Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Epigenetic Modification in Macrophages: A Promising Target for Tumor and Inflammation-associated Disease Therapy

Author(s): Pei Sun, Shu-Jing Zhang, Semenov Maksim, Yong-Fang Yao*, Hong-Min Liu* and Juan Du*

Volume 19, Issue 15, 2019

Page: [1350 - 1362] Pages: 13

DOI: 10.2174/1568026619666190619143706

Price: $65

Abstract

Macrophages are essential for supporting tissue homeostasis, regulating immune response, and promoting tumor progression. Due to its heterogeneity, macrophages have different phenotypes and functions in various tissues and diseases. It is becoming clear that epigenetic modification playing an essential role in determining the biological behavior of cells. In particular, changes of DNA methylation, histone methylation and acetylation regulated by the corresponding epigenetic enzymes, can directly control macrophages differentiation and change their functions under different conditions. In addition, epigenetic enzymes also have become anti-tumor targets, such as HDAC, LSD1, DNMT, and so on. In this review, we presented an overview of the latest progress in the study of macrophages phenotype and function regulated by epigenetic modifications, including DNA methylation and histone modifications, to better understand how epigenetic modification controls macrophages phenotype and function in inflammation-associated diseases, and the application prospect in anti-tumor.

Keywords: Macrophages, Epigenetics, Inflammation, Activation, Histone, Methylation, Acetylation.

« Previous
Graphical Abstract

[1]
Gautier, E.L.; Shay, T.; Miller, J.; Greter, M.; Jakubzick, C.; Ivanov, S.; Helft, J.; Chow, A.; Elpek, K.G.; Gordonov, S.; Mazloom, A.R.; Ma’ayan, A.; Chua, W.J.; Hansen, T.H.; Turley, S.J.; Merad, M.; Randolph, G.J. Immunological genome, C. Immunological genome consortium. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol., 2012, 13(11), 1118-1128.
[http://dx.doi.org/10.1038/ni.2419] [PMID: 23023392]
[2]
Schulz, C.; Gomez Perdiguero, E.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; Wu, B.; Jacobsen, S.E.; Pollard, J.W.; Frampton, J.; Liu, K.J.; Geissmann, F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 2012, 336(6077), 86-90.
[http://dx.doi.org/10.1126/science.1219179] [PMID: 22442384]
[3]
Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; Samokhvalov, I.M.; Merad, M. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 2010, 330(6005), 841-845.
[http://dx.doi.org/10.1126/science.1194637] [PMID: 20966214]
[4]
Gordon, S.; Plüddemann, A.; Martinez Estrada, F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev., 2014, 262(1), 36-55.
[http://dx.doi.org/10.1111/imr.12223] [PMID: 25319326]
[5]
Yanez, D.A.; Lacher, R.K.; Vidyarthi, A.; Colegio, O.R. The role of macrophages in skin homeostasis. Pflugers Arch., 2017, 469(3-4), 455-463.
[http://dx.doi.org/10.1007/s00424-017-1953-7] [PMID: 28233123]
[6]
Calderon, B.; Carrero, J.A.; Ferris, S.T.; Sojka, D.K.; Moore, L.; Epelman, S.; Murphy, K.M.; Yokoyama, W.M.; Randolph, G.J.; Unanue, E.R. The pancreas anatomy conditions the origin and properties of resident macrophages. J. Exp. Med., 2015, 212(10), 1497-1512.
[http://dx.doi.org/10.1084/jem.20150496] [PMID: 26347472]
[7]
Dos Anjos, C.A. F4/80 as a major macrophage marker: The case of the peritoneum and spleen. Results Probl. Cell Differ., 2017, 62, 161-179.
[http://dx.doi.org/10.1007/978-3-319-54090-0_7] [PMID: 28455709]
[8]
Dixon, L.J.; Barnes, M.; Tang, H.; Pritchard, M.T.; Nagy, L.E. Kupffer cells in the liver. Compr. Physiol., 2013, 3(2), 785-797.
[PMID: 23720329]
[9]
Sasaki, A. Microglia and brain macrophages: An update. Neuropathology, 2017, 37(5), 452-464.
[http://dx.doi.org/10.1111/neup.12354] [PMID: 27859676]
[10]
Hoeffel, G.; Wang, Y.; Greter, M.; See, P.; Teo, P.; Malleret, B.; Leboeuf, M.; Low, D.; Oller, G.; Almeida, F.; Choy, S.H.; Grisotto, M.; Renia, L.; Conway, S.J.; Stanley, E.R.; Chan, J.K.; Ng, L.G.; Samokhvalov, I.M.; Merad, M.; Ginhoux, F. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med., 2012, 209(6), 1167-1181.
[http://dx.doi.org/10.1084/jem.20120340] [PMID: 22565823]
[11]
Gentek, R.; Molawi, K.; Sieweke, M.H. Tissue macrophage identity and self-renewal. Immunol. Rev., 2014, 262(1), 56-73.
[http://dx.doi.org/10.1111/imr.12224] [PMID: 25319327]
[12]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[13]
Wynn, T.A.; Barron, L. Macrophages: Master regulators of inflammation and fibrosis. Semin. Liver Dis., 2010, 30(3), 245-257.
[http://dx.doi.org/10.1055/s-0030-1255354] [PMID: 20665377]
[14]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[15]
Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol., 2017, 79, 541-566.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034339] [PMID: 27813830]
[16]
Ivashkiv, L.B. Epigenetic regulation of macrophage polarization and function. Trends Immunol., 2013, 34(5), 216-223.
[http://dx.doi.org/10.1016/j.it.2012.11.001] [PMID: 23218730]
[17]
Hoeksema, M.A.; Winther, M.P. Epigenetic regulation of monocyte and macrophage function. Antioxidants & redox signaling., 2016, 25(14), 758-774.
[http://dx.doi.org/10.1089/ars.2016.6695]
[18]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[19]
Schreiber, R.D.; Old, L.J.; Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 2011, 331(6024), 1565-1570.
[http://dx.doi.org/10.1126/science.1203486] [PMID: 21436444]
[20]
Baxevanis, C.N.; Perez, S.A. Cancer dormancy: A regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines (Basel), 2015, 3(3), 597-619.
[http://dx.doi.org/10.3390/vaccines3030597] [PMID: 26350597]
[21]
Dey, P. Epigenetics meets the tumor microenvironment. Med. Epigenet., 2013, 1(1), 31-36.
[http://dx.doi.org/10.1159/000354283]
[22]
Braunstein, M.; Rose, A.B.; Holmes, S.G.; Allis, C.D.; Broach, J.R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev., 1993, 7(4), 592-604.
[http://dx.doi.org/10.1101/gad.7.4.592] [PMID: 8458576]
[23]
Brownell, J.E.; Allis, C.D. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev., 1996, 6(2), 176-184.
[http://dx.doi.org/10.1016/S0959-437X(96)80048-7] [PMID: 8722174]
[24]
Ladomery, M.; Lyons, S.; Sommerville, J. Xenopus HDm, a maternally expressed histone deacetylase, belongs to an ancient family of acetyl-metabolizing enzymes. Gene, 1997, 198(1-2), 275-280.
[http://dx.doi.org/10.1016/S0378-1119(97)00325-9] [PMID: 9370292]
[25]
Wei, Y.; Schatten, H.; Sun, Q.Y. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum. Reprod. Update, 2015, 21(2), 194-208.
[http://dx.doi.org/10.1093/humupd/dmu061] [PMID: 25416302]
[26]
Feinberg, A.P.; Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer, 2004, 4(2), 143-153.
[http://dx.doi.org/10.1038/nrc1279] [PMID: 14732866]
[27]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[28]
Schmid, S.L. Molecular biology of the cell: It’s our journal. Mol. Biol. Cell, 2005, 16(1), i-ii.
[http://dx.doi.org/10.1091/mboc.16.1.i] [PMID: 16562168]
[29]
Topper, M.J. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell, 2017, 171(6), 1284-1300.
[http://dx.doi.org/[doi: 10.1016/j.cell.2017.10.022.]
[30]
Wu, L.; Cao, J.; Cai, W.L.; Lang, S.M.; Horton, J.R.; Jansen, D.J.; Liu, Z.Z.; Chen, J.F.; Zhang, M.; Mott, B.T.; Pohida, K.; Rai, G.; Kales, S.C.; Henderson, M.J.; Hu, X.; Jadhav, A.; Maloney, D.J.; Simeonov, A.; Zhu, S.; Iwasaki, A.; Hall, M.D.; Cheng, X.; Shadel, G.S.; Yan, Q. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol., 2018, 16(8)e2006134
[http://dx.doi.org/10.1371/journal.pbio.2006134] [PMID: 30080846]
[31]
Sabari, B.R.; Dall’Agnese, A.; Boija, A.; Coffey, E.L.; Shrinivas, K. The histone demethylase LSD1 inhibits tumor cell immunogenicity. Cancer Discov., 2018, 8(8), 911.
[PMID: 29959162]
[32]
Sheng, W.; LaFleur, M.W.; Nguyen, T.H.; Chen, S.; Chakravarthy, A.; Conway, J.R.; Li, Y.; Chen, H.; Yang, H.; Hsu, P.H.; Van Allen, E.M.; Freeman, G.J.; De Carvalho, D.D.; He, H.H.; Sharpe, A.H.; Shi, Y. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell, 2018, 174(3), 549-63 e19.
[http://dx.doi.org/10.1016/j.cell.2018.05.052]
[33]
Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; Makarov, V.; Budhu, S.; Slamon, D.J.; Wolchok, J.D.; Pardoll, D.M.; Beckmann, M.W.; Zahnow, C.A.; Merghoub, T.; Chan, T.A.; Baylin, S.B.; Strick, R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 2017, 169(2), 361.
[http://dx.doi.org/10.1016/j.cell.2017.03.036] [PMID: 28388418]
[34]
Wolffe, A.P.; Matzke, M.A. Epigenetics: Regulation through repression. Science, 1999, 286(5439), 481-486.
[http://dx.doi.org/10.1126/science.286.5439.481] [PMID: 10521337]
[35]
Kass, S.U.; Landsberger, N.; Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol., 1997, 7(3), 157-165.
[http://dx.doi.org/10.1016/S0960-9822(97)70086-1] [PMID: 9395433]
[36]
Miranda, T.B.; Jones, P.A. DNA methylation: the nuts and bolts of repression. J. Cell. Physiol., 2007, 213(2), 384-390.
[http://dx.doi.org/10.1002/jcp.21224] [PMID: 17708532]
[37]
Watt, F.; Molloy, P.L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev., 1988, 2(9), 1136-1143.
[http://dx.doi.org/10.1101/gad.2.9.1136] [PMID: 3192075]
[38]
Oliveira, A.M.M. DNA methylation: A permissive mark in memory formation and maintenance. Learn. Mem., 2016, 23(10), 587-593.
[http://dx.doi.org/10.1101/lm.042739.116] [PMID: 27634149]
[39]
Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; O’Brien, C.; De Carvalho, D.D. DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 2015, 162(5), 961-973.
[http://dx.doi.org/10.1016/j.cell.2015.07.056] [PMID: 26317465]
[40]
Stone, M.L.; Chiappinelli, K.B.; Li, H.; Murphy, L.M.; Travers, M.E.; Topper, M.J.; Mathios, D.; Lim, M.; Shih, I.M.; Wang, T.L.; Hung, C.F.; Bhargava, V.; Wiehagen, K.R.; Cowley, G.S.; Bachman, K.E.; Strick, R.; Strissel, P.L.; Baylin, S.B.; Zahnow, C.A. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl. Acad. Sci. USA, 2017, 114(51), E10981-E10990.
[http://dx.doi.org/10.1073/pnas.1712514114] [PMID: 29203668]
[41]
Samanta, S.; Zhou, Z.; Rajasingh, S.; Panda, A.; Sampath, V.; Rajasingh, J. DNMT and HDAC inhibitors together abrogate endotoxemia mediated macrophage death by STAT3-JMJD3 signaling. Int. J. Biochem. Cell Biol., 2018, 102, 117-127.
[http://dx.doi.org/10.1016/j.biocel.2018.07.002] [PMID: 30010012]
[42]
Cheng, C.; Huang, C.; Ma, T.T.; Bian, E.B.; He, Y.; Zhang, L.; Li, J. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicol. Lett., 2014, 225(3), 488-497.
[http://dx.doi.org/10.1016/j.toxlet.2013.12.023] [PMID: 24440346]
[43]
Babu, M.; Durga Devi, T.; Mäkinen, P.; Kaikkonen, M.; Lesch, H.P.; Junttila, S.; Laiho, A.; Ghimire, B.; Gyenesei, A.; Ylä-Herttuala, S. Differential promoter methylation of macrophage genes is associated with impaired vascular growth in ischemic muscles of hyperlipidemic and type 2 diabetic mice: Genome-wide promoter methylation study. Circ. Res., 2015, 117(3), 289-299.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306424] [PMID: 26085133]
[44]
Yan, J.; Tie, G.; Wang, S.; Tutto, A.; DeMarco, N.; Khair, L.; Fazzio, T.G.; Messina, L.M. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat. Commun., 2018, 9(1), 33.
[http://dx.doi.org/10.1038/s41467-017-02425-z] [PMID: 29295997]
[45]
Cao, Q.; Wang, X.; Jia, L.; Mondal, A.K.; Diallo, A.; Hawkins, G.A.; Das, S.K.; Parks, J.S.; Yu, L.; Shi, H.; Shi, H.; Xue, B. Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology, 2014, 155(12), 4925-4938.
[http://dx.doi.org/10.1210/en.2014-1595] [PMID: 25251587]
[46]
Yang, X.; Wang, X.; Liu, D.; Yu, L.; Xue, B.; Shi, H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol., 2014, 28(4), 565-574.
[http://dx.doi.org/10.1210/me.2013-1293] [PMID: 24597547]
[47]
Bekkering, S.; Joosten, L.A.; van der Meer, J.W.; Netea, M.G.; Riksen, N.P. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin. Ther., 2015, 37(4), 914-923.
[http://dx.doi.org/10.1016/j.clinthera.2015.01.008] [PMID: 25704108]
[48]
Li, X.; Zhang, Q.; Ding, Y.; Liu, Y.; Zhao, D.; Zhao, K.; Shen, Q.; Liu, X.; Zhu, X.; Li, N.; Cheng, Z.; Fan, G.; Wang, Q.; Cao, X. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat. Immunol., 2016, 17(7), 806-815.
[http://dx.doi.org/10.1038/ni.3464] [PMID: 27240213]
[49]
Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929), 930-935.
[http://dx.doi.org/10.1126/science.1170116] [PMID: 19372391]
[50]
Wu, H.; D’Alessio, A.C.; Ito, S.; Xia, K.; Wang, Z.; Cui, K.; Zhao, K.; Sun, Y.E.; Zhang, Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature, 2011, 473(7347), 389-393.
[http://dx.doi.org/10.1038/nature09934] [PMID: 21451524]
[51]
Wu, H.; Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell, 2014, 156(1-2), 45-68.
[http://dx.doi.org/10.1016/j.cell.2013.12.019] [PMID: 24439369]
[52]
Cull, A.H.; Snetsinger, B.; Buckstein, R.; Rauh, M.J. Tet2 restrains inflammatory gene expression in macrophages. Exp. Hematol., 2017, 55(7569), 389-393.
[http://dx.doi.org/10.1016/j.exphem.2017.08.001]
[53]
Zhang, Q.; Zhao, K.; Shen, Q.; Han, Y.; Gu, Y.; Li, X.; Zhao, D.; Liu, Y.; Wang, C.; Zhang, X.; Su, X.; Liu, J.; Ge, W.; Levine, R.L.; Li, N.; Cao, X. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature, 2015, 525(7569), 389-393.
[http://dx.doi.org/10.1038/nature15252] [PMID: 26287468]
[54]
Fischle, W.; Mootz, H.D.; Schwarzer, D. Synthetic histone code. Curr. Opin. Chem. Biol., 2015, 28, 131-140.
[http://dx.doi.org/10.1016/j.cbpa.2015.07.005] [PMID: 26256563]
[55]
Roth, S.Y.; Allis, C.D. The subunit-exchange model of histone acetylation. Trends Cell Biol., 1996, 6(10), 371-375.
[http://dx.doi.org/10.1016/0962-8924(96)20032-7] [PMID: 15157517]
[56]
Yang, X.J.; Seto, E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 2007, 26(37), 5310-5318.
[http://dx.doi.org/10.1038/sj.onc.1210599] [PMID: 17694074]
[57]
Yuan, H.; Marmorstein, R. Histone acetyltransferases: Rising ancient counterparts to protein kinases. Biopolymers, 2013, 99(2), 98-111.
[http://dx.doi.org/10.1002/bip.22128] [PMID: 23175385]
[58]
Goll, M.G.; Bestor, T.H. Histone modification and replacement in chromatin activation. Genes Dev., 2002, 16(14), 1739-1742.
[http://dx.doi.org/10.1101/gad.1013902] [PMID: 12130533]
[59]
Roth, S.Y.; Denu, J.M.; Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem., 2001, 70, 81-120.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.81] [PMID: 11395403]
[60]
Albaugh, B.N.; Arnold, K.M.; Lee, S.; Denu, J.M. Autoacetylation of the histone acetyltransferase Rtt109. J. Biol. Chem., 2011, 286(28), 24694-24701.
[http://dx.doi.org/10.1074/jbc.M111.251579] [PMID: 21606491]
[61]
Ogryzko, V.V. Mammalian histone acetyltransferases and their complexes. Cell. Mol. Life Sci., 2001, 58(5-6), 683-692.
[http://dx.doi.org/10.1007/PL00000892] [PMID: 11437230]
[62]
Berndsen, C.E.; Denu, J.M. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr. Opin. Struct. Biol., 2008, 18(6), 682-689.
[http://dx.doi.org/10.1016/j.sbi.2008.11.004] [PMID: 19056256]
[63]
Liu, X.; Wang, L.; Zhao, K.; Thompson, P.R.; Hwang, Y.; Marmorstein, R.; Cole, P.A. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 2008, 451(7180), 846-850.
[http://dx.doi.org/10.1038/nature06546] [PMID: 18273021]
[64]
Shukla, S.; Levine, C.; Sripathi, R.P.; Elson, G.; Lutz, C.S.; Leibovich, S.J. The Kat in the HAT: The histone acetyl transferase Kat6b (MYST4) is downregulated in murine macrophages in response to LPS. Mediators Inflamm., 2018, 2018(4)7852742
[http://dx.doi.org/10.1155/2018/7852742] [PMID: 29977151]
[65]
Feng, D.; Sangster-Guity, N.; Stone, R.; Korczeniewska, J.; Mancl, M.E.; Fitzgerald-Bocarsly, P.; Barnes, B.J. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression. J. Immunol., 2010, 185(10), 6003-6012.
[http://dx.doi.org/10.4049/jimmunol.1000482] [PMID: 20935208]
[66]
Ghizzoni, M.; Haisma, H.J.; Maarsingh, H.; Dekker, F.J. Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation. Drug Discov. Today, 2011, 16(11-12), 504-511.
[http://dx.doi.org/10.1016/j.drudis.2011.03.009] [PMID: 21477662]
[67]
Hu, L.; Yu, Y.; Huang, H.; Fan, H.; Hu, L.; Yin, C.; Li, K.; Fulton, D.J.; Chen, F. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary Fibrosis. Front. Immunol., 2017, 7, 696.
[http://dx.doi.org/10.3389/fimmu.2016.00696] [PMID: 28194150]
[68]
Hebbes, T.R.; Thorne, A.W.; Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J., 1988, 7(5), 1395-1402.
[http://dx.doi.org/10.1002/j.1460-2075.1988.tb02956.x] [PMID: 3409869]
[69]
Yang, X.J.; Seto, E. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 206-218.
[http://dx.doi.org/10.1038/nrm2346] [PMID: 18292778]
[70]
Valenzuela-Fernández, A.; Cabrero, J.R.; Serrador, J.M.; Sánchez-Madrid, F. HDAC6: A key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol., 2008, 18(6), 291-297.
[http://dx.doi.org/10.1016/j.tcb.2008.04.003] [PMID: 18472263]
[71]
Longworth, M.S.; Laimins, L.A. Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene, 2006, 25(32), 4495-4500.
[http://dx.doi.org/10.1038/sj.onc.1209473] [PMID: 16532030]
[72]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[73]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[74]
Bottomley, M.J.; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C.; Gallinari, P.; Carfí, A. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem., 2008, 283(39), 26694-26704.
[http://dx.doi.org/10.1074/jbc.M803514200] [PMID: 18614528]
[75]
Terranova-Barberio, M.; Thomas, S.; Ali, N.; Pawlowska, N.; Park, J.; Krings, G.; Rosenblum, M.D.; Budillon, A.; Munster, P.N. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget, 2017, 8(69), 114156-114172.
[http://dx.doi.org/10.18632/oncotarget.23169] [PMID: 29371976]
[76]
Guerriero, J.L.; Sotayo, A.; Ponichtera, H.E.; Castrillon, J.A.; Pourzia, A.L.; Schad, S.; Johnson, S.F.; Carrasco, R.D.; Lazo, S.; Bronson, R.T.; Davis, S.P.; Lobera, M.; Nolan, M.A.; Letai, A. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature, 2017, 543(7645), 428-432.
[http://dx.doi.org/10.1038/nature21409] [PMID: 28273064]
[77]
Zheng, H.; Zhao, W.; Yan, C.; Watson, C.C.; Massengill, M.; Xie, M.; Massengill, C.; Noyes, D.R.; Martinez, G.V.; Afzal, R.; Chen, Z.; Ren, X.; Antonia, S.J.; Haura, E.B.; Ruffell, B.; Beg, A.A. HDAC inhibitors enhance T-Cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res., 2016, 22(16), 4119-4132.
[http://dx.doi.org/[doi: 10.1158/1078-0432.CCR-15-2584.]
[78]
Ossenkoppele, G.J.; Lowenberg, B.; Zachee, P.; Vey, N.; Breems, D.; Van de Loosdrecht, A.A.; Davidson, A.H.; Wells, G.; Needham, L.; Bawden, L.; Toal, M.; Hooftman, L.; Debnam, P.M. A phase I first-in-human study with tefinostat - a monocyte/macrophage targeted histone deacetylase inhibitor - in patients with advanced haematological malignancies. Br. J. Haematol., 2013, 162(2), 191-201.
[http://dx.doi.org/10.1111/bjh.12359] [PMID: 23647373]
[79]
Qi, X.; Wang, P. Class IIa HDACs inhibitor TMP269 promotes M1 polarization of macrophages after spinal cord injury. J. Cell. Biochem., 2018, 119(4), 3081-3090.
[http://dx.doi.org/10.1002/jcb.26446] [PMID: 29077222]
[80]
Venosa, A.; Gow, J.G.; Hall, L.; Malaviya, R.; Laskin, D.L. Regulation of nitrogen mustard-induced lung macrophage activation by valproic acid, a histone deacetylase inhibitor. Toxicol. Sci., 2017, 157(1), 222-234.
[http://dx.doi.org/10.1093/toxsci/kfx032]
[81]
Wu, C.; Li, A.; Hu, J.; Kang, J. Histone deacetylase 2 is essential for LPS-induced inflammatory responses in macrophages. Immunol. Cell Biol., 2019, 97(1), 72-84.
[http://dx.doi.org/10.1111/imcb.12203] [PMID: 30207412]
[82]
Fang, W.F.; Chen, Y.M.; Lin, C.Y.; Huang, H.L.; Yeh, H.; Chang, Y.T.; Huang, K.T.; Lin, M.C. Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression. J. Inflamm. (Lond.), 2018, 15, 3.
[http://dx.doi.org/10.1186/s12950-018-0179-6] [PMID: 29344006]
[83]
Zhong, S.; Zhao, L.; Wang, Y.; Zhang, C.; Liu, J.; Wang, P.; Zhou, W.; Yang, P.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; Ruan, X.Z. Cluster of differentiation 36 deficiency aggravates macrophage infiltration and hepatic inflammation by upregulating monocyte chemotactic protein-1 expression of hepatocytes through histone deacetylase 2-dependent pathway. Antioxid. Redox Signal., 2017, 27(4), 201-214.
[http://dx.doi.org/[doi: 10.1089/ars.2016.6808.]
[84]
Ha, S.D.; Reid, C.; Meshkibaf, S.; Kim, S.O. Inhibition of Interleukin 1β (IL-1β) Expression by anthrax lethal toxin (LeTx) is reversed by histone deacetylase 8 (HDAC8) inhibition in murine macrophages. J. Biol. Chem., 2016, 291(16), 8745-8755.
[http://dx.doi.org/10.1074/jbc.M115.695809] [PMID: 26912657]
[85]
Park, E.J.; Kim, Y.M.; Kim, H.J.; Chang, K.C. Degradation of histone deacetylase 4 via the TLR4/JAK/STAT1 signaling pathway promotes the acetylation of high mobility group box 1 (HMGB1) in lipopolysaccharide-activated macrophages. FEBS Open Bio, 2018, 8(7), 1119-1126.
[http://dx.doi.org/10.1002/2211-5463.12456] [PMID: 29988587]
[86]
Chen, G.D.; Yu, W.D.; Chen, X.P. SirT1 activator represses the transcription of TNF α in THP 1 cells of a sepsis model via deacetylation of H4K16. Mol. Med. Rep., 2016, 14(6), 5544-5550.
[http://dx.doi.org/10.3892/mmr.2016.5942] [PMID: 27878240]
[87]
Jia, Y.; Han, S.; Li, J.; Wang, H.; Liu, J.; Li, N.; Yang, X.; Shi, J.; Han, J.; Li, Y.; Bai, X.; Su, L.; Hu, D. IRF8 is the target of SIRT1 for the inflammation response in macrophages. Innate Immun., 2017, 23(2), 188-195.
[http://dx.doi.org/10.1177/1753425916683751] [PMID: 28008797]
[88]
Poralla, L.; Stroh, T.; Erben, U.; Sittig, M.; Liebig, S.; Siegmund, B.; Glauben, R. Histone deacetylase 5 regulates the inflammatory response of macrophages. J. Cell. Mol. Med., 2015, 19(9), 2162-2171.
[http://dx.doi.org/10.1111/jcmm.12595] [PMID: 26059794]
[89]
Shakespear, M.R.; Hohenhaus, D.M.; Kelly, G.M.; Kamal, N.A.; Gupta, P.; Labzin, L.I.; Schroder, K.; Garceau, V.; Barbero, S.; Iyer, A.; Hume, D.A.; Reid, R.C.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J. Biol. Chem., 2013, 288(35), 25362-25374.
[http://dx.doi.org/10.1074/jbc.M113.496281] [PMID: 23853092]
[90]
Cheng, F.; Lienlaf, M.; Perez-Villarroel, P.; Wang, H.W.; Lee, C.; Woan, K.; Woods, D.; Knox, T.; Bergman, J.; Pinilla-Ibarz, J.; Kozikowski, A.; Seto, E.; Sotomayor, E.M.; Villagra, A. Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Mol. Immunol., 2014, 60(1), 44-53.
[http://dx.doi.org/10.1016/j.molimm.2014.02.019] [PMID: 24747960]
[91]
Wang, X.; Wu, Y.; Jiao, J.; Huang, Q. Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis (Edinb.), 2018, 108, 118-123.
[http://dx.doi.org/10.1016/j.tube.2017.11.008] [PMID: 29523311]
[92]
Wang, X.; Tang, X.; Zhou, Z.; Huang, Q. Histone deacetylase 6 inhibitor enhances resistance to Mycobacterium tuberculosis infection through innate and adaptive immunity in mice. Pathog. Dis., 2018, 76(6)
[http://dx.doi.org/10.1093/femspd/fty064] [PMID: 30085165]
[93]
Bala, S.; Csak, T.; Kodys, K.; Catalano, D.; Ambade, A.; Furi, I.; Lowe, P.; Cho, Y.; Iracheta-Vellve, A.; Szabo, G. Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. J. Leukoc. Biol., 2017, 102(2), 487-498.
[http://dx.doi.org/10.1189/jlb.3A0716-310R] [PMID: 28584078]
[94]
Yan, B.; Xie, S.; Liu, Y.; Liu, W.; Li, D.; Liu, M.; Luo, H.R.; Zhou, J. Histone deacetylase 6 modulates macrophage infiltration during inflammation. Theranostics, 2018, 8(11), 2927-2938.
[http://dx.doi.org/10.7150/thno.25317] [PMID: 29896294]
[95]
Datta, M.; Staszewski, O.; Raschi, E.; Matthias, P.; Meyer-Luehmann, M.; Prinz, M. Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity, 2018, 48(3), 514-529.
[http://dx.doi.org/[DOI: 10.1016/j.immuni.2018.02.016]
[96]
Blixt, N.C.; Faulkner, B.K.; Astleford, K.; Lelich, R.; Schering, J.; Spencer, E.; Gopalakrishnan, R.; Jensen, E.D.; Mansky, K.C. Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS One, 2017, 12(9)e0185441
[http://dx.doi.org/10.1371/journal.pone.0185441] [PMID: 28953929]
[97]
Wood, A.; Shilatifard, A. Posttranslational modifications of histones by methylation. Adv. Protein Chem., 2004, 67, 201-222.
[http://dx.doi.org/10.1016/S0065-3233(04)67008-2] [PMID: 14969729]
[98]
Zhao, S.; Xu, W.; Jiang, W.; Yu, W.; Lin, Y.; Zhang, T.; Yao, J.; Zhou, L.; Zeng, Y.; Li, H.; Li, Y.; Shi, J.; An, W.; Hancock, S.M.; He, F.; Qin, L.; Chin, J.; Yang, P.; Chen, X.; Lei, Q.; Xiong, Y.; Guan, K.L. Regulation of cellular metabolism by protein lysine acetylation. Science, 2010, 327(5968), 1000-1004.
[http://dx.doi.org/10.1126/science.1179689] [PMID: 20167786]
[99]
Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[100]
Trievel, R.C.; Beach, B.M.; Dirk, L.M.; Houtz, R.L.; Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell, 2002, 111(1), 91-103.
[http://dx.doi.org/10.1016/S0092-8674(02)01000-0] [PMID: 12372303]
[101]
Min, J.; Feng, Q.; Li, Z.; Zhang, Y.; Xu, R.M. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell, 2003, 112(5), 711-723.
[http://dx.doi.org/10.1016/S0092-8674(03)00114-4] [PMID: 12628190]
[102]
Xiao, B.; Jing, C.; Wilson, J.R.; Walker, P.A.; Vasisht, N.; Kelly, G.; Howell, S.; Taylor, I.A.; Blackburn, G.M.; Gamblin, S.J. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature, 2003, 421(6923), 652-656.
[http://dx.doi.org/10.1038/nature01378] [PMID: 12540855]
[103]
Nakamura, T.; Mori, T.; Tada, S.; Krajewski, W.; Rozovskaia, T.; Wassell, R.; Dubois, G.; Mazo, A.; Croce, C.M.; Canaani, E. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell, 2002, 10(5), 1119-1128.
[http://dx.doi.org/10.1016/S1097-2765(02)00740-2] [PMID: 12453419]
[104]
Fuks, F.; Hurd, P.J.; Deplus, R.; Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res., 2003, 31(9), 2305-2312.
[http://dx.doi.org/10.1093/nar/gkg332] [PMID: 12711675]
[105]
Marango, J.; Shimoyama, M.; Nishio, H.; Meyer, J.A.; Min, D.J.; Sirulnik, A.; Martinez-Martinez, Y.; Chesi, M.; Bergsagel, P.L.; Zhou, M.M.; Waxman, S.; Leibovitch, B.A.; Walsh, M.J.; Licht, J.D. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood, 2008, 111(6), 3145-3154.
[http://dx.doi.org/10.1182/blood-2007-06-092122] [PMID: 18156491]
[106]
Hamamoto, R.; Furukawa, Y.; Morita, M.; Iimura, Y.; Silva, F.P.; Li, M.; Yagyu, R.; Nakamura, Y. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol., 2004, 6(8), 731-740.
[http://dx.doi.org/10.1038/ncb1151] [PMID: 15235609]
[107]
He, S.; Tong, Q.; Bishop, D.K.; Zhang, Y. Histone methyltransferase and histone methylation in inflammatory T-cell responses. Immunotherapy, 2013, 5(9), 989-1004.
[http://dx.doi.org/10.2217/imt.13.101] [PMID: 23998733]
[108]
Fan, Z.; Li, L.; Li, M.; Zhang, X.; Hao, C.; Yu, L.; Zeng, S.; Xu, H.; Fang, M.; Shen, A.; Jenuwein, T.; Xu, Y. The histone methyltransferase Suv39h2 contributes to nonalcoholic steatohepatitis in mice. Hepatology, 2017, 65(6), 1904-1919.
[http://dx.doi.org/10.1002/hep.29127] [PMID: 28244120]
[109]
Eames, H.L.; Saliba, D.G.; Krausgruber, T.; Lanfrancotti, A.; Ryzhakov, G.; Udalova, I.A. KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology, 2012, 217(12), 1315-1324.
[http://dx.doi.org/10.1016/j.imbio.2012.07.026] [PMID: 22995936]
[110]
Fang, T.C.; Schaefer, U.; Mecklenbrauker, I.; Stienen, A.; Dewell, S.; Chen, M.S.; Rioja, I.; Parravicini, V.; Prinjha, R.K.; Chandwani, R.; MacDonald, M.R.; Lee, K.; Rice, C.M.; Tarakhovsky, A. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J. Exp. Med., 2012, 209(4), 661-669.
[http://dx.doi.org/10.1084/jem.20112343] [PMID: 22412156]
[111]
Cong, G.; Yan, R.; Huang, H.; Wang, K.; Yan, N.; Jin, P.; Zhang, N.; Hou, J.; Chen, D.; Jia, S. Involvement of histone methylation in macrophage apoptosis and unstable plaque formation in methionine-induced hyperhomocysteinemic ApoE-/- mice. Life Sci., 2017, 173, 135-144.
[http://dx.doi.org/10.1016/j.lfs.2017.02.003] [PMID: 28188730]
[112]
Song, M.; Fang, F.; Dai, X.; Yu, L.; Fang, M.; Xu, Y. MKL1 is an epigenetic mediator of TNF-α-induced proinflammatory transcription in macrophages by interacting with ASH2. FEBS Lett., 2017, 591(6), 934-945.
[http://dx.doi.org/10.1002/1873-3468.12601] [PMID: 28218970]
[113]
Austenaa, L.; Barozzi, I.; Chronowska, A.; Termanini, A.; Ostuni, R.; Prosperini, E.; Stewart, A.F.; Testa, G.; Natoli, G. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity, 2012, 36(4), 572-585.
[http://dx.doi.org/10.1016/j.immuni.2012.02.016] [PMID: 22483804]
[114]
Carson, W.F., IV; Cavassani, K.A.; Soares, E.M.; Hirai, S.; Kittan, N.A.; Schaller, M.A.; Scola, M.M.; Joshi, A.; Matsukawa, A.; Aronoff, D.M.; Johnson, C.N.; Dou, Y.; Gallagher, K.A.; Kunkel, S.L. The STAT4/MLL1 Epigenetic Axis Regulates the Antimicrobial Functions of Murine Macrophages. J. Immunol., 2017, 199(5), 1865-1874.
[http://dx.doi.org/10.4049/jimmunol.1601272] [PMID: 28733487]
[115]
Kimball, A.S.; Joshi, A.; Carson, W.F., IV; Boniakowski, A.E.; Schaller, M.; Allen, R.; Bermick, J.; Davis, F.M.; Henke, P.K.; Burant, C.F.; Kunkel, S.L.; Gallagher, K.A. The histone methyltransferase MLL1 directs macrophage-mediated inflammation in wound healing and is altered in a murine model of obesity and type 2 diabetes. Diabetes, 2017, 66(9), 2459-2471.
[http://dx.doi.org/10.2337/db17-0194] [PMID: 28663191]
[116]
Xu, G.; Liu, G.; Xiong, S.; Liu, H.; Chen, X.; Zheng, B. The Histone methyltransferase smyd2 is a negative regulator of macrophage activation by suppressing IL-6 and TNF production. J. Biol. Chem., 2015, 290(9), 5414-5423.
[http://dx.doi.org/10.1074/jbc.M114.610345] [PMID: 25583990]
[117]
Liu, Y.; Zhang, Q.; Ding, Y.; Li, X.; Zhao, D.; Zhao, K.; Guo, Z.; Cao, X. Histone lysine methyltransferase Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing Tollip. J. Immunol., 2015, 194(6), 2838-2846.
[http://dx.doi.org/10.4049/jimmunol.1402087] [PMID: 25687760]
[118]
Zhang, X.; Wang, Y.; Yuan, J.; Li, N.; Pei, S.; Xu, J.; Luo, X.; Mao, C.; Liu, J.; Yu, T.; Gan, S.; Zheng, Q.; Liang, Y.; Guo, W.; Qiu, J.; Constantin, G.; Jin, J.; Qin, J.; Xiao, Y. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J. Exp. Med., 2018, 215(5), 1365-1382.
[http://dx.doi.org/10.1084/jem.20171417] [PMID: 29626115]
[119]
Neele, A.E.; de Winther, M.P.J. Repressing the repressor: Ezh2 mediates macrophage activation. J. Exp. Med., 2018, 215(5), 1269-1271.
[http://dx.doi.org/10.1084/jem.20180479] [PMID: 29691302]
[120]
Qiao, Y.; Kang, K.; Giannopoulou, E. fang, C.; Ivashkiv, L.B. IFN-γ induces histone 3 Lysine 27 Trimethylation at a small subset of promoters to stably silence gene expression in human macrophage. Cell Rep., 2016, 16(12), 3121-3129.
[http://dx.doi.org/10.1016/j.celrep.2016.08.051] [PMID: 27653678]
[121]
Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet, 2015, 8(1), 150-158.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000671] [PMID: 25472959]
[122]
Chen, X.; Liu, X.; Zhang, Y.; Huai, W.; Zhou, Q.; Xu, S.; Chen, X.; Li, N.; Cao, X. Methyltransferase Dot1l preferentially promotes innate IL-6 and IFN-β production by mediating H3K79me2/3 methylation in macrophages. Cell. Mol. Immunol., 2018, 2016-2042.
[http://dx.doi.org/10.1038/s41423-018-0170-4] [PMID: 30275539]
[123]
Gao, Y.; Ge, W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis., 2018, 9(2), 33.
[http://dx.doi.org/10.1038/s41419-017-0040-5] [PMID: 29348610]
[124]
Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.; Günther, T.; Buettner, R.; Schüle, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 2005, 437(7057), 436-439.
[http://dx.doi.org/10.1038/nature04020] [PMID: 16079795]
[125]
Karytinos, A.; Forneris, F.; Profumo, A.; Ciossani, G.; Battaglioli, E.; Binda, C.; Mattevi, A. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem., 2009, 284(26), 17775-17782.
[http://dx.doi.org/10.1074/jbc.M109.003087] [PMID: 19407342]
[126]
Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7), 941-953.
[http://dx.doi.org/10.1016/j.cell.2004.12.012] [PMID: 15620353]
[127]
Huang, Y.; Greene, E.; Murray Stewart, T.; Goodwin, A.C.; Baylin, S.B.; Woster, P.M.; Casero, R.A., Jr Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 8023-8028.
[http://dx.doi.org/10.1073/pnas.0700720104] [PMID: 17463086]
[128]
Garcia-Bassets, I.; Kwon, Y.S.; Telese, F.; Prefontaine, G.G.; Hutt, K.R.; Cheng, C.S.; Ju, B.G.; Ohgi, K.A.; Wang, J.; Escoubet-Lozach, L.; Rose, D.W.; Glass, C.K.; Fu, X.D.; Rosenfeld, M.G. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell, 2007, 128(3), 505-518.
[http://dx.doi.org/10.1016/j.cell.2006.12.038] [PMID: 17289570]
[129]
Klose, R.J.; Kallin, E.M.; Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet., 2006, 7(9), 715-727.
[http://dx.doi.org/10.1038/nrg1945] [PMID: 16983801]
[130]
Tsukada, Y.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078), 811-816.
[http://dx.doi.org/10.1038/nature04433] [PMID: 16362057]
[131]
Cloos, P.A.; Christensen, J.; Agger, K.; Helin, K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev., 2008, 22(9), 1115-1140.
[http://dx.doi.org/10.1101/gad.1652908] [PMID: 18451103]
[132]
Yang, R.F.; Zhao, G.W.; Liang, S.T.; Chen, H.Z.; Liu, D.P. Lysine-specific demethylase 1 represses THP-1 monocyte-to-macrophage differentiation. Chin. Med. Sci. J., 2013, 28(2), 82-87.
[http://dx.doi.org/10.1016/S1001-9294(13)60027-9] [PMID: 23806369]
[133]
Feng, Z.; Yao, Y.; Zhou, C.; Chen, F.; Wu, F.; Wei, L.; Liu, W.; Dong, S.; Redell, M.; Mo, Q.; Song, Y. Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia. J. Hematol. Oncol., 2016, 9, 24.
[http://dx.doi.org/10.1186/s13045-016-0252-7] [PMID: 26970896]
[134]
Boulding, T.; McCuaig, R.D.; Tan, A.; Hardy, K.; Wu, F.; Dunn, J.; Kalimutho, M.; Sutton, C.R.; Forwood, J.K.; Bert, A.G.; Goodall, G.J.; Malik, L.; Yip, D.; Dahlstrom, J.E.; Zafar, A.; Khanna, K.K.; Rao, S. LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci. Rep., 2018, 8(1), 73.
[http://dx.doi.org/10.1038/s41598-017-17913-x] [PMID: 29311580]
[135]
Smith, M.P.; Young, H.; Hurlstone, A.; Wellbrock, C. Differentiation of THP1 cells into macrophages for transwell co-culture assay with melanoma cells. Bio Protoc., 2015, 5(21)e1638
[http://dx.doi.org/10.21769/BioProtoc.1638] [PMID: 27034969]
[136]
Kim, D.; Nam, H.J.; Lee, W.; Kim, K.I.; Baek, S.H. Palpha-LSD1-NF-kappaB-signaling cascade is crucial for epigenetic control of the inflammatory response. Mol. Cell, 2018, 69(3), 398-411.
[http://dx.doi.org/[DOI: 10.1016/j.molcel.2018.01.002]
[137]
Li, X.; Zhang, Q.; Shi, Q.; Liu, Y.; Zhao, K.; Shen, Q.; Shi, Y.; Liu, X.; Wang, C.; Li, N.; Ma, Y.; Cao, X. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages. J. Autoimmun., 2017, 80, 85-94.
[http://dx.doi.org/10.1016/j.jaut.2017.02.007] [PMID: 28284523]
[138]
Neele, A.E.; Prange, K.H.; Hoeksema, M.A.; van der Velden, S.; Lucas, T.; Dimmeler, S.; Lutgens, E.; Van den Bossche, J.; de Winther, M.P. Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells. Epigenomics, 2017, 9(4), 383-391.
[http://dx.doi.org/10.2217/epi-2016-0152] [PMID: 28322580]
[139]
Ma, J.H.; Song, S.H.; Guo, M.; Zhou, J.; Liu, F.; Peng, L.; Fu, Z.R. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions. Biochem. Biophys. Res. Commun., 2017, 493(2), 1122-1128.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.013] [PMID: 28887033]
[140]
Gallagher, K.A.; Joshi, A.; Carson, W.F.; Schaller, M.; Allen, R.; Mukerjee, S.; Kittan, N.; Feldman, E.L.; Henke, P.K.; Hogaboam, C.; Burant, C.F.; Kunkel, S.L. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes, 2015, 64(4), 1420-1430.
[http://dx.doi.org/10.2337/db14-0872] [PMID: 25368099]
[141]
Tang, Y.; Li, T.; Li, J.; Yang, J.; Liu, H.; Zhang, X.J.; Le, W. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ., 2014, 21(3), 369-380.
[http://dx.doi.org/10.1038/cdd.2013.159] [PMID: 24212761]
[142]
Ishii, M.; Wen, H.; Corsa, C.A.; Liu, T.; Coelho, A.L.; Allen, R.M.; Carson, W.F., IV; Cavassani, K.A.; Li, X.; Lukacs, N.W.; Hogaboam, C.M.; Dou, Y.; Kunkel, S.L. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood, 2009, 114(15), 3244-3254.
[http://dx.doi.org/10.1182/blood-2009-04-217620] [PMID: 19567879]
[143]
Kruidenier, L.; Chung, C.W.; Cheng, Z.; Liddle, J.; Che, K.; Joberty, G.; Bantscheff, M.; Bountra, C.; Bridges, A.; Diallo, H.; Eberhard, D.; Hutchinson, S.; Jones, E.; Katso, R.; Leveridge, M.; Mander, P.K.; Mosley, J.; Ramirez-Molina, C.; Rowland, P.; Schofield, C.J.; Sheppard, R.J.; Smith, J.E.; Swales, C.; Tanner, R.; Thomas, P.; Tumber, A.; Drewes, G.; Oppermann, U.; Patel, D.J.; Lee, K.; Wilson, D.M. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature, 2012, 488(7411), 404-408.
[http://dx.doi.org/10.1038/nature11262] [PMID: 22842901]
[144]
Liu, Y.; Arai, A.; Kim, T.; Kim, S.; Park, N-H.; Kim, R.H. Histone demethylase jmjd7 negatively regulates differentiation of osteoclast. Chin. J. Dent. Res., 2018, 21(2), 113-118.
[http://dx.doi.org/[DOI: 10.3290/j.cjdr.a40437]
[145]
Whetstine, J.R.; Nottke, A.; Lan, F.; Huarte, M.; Smolikov, S.; Chen, Z.; Spooner, E.; Li, E.; Zhang, G.; Colaiacovo, M.; Shi, Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell, 2006, 125(3), 467-481.
[http://dx.doi.org/10.1016/j.cell.2006.03.028] [PMID: 16603238]
[146]
Wang, X.; Wang, S.; Yao, G.; Yu, D.; Chen, K.; Tong, Q.; Ye, L.; Wu, C.; Wu, J. Identification of the histone lysine demethylase KDM4A/JMJD2A as a novel epigenetic target in M1 macrophage polarization induced by oxidized LDL. Oncotarget, 2017, (70), 114442-114456.
[http://dx.doi.org/[DOI: 10.18632/oncotarget.17748]
[147]
McBride, A.E.; Zurita-Lopez, C.; Regis, A.; Blum, E.; Conboy, A.; Elf, S.; Clarke, S. Protein arginine methylation in Candida albicans: role in nuclear transport. Eukaryot. Cell, 2007, 6(7), 1119-1129.
[http://dx.doi.org/10.1128/EC.00074-07] [PMID: 17483287]
[148]
Tikhanovich, I.; Zhao, J.; Olson, J.; Adams, A.; Taylor, R.; Bridges, B.; Marshall, L.; Roberts, B.; Weinman, S.A. Protein arginine methyltransferase 1 modulates innate immune responses through regulation of peroxisome proliferator-activated receptor γ-dependent macrophage differentiation. J. Biol. Chem., 2017, 292(17), 6882-6894.
[http://dx.doi.org/10.1074/jbc.M117.778761] [PMID: 28330868]
[149]
Tikhanovich, I.; Zhao, J.; Bridges, B.; Kumer, S.; Roberts, B.; Weinman, S.A. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300. J. Biol. Chem., 2017, 292(32), 13333-13344.
[http://dx.doi.org/10.1074/jbc.M117.797928] [PMID: 28652407]
[150]
Choi, J.H.; Jang, A.R.; Kim, D.I.; Park, M.J.; Lim, S.K.; Kim, M.S.; Park, J.H. PRMT1 mediates RANKL-induced osteoclastogenesis and contributes to bone loss in ovariectomized mice. Exp. Mol. Med., 2018, 50(8), 111.
[http://dx.doi.org/10.1038/s12276-018-0134-x] [PMID: 30154485]
[151]
Yang, J.; Yin, S.; Bi, F.; Liu, L.; Qin, T.; Wang, H.; Cao, W. TIMAP repression by TGFβ and HDAC3-associated Smad signaling regulates macrophage M2 phenotypic phagocytosis. J. Mol. Med. (Berl.), 2017, 95(3), 273-285.
[http://dx.doi.org/10.1007/s00109-016-1479-z] [PMID: 27709267]
[152]
Shakespear, M.R.; Hohenhaus, D.M.; Kelly, G.M.; Kamal, N.A.; Gupta, P.; Labzin, L.I.; Schroder, K.; Garceau, V.; Barbero, S.; Iyer, A.; Hume, D.A.; Reid, R.C.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J. Biol. Chem., 2013, 288(35), 25362-25374.
[http://dx.doi.org/10.1074/jbc.M113.496281] [PMID: 23853092]
[153]
Yanginlar, C.; Logie, C. HDAC11 is a regulator of diverse immune functions. Biochim. Biophys. Acta. Gene Regul. Mech., 2018, 1861(1), 54-59.
[http://dx.doi.org/10.1016/j.bbagrm.2017.12.002] [PMID: 29222071]
[154]
Singh, V.; Prakhar, P.; Rajmani, R.S.; Mahadik, K.; Borbora, S.M.; Balaji, K.N. Histone Methyltransferase SET8 Epigenetically Reprograms Host Immune Responses to Assist Mycobacterial Survival. J. Infect. Dis., 2017, 216(4), 477-488.
[http://dx.doi.org/10.1093/infdis/jix322] [PMID: 28931237]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy