibitors with potent activity. ACS Med. Chem. Lett., 2017, 8(8), 875-880. [http://dx.doi.org/10.1021/acsmedchemlett.7b00222]. [PMID: 28835805].
[95]
Feneyrolles, C.; Guiet, L.; Singer, M.; Van Hijfte, N.; Daydé-Cazals, B.; Fauvel, B.; Chevé, G.; Yasri, A. Discovering novel 7-azaindole-based series as potent AXL kinase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 862-866. [http://dx.doi.org/10.1016/j.bmcl.2017.01.015]. [PMID: 28094183].
[96]
Gul, H.I.; Kucukoglu, K.; Yamali, C.; Bilginer, S.; Yuca, H.; Ozturk, I.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis of 4-(2-substituted hydrazinyl)benzenesulfonamides and their carbonic anhydrase inhibitory effects. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 568-573. [http://dx.doi.org/10.3109/14756366.2015.1047359]. [PMID: 26044365].
[97]
Mete, E.; Comez, B.; Inci Gul, H.; Gulcin, I.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory activities of new thienyl-substituted pyrazoline benzenesulfonamides. J. Enzyme Inhib. Med. Chem, 2016, 31(sup2). , 1-5. [http://dx.doi.org/10.1080/14756366.2016.1181627] [PMID: 27435177]
[98]
Mishra, C.B.; Kumari, S.; Angeli, A.; Bua, S.; Tiwari, M.; Supuran, C.T. Discovery of benzenesulfonamide derivatives as carbonic anhydrase inhibitors with effective anticonvulsant action: Design, synthesis, and pharmacological evaluation. J. Med. Chem., 2018, 61(7), 3151-3165. [http://dx.doi.org/10.1021/acs.jmedchem.8b00208]. [PMID: 29566486].
[99]
Alsaid, M.S.; Al-Mishari, A.A.; Soliman, A.M.; Ragab, F.A.; Ghorab, M.M. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2017, 141, 84-91. [http://dx.doi.org/10.1016/j.ejmech.2017.09.061]. [PMID: 29028534].
[100]
Szabadkai, I.; Torka, R.; Garamvölgyi, R.; Baska, F.; Gyulavári, P.; Boros, S.; Illyés, E.; Choidas, A.; Ullrich, A.; Őrfi, L. Discovery of N-[4-(Quinolin-4-yloxy)phenyl]benzenesulfonamides as Novel AXL Kinase Inhibitors. J. Med. Chem., 2018, 61(14), 6277-6292. [http://dx.doi.org/10.1021/acs.jmedchem.8b00672]. [PMID: 29928803].
[101]
Choi, M.J.; Roh, E.J.; Hur, W.; Lee, S.H.; Sim, T.; Oh, C-H.; Lee, S-H.; Kim, J.S.; Yoo, K.H. Design, synthesis, and biological evaluation of novel aminopyrimidinylisoindolines as AXL kinase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3761-3765. [http://dx.doi.org/10.1016/j.bmcl.2018.10.013]. [PMID: 30340900].
[102]
Tan, L.; Zhang, Z.; Gao, D.; Chan, S.; Luo, J.; Tu, Z-C.; Zhang, Z-M.; Ding, K.; Ren, X.; Lu, X. Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. Eur. J. Med. Chem., 2019, 166, 318-327. [http://dx.doi.org/10.1016/j.ejmech.2019.01.065]. [PMID: 30731400].
[103]
Wang, Y.; Xing, L.; Ji, Y.; Ye, J.; Dai, Y.; Gu, W.; Ai, J.; Song, Z. Discovery of a potent tyrosine kinase AXL inhibitor bearing the 3-((2,3,4,5-tetrahydro-1H-benzo[d]azepin-7-yl)amino)pyrazine core. Bioorg. Med. Chem. Lett., 2019, 29(6), 836-838. [http://dx.doi.org/10.1016/j.bmcl.2019.01.018]. [PMID: 30685094].
[104]
Goff, D.; Zhang, J.; Heckrodt, T.; Yu, J.; Ding, P.; Singh, R.; Holland, S.; Li, W.; Irving, M. Discovery of dual Axl/VEGF-R2 inhibitors as potential anti-angiogenic and anti-metastatic drugs for cancer chemotherapy. Bioorg. Med. Chem. Lett., 2017, 27(16), 3766-3771. [http://dx.doi.org/10.1016/j.bmcl.2017.06.071]. [PMID: 28711351].
[105]
Qi, B.; Yang, Y.; He, H.; Yue, X.; Zhou, Y.; Zhou, X.; Chen, Y.; Liu, M.; Zhang, A.; Wei, F. Identification of novel N1-(2-aryl-1, 3-thiazolidin-4-one)-N3-aryl ureas showing potent multi-tyrosine kinase inhibitory activities. Eur. J. Med. Chem., 2018, 146, 368-380. [http://dx.doi.org/10.1016/j.ejmech.2018.01.061]. [PMID: 29407963].
[106]
Qi, B.; Yang, Y.; Gong, G.; He, H.; Yue, X.; Xu, X.; Hu, Y.; Li, J.; Chen, T.; Wan, X.; Zhang, A.; Zhou, G. Discovery of N1-(4-((7-(3-(4-ethylpiperazin-1-yl)propoxy)-6-methoxyquinolin-4-yl)oxy)-3,5-difluorophenyl)-N3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)urea as a multi-tyrosine kinase inhibitor for drug-sensitive and drug-resistant cancers treatment. Eur. J. Med. Chem., 2019, 163, 10-27. [http://dx.doi.org/10.1016/j.ejmech.2018.11.057]. [PMID: 30503936].
[107]
Myers, S.H.; Temps, C.; Houston, D.R.; Brunton, V.G.; Unciti-Broceta, A. Development of potent inhibitors of receptor tyrosine kinases by ligand-based drug design and target-biased phenotypic screening. J. Med. Chem., 2018, 61(5), 2104-2110. [http://dx.doi.org/10.1021/acs.jmedchem.7b01605]. [PMID: 29466002].
[108]
Zhang, L.; Bu, T.; Bao, X.; Liang, T.; Ge, Y.; Xu, Y.; Zhu, Q. Design, synthesis and biological evaluation of novel 3H-imidazole [4,5-b] pyridine derivatives as selective mTOR inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(15), 3395-3398. [http://dx.doi.org/10.1016/j.bmcl.2017.06.010]. [PMID: 28633896].
[109]
Ghanem, N.M.; Farouk, F.; George, R.F.; Abbas, S.E.S.; El-Badry, O.M. Design and synthesis of novel imidazo[4,5-b]pyridine based compounds as potent anticancer agents with CDK9 inhibitory activity. Bioorg. Chem., 2018, 80, 565-576. [http://dx.doi.org/10.1016/j.bioorg.2018.07.006]. [PMID: 30025343].
[110]
An, X-D.; Liu, H.; Xu, Z-L.; Jin, Y.; Peng, X.; Yao, Y-M.; Geng, M.; Long, Y-Q. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization. Bioorg. Med. Chem. Lett., 2015, 25(3), 708-716. [http://dx.doi.org/10.1016/j.bmcl.2014.11.070]. [PMID: 25529740].
[111]
Baladi, T.; Aziz, J.; Dufour, F.; Abet, V.; Stoven, V.; Radvanyi, F.; Poyer, F.; Wu, T-D.; Guerquin-Kern, J-L.; Bernard-Pierrot, I.; Garrido, S.M.; Piguel, S. Design, synthesis, biological evaluation and cellular imaging of imidazo[4,5-b]pyridine derivatives as potent and selective TAM inhibitors. Bioorg. Med. Chem., 2018, 26(20), 5510-5530. [http://dx.doi.org/10.1016/j.bmc.2018.09.031]. [PMID: 30309671].
[112]
Sun, Z-G.; Yang, Y-A.; Zhang, Z-G.; Zhu, H-L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69. [http://dx.doi.org/10.1080/17460441.2019.1551355]. [PMID: 30518273].
[113]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541. [http://dx.doi.org/10.1038/nchem.2479]. [PMID: 27219696].
[114]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614. [http://dx.doi.org/10.1016/j.biotechadv.2015.08.001]. [PMID: 26281720].
[115]
Huang, C.; Huang, Y.L.; Wang, C.C.; Pan, Y.L.; Lai, Y.H.; Huang, H.C. Ampelopsins A and C induce apoptosis and metastasis through downregulating AxL, TYRO3, and FYN expressions in MDA-MB-231 breast cancer cells. J. Agric. Food Chem., 2019, 67(10), 2818-2830. [http://dx.doi.org/10.1021/acs.jafc.8b06444]. [PMID: 30789269].
[116]
Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R.; Phase, I.I. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14(14), 4491-4499. [http://dx.doi.org/10.1158/1078-0432.CCR-08-0024]. [PMID: 18628464].
[117]
Johnson, J.J.; Mukhtar, H. Curcumin for chemoprevention of colon cancer. Cancer Lett., 2007, 255(2), 170-181. [http://dx.doi.org/10.1016/j.canlet.2007.03.005]. [PMID: 17448598].
[118]
Seo, J.A.; Kim, B.; Dhanasekaran, D.N.; Tsang, B.K.; Song, Y.S. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett., 2016, 371(1), 30-37. [http://dx.doi.org/10.1016/j.canlet.2015.11.021]. [PMID: 26607901].
[119]
Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; Chauhan, S.C. Curcumin Nanoformulation for cervical cancer treatment. Sci. Rep., 2016, 6, 20051. [http://dx.doi.org/10.1038/srep20051]. [PMID: 26837852].
[120]
Lin, C-C.; Kuo, C-L.; Huang, Y-P.; Chen, C-Y.; Hsu, M-J.; Chu, Y.L.; Chueh, F-S.; Chung, J-G. demethoxycurcumin suppresses migration and invasion of human cervical cancer HeLa cells via inhibition of NF-κB pathways. Anticancer Res., 2018, 38(5), 2761-2769. [PMID: 29715097].
[121]
Du, Z.; Sha, X. Demethoxycurcumin inhibited human epithelia ovarian cancer cells’ growth via up-regulating miR-551a. Tumour Biol., 2017, 39(3)1010428317694302 [http://dx.doi.org/10.1177/1010428317694302]. [PMID: 28345465].
[122]
Pei, H.; Yang, Y.; Cui, L.; Yang, J.; Li, X.; Yang, Y.; Duan, H. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci. Rep., 2016, 6, 28773. [http://dx.doi.org/10.1038/srep28773]. [PMID: 27349797].
[123]
Liao, C-L.; Chu, Y.L.; Lin, H-Y.; Chen, C-Y.; Hsu, M-J.; Liu, K-C.; Lai, K-C.; Huang, A-C.; Chung, J-G. Bisdemethoxycurcumin suppresses migration and invasion of human cervical cancer HeLa cells via inhibition of NF-ĸB, MMP-2 and -9 pathways. Anticancer Res., 2018, 38(7), 3989-3997. [http://dx.doi.org/10.21873/anticanres.12686]. [PMID: 29970522].
[124]
Fatima, G.; Loubna, A.; Wiame, L.; Azeddine, I. In Silico inhibition studies of AXL kinase by curcumin and its natural derivatives. J. Appl. Bioinforma. Comput. Biol., 2017, 6(3)1000142 [http://dx.doi.org/10.4172/2329-9533.1000142].
[125]
Qingzhi, Z.; Yacheng, Y.; Yaoyuan, Q.; Jiasu, L. Science-based innovation in china: A case study of artemisinin from laboratory to the market. J. Ind. Integr. Manag., 2018, 3(02)1850011 [http://dx.doi.org/10.1142/S2424862218500112].
[126]
Konstat-Korzenny, E.; Ascencio-Aragón, J.A.; Niezen-Lugo, S.; Vázquez-López, R. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci., 2018, 6(1), 19. [http://dx.doi.org/10.3390/medsci6010019]. [PMID: 29495461].
[127]
Paccez, J.D.; Duncan, K.; Sekar, D.; Correa, R.G.; Wang, Y.; Gu, X.; Bashin, M.; Chibale, K.; Libermann, T.A.; Zerbini, L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis, 2019, 8(3), 14. [http://dx.doi.org/10.1038/s41389-019-0122-6]. [PMID: 30783079].
[128]
Lim, S.M.; Syn, N.L.; Cho, B.C.; Soo, R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat. Rev., 2018, 65, 1-10. [http://dx.doi.org/10.1016/j.ctrv.2018.02.006]. [PMID: 29477930].
[129]
Li, A.; Yang, J.J.; Zhang, X.C.; Zhang, Z.; Su, J.; Gou, L.Y.; Bai, Y.; Zhou, Q.; Yang, Z.; Han-Zhang, H.; Zhong, W-Z.; Chuai, S.; Zhang, Q.; Xie, Z.; Gao, H.; Chen, H.; Wang, Z.; Wang, Z.; Yang, X.N.; Wang, B.C.; Gan, B.; Chen, Z.H.; Jiang, B.Y.; Wu, S.P.; Liu, S.Y.; Xu, C.R.; Wu, Y.L.; Acquired, M.E.T. acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer. Clin. Cancer Res., 2017, 23(16), 4929-4937. [http://dx.doi.org/10.1158/1078-0432.CCR-16-3273]. [PMID: 28396313].
[130]
Tricker, E.M.; Xu, C.; Uddin, S.; Capelletti, M.; Ercan, D.; Ogino, A.; Pratilas, C.A.; Rosen, N.; Gray, N.S.; Wong, K-K.; Jänne, P.A. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov., 2015, 5(9), 960-971. [http://dx.doi.org/10.1158/2159-8290.CD-15-0063]. [PMID: 26036643].
[131]
Huang, X.; Finerty, P., Jr; Walker, J.R.; Butler-Cole, C.; Vedadi, M.; Schapira, M.; Parker, S.A.; Turk, B.E.; Thompson, D.A.; Dhe-Paganon, S. Structural insights into the inhibited states of the Mer receptor tyrosine kinase. J. Struct. Biol., 2009, 165(2), 88-96. [http://dx.doi.org/10.1016/j.jsb.2008.10.003]. [PMID: 19028587].
[132]
Liu, J.; Yang, C.; Simpson, C.; Deryckere, D.; Van Deusen, A.; Miley, M.J.; Kireev, D.; Norris-Drouin, J.; Sather, S.; Hunter, D.; Korboukh, V.K.; Patel, H.S.; Janzen, W.P.; Machius, M.; Johnson, G.L.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. Discovery of small molecule Mer kinase inhibitors for the treatment of pediatric acute lymphoblastic leukemia. ACS Med. Chem. Lett., 2012, 3(2), 129-134. [http://dx.doi.org/10.1021/ml200239k]. [PMID: 22662287].
[133]
Zhang, W.; Zhang, D.; Stashko, M.A.; DeRyckere, D.; Hunter, D.; Kireev, D.; Miley, M.J.; Cummings, C.; Lee, M.; Norris-Drouin, J.; Stewart, W.M.; Sather, S.; Zhou, Y.; Kirkpatrick, G.; Machius, M.; Janzen, W.P.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. Pseudo-cyclization through intramolecular hydrogen bond enables discovery of pyridine substituted pyrimidines as new Mer kinase inhibitors. J. Med. Chem., 2013, 56(23), 9683-9692. [http://dx.doi.org/10.1021/jm401387j]. [PMID: 24195762].
[134]
Zhang, W.; McIver, A.L.; Stashko, M.A.; DeRyckere, D.; Branchford, B.R.; Hunter, D.; Kireev, D.; Miley, M.J.; Norris-Drouin, J.; Stewart, W.M.; Lee, M.; Sather, S.; Zhou, Y.; Di Paola, J.A.; Machius, M.; Janzen, W.P.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. Discovery of Mer specific tyrosine kinase inhibitors for the treatment and prevention of thrombosis. J. Med. Chem., 2013, 56(23), 9693-9700. [http://dx.doi.org/10.1021/jm4013888]. [PMID: 24219778].
[135]
Wang, X.; Liu, J.; Zhang, W.; Stashko, M.A.; Nichols, J.; Miley, M.J.; Norris-Drouin, J.; Chen, Z.; Machius, M.; DeRyckere, D.; Wood, E.; Graham, D.K.; Earp, H.S.; Kireev, D.; Frye, S.V. Design and synthesis of novel macrocyclic Mer tyrosine kinase inhibitors. ACS Med. Chem. Lett., 2016, 7(12), 1044-1049. [http://dx.doi.org/10.1021/acsmedchemlett.6b00221]. [PMID: 27994735].
[136]
McIver, A.L.; Zhang, W.; Liu, Q.; Jiang, X.; Stashko, M.A.; Nichols, J.; Miley, M.J.; Norris-Drouin, J.; Machius, M.; DeRyckere, D.; Wood, E.; Graham, D.K.; Earp, H.S.; Kireev, D.; Frye, S.V.; Wang, X. Discovery of macrocyclic pyrimidines as MerTK‐specific inhibitors. ChemMedChem, 2017, 12(3), 207-213. [http://dx.doi.org/10.1002/cmdc.201600589]. [PMID: 28032464].
[137]
Heiring, C.; Dahlbäck, B.; Muller, Y.A. Ligand recognition and homophilic interactions in Tyro3: Structural insights into the Axl/Tyro3 receptor tyrosine kinase family. J. Biol. Chem., 2004, 279(8), 6952-6958. [http://dx.doi.org/10.1074/jbc.M311750200]. [PMID: 14623883].
[138]
Powell, N.A.; Kohrt, J.T.; Filipski, K.J.; Kaufman, M.; Sheehan, D.; Edmunds, J.E.; Delaney, A.; Wang, Y.; Bourbonais, F.; Lee, D-Y.; Schwende, F.; Sun, F.; McConnell, P.; Catana, C.; Chen, H.; Ohren, J.; Perrin, L.A. Novel and selective spiroindoline-based inhibitors of Sky kinase. Bioorg. Med. Chem. Lett., 2012, 22(1), 190-193. [http://dx.doi.org/10.1016/j.bmcl.2011.11.036]. [PMID: 22119469].
[139]
Powell, N.A.; Hoffman, J.K.; Ciske, F.L.; Kaufman, M.D.; Kohrt, J.T.; Quin, J., III; Sheehan, D.J.; Delaney, A.; Baxi, S.M.; Catana, C.; McConnell, P.; Ohren, J.; Perrin, L.A.; Edmunds, J.J. Highly selective 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase. Bioorg. Med. Chem. Lett., 2013, 23(4), 1046-1050. [http://dx.doi.org/10.1016/j.bmcl.2012.12.013]. [PMID: 23312472].
[140]
Gajiwala, K.S.; Grodsky, N.; Bolaños, B.; Feng, J.; Ferre, R.; Timofeevski, S.; Xu, M.; Murray, B.W.; Johnson, T.W.; Stewart, A. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase. J. Biol. Chem., 2017, 292(38), 15705-15716. [http://dx.doi.org/10.1074/jbc.M116.771485]. [PMID: 28724631].
[141]
Mohammad, T.; Khan, F.I.; Lobb, K.A.; Islam, A.; Ahmad, F.; Hassan, M.I. Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). J. Biomol. Struct. Dyn., 2019, 37(7), 1813-1829. [http://dx.doi.org/10.1080/07391102.2018.1468282]. [PMID: 29683402].
[142]
Zhou, Y.; Zhang, W.; Liu, X.; Yu, H.; Lu, X.; Jiao, B. Inhibitors of protein tyrosine phosphatase 1B from marine natural products. Chem. Biodivers., 2017, 14(7)e1600462 [http://dx.doi.org/10.1002/cbdv.201600462]. [PMID: 28261970].
[143]
Chandel, P.; Rawal, R.K.; Kaur, R. Natural products and their derivatives as cyclooxygenase-2 inhibitors. Future Med. Chem., 2018, 10(20), 2471-2492. [http://dx.doi.org/10.4155/fmc-2018-0120]. [PMID: 30325206].
[144]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. [http://dx.doi.org/10.1021/acs.jnatprod.5b01055]. [PMID: 26852623].
[146]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043. [http://dx.doi.org/10.1021/cr900019j]. [PMID: 19422222].
[147]
Montbriand, M.J. Herbs or natural products that decrease cancer growth part one of a four-part series. Oncol. Nurs. Forum, 2004, 31(4), E75-E90. [http://dx.doi.org/10.1188/04.ONF.E75-E90]. [PMID: 15252440].
[148]
Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des., 2014, 20(6), 857-863. [http://dx.doi.org/10.2174/138161282006140220120344]. [PMID: 23701564].
[149]
Wu, S-L.; Yu, L.; Meng, K-W.; Ma, Z-H.; Pan, C-E. Resveratrol prolongs allograft survival after liver transplantation in rats. World J. Gastroenterol., 2005, 11(30), 4745-4749. [http://dx.doi.org/10.3748/wjg.v11.i30.4745]. [PMID: 16094722].
[150]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207. [http://dx.doi.org/10.1016/j.drudis.2015.01.009]. [PMID: 25617672].