[1]
Hewson, D.W.; Worcester, F.; Sprinks, J.; Smith, M.D.; Buchanan, H.; Breedon, P.; Hardman, J.G.; Bedforth, N.M. Anaesthetist-controlled versus patient-maintained effect-site targeted propofol sedation during elective primary lower-limb arthroplasty performed under spinal anaesthesia: Study protocol for a parallel-group randomised comparison trial. Trials, 2019, 20(1), 129-131.
[2]
Hashim, P.W.; Nia, J.K.; Taliercio, M.; Goldenberg, G. Local anesthetics in cosmetic dermatology. Cutis, 2017, 99(6), 393-397.
[3]
Bordianu, A.; Bobirca, F. Facial skin cancer surgery under local anesthesia. J. Med. Life, 2018, 11(3), 231-237.
[4]
Visconti, G.; Salgarello, M. Free-style capillary perforator-based island flaps for reconstruction of skin cancer defects of the face, body, and extremities. Ann. Plast. Surg., 2018, 81(2), 192-197.
[5]
Reorganized text. JAMA Otolaryngol. Head Neck Surg., 2015, 141(5), 428.
[6]
Tasbihgou, S.R.; Vogels, M.F.; Absalom, A.R. Accidental awareness during general anaesthesia - a narrative review. Anaesthesia, 2018, 73(1), 112-122.
[7]
Lee, B.H.; Kumar, K.K.; Wu, E.C.; Wu, C.L. Role of regional anesthesia and analgesia in the opioid epidemic. Reg. Anesth. Pain Med., 2019, 13, 100-102.
[8]
Vahabi, S.; Eatemadi, A. Nanoliposome encapsulated anesthetics for local anesthesia application. Biomed. Pharmacother., 2017, 86, 1-7.
[9]
Sunderland, S.; Yarnold, C.H.; Head, S.J.; Osborn, J.A.; Purssell, A.; Peel, J.K.; Schwarz, S.K. Regional versus general anesthesia and the incidence of unplanned health care resource utilization for postoperative pain after wrist fracture surgery: Results from a retrospective quality improvement project. Reg. Anesth. Pain Med., 2016, 41(1), 22-27.
[10]
Raymond, S.A.; Steffensen, S.C.; Gugino, L.D.; Strichartz, G.R. The role of length of nerve exposed to local anesthetics in impulse blocking action. Anesth. Analg., 1989, 68(5), 563-670.
[11]
Saeki, S.; Kobayashi, M.; Miyake, E.; Suzuki, T. Crisis management during regional anesthesia including peripheral nerve block, epidural anesthesia and spinal anesthesia. Masui, 2009, 58(5), 595-603.
[12]
McCarthy, D.; McNamara, J.; Galbraith, J.; Loughnane, F.; Shorten, G.; Iohom, G. A comparison of the analgesic efficacy of local infiltration analgesia vs. intrathecal morphine after total knee replacement: A randomised controlled trial. Eur. J. Anaesthesiol., 2019, 36(4), 264-271.
[13]
Essving, P.; Axelsson, K.; Aberg, E.; Spannar, H.; Gupta, A.; Lundin, A. Local infiltration analgesia versus intrathecal morphine for postoperative pain management after total knee arthroplasty: A randomized controlled trial. Anesth. Analg., 2011, 113(4), 926-933.
[14]
Kampitak, W.; Tanavalee, A.; Ngarmukos, S.; Amarase, C.; Songthamwat, B.; Boonshua, A. Comparison of adductor canal block versus local infiltration analgesia on postoperative pain and functional outcome after total knee arthroplasty: A randomized controlled trial. Malays. Orthop. J., 2018, 12(1), 7-14.
[15]
Ruetsch, Y.A.; Boni, T.; Borgeat, A. From cocaine to ropivacaine: The history of local anesthetic drugs. Curr. Top. Med. Chem., 2001, 1(3), 175-182.
[16]
Swennen, C.; Bredin, S.; Eap, C.; Mensa, C.; Ohl, X.; Girard, V. Local infiltration analgesia with ropivacaine in acute fracture of thoracolumbar junction surgery. Orthop. Traumatol. Surg. Res., 2017, 103(2), 291-294.
[17]
Tam, K.W.; Chen, S.Y.; Huang, T.W.; Lin, C.C.; Su, C.M.; Li, C.L.; Ho, Y.S.; Wang, W.Y.; Wu, C.H. Effect of wound infiltration with ropivacaine or bupivacaine analgesia in breast cancer surgery: A meta-analysis of randomized controlled trials. Int. J. Surg., 2015, 22, 79-85.
[18]
Dominguez, D.A.; Ely, S.; Bach, C.; Lee, T.; Velotta, J.B. Impact of intercostal nerve blocks using liposomal versus standard bupivacaine on length of stay in minimally invasive thoracic surgery patients. J. Thorac. Dis., 2018, 10(12), 6873-6879.
[19]
Parascandola, S.A.; Ibanez, J.; Keir, G.; Anderson, J.; Plankey, M.; Flynn, D.; Cody, C.; De Marchi, L.; Margolis, M.; Blair Marshall, M. Liposomal bupivacaine versus bupivacaine/epinephrine after video-assisted thoracoscopic wedge resectiondagger. Interact. Cardiovasc. Thorac. Surg., 2017, 24(6), 925-930.
[20]
Ng, A.; Swami, A.; Smith, G.; Davidson, A.C.; Emembolu, J. The analgesic effects of intraperitoneal and incisional bupivacaine with epinephrine after total abdominal hysterectomy. Anesth. Analg., 2002, 95(1), 158-162.
[21]
Wolfe, J.W.; Butterworth, J.F. Local anesthetic systemic toxicity: update on mechanisms and treatment. Curr. Opin. Anaesthesiol., 2011, 24(5), 561-566.
[22]
Mutlu, I.N.; Kocak, B.; Baykara Ulusan, M.; Ulusan, K.; Cakir, M.S.; Kilickesmez, O. Regional anesthesia with epinephrine-containing lidocaine reduces pericatheter bleeding after tunneled hemodialysis catheter placement. Hemodial. Int., 2018, 23(1), 26-32.
[23]
Zink, W.; Graf, B.M. Local anesthetic myotoxicity. Reg. Anesth. Pain Med., 2004, 29(4), 333-340.
[24]
Singh, S.; Kumar, A.; Karakoti, A.; Seal, S.; Self, W.T. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol. Biosyst., 2010, 6(10), 1813-1820.
[25]
Vassie, J.A.; Whitelock, J.M.; Lord, M.S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater., 2017, 50, 127-141.
[26]
Chang, H.I.; Yeh, M.K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine, 2012, 7, 49-60.
[27]
Patel, H.M.; Moghimi, S.M. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system - The concept of tissue specificity. Adv. Drug Deliv. Rev., 1998, 32(1-2), 45-60.
[28]
Benvegnu, T.; Lemiegre, L.; Cammas-Marion, S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat. Drug Deliv. Formul., 2009, 3(3), 206-220.
[29]
Savaliya, R.; Singh, P.; Singh, S. Pharmacological drug delivery strategies for improved therapeutic effects: Recent advances. Curr. Pharm. Des., 2016, 22(11), 1506-1520.
[30]
Savaliya, R.; Shah, D.; Singh, R.; Kumar, A.; Shanker, R.; Dhawan, A.; Singh, S. Nanotechnology in disease diagnostic techniques. Curr. Drug Metab., 2015, 16(8), 645-661.
[31]
Li, H.; Marotta, D.E.; Kim, S.; Busch, T.M.; Wileyto, E.P.; Zheng, G. High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles. J. Biomed. Opt., 2005, 10(4), 41203.
[32]
Kim, J.K.; Yuan, H.; Nie, J.; Yang, Y.T.; Leggas, M.; Potter, P.M.; Rinehart, J.; Jay, M.; Lu, X. High payload dual therapeutic-imaging nanocarriers for triggered tumor delivery. Small, 2012, 8(18), 2895-2903.
[33]
Ambati, J.; Lopez, A.M.; Cochran, D.; Wattamwar, P.; Bean, K.; Dziubla, T.D.; Rankin, S.E. Engineered silica nanocarriers as a high-payload delivery vehicle for antioxidant enzymes. Acta Biomater., 2012, 8(6), 2096-2103.
[34]
Sudimack, J.; Lee, R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 2000, 41(2), 147-162.
[35]
Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 1998, 279(5349), 377-380.
[36]
Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci., 2015, 215, 28-45.
[37]
Fatima, M.T.; Islam, Z.; Ahmad, E.; Barreto, G.E.; Md Ashraf, G. Ionic gradient liposomes: Recent advances in the stable entrapment and prolonged released of local anesthetics and anticancer drugs. Biomed. Pharmacother., 2018, 107, 34-43.
[38]
Haran, G.; Cohen, R.; Bar, L.K.; Barenholz, Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta, 1993, 1151(2), 201-215.
[39]
Oliveira, J.D.; Ribeiro, L.N.M.; Da Silva, R.G.H.; Casadei, B.R.; Couto, V.M.; Martinez, E.F.; De Paula, E. Sustained release from ionic-gradient liposomes significantly decreases etidocaine cytotoxicity. Pharm. Res., 2018, 35(12), 229.
[40]
De Paula, E.; Schreier, S.; Jarrell, H.C.; Fraceto, L.F. Preferential location of lidocaine and etidocaine in lecithin bilayers as determined by EPR, fluorescence and 2H NMR. Biophys. Chem., 2008, 132(1), 47-54.
[41]
Springer, B.D.; Mason, J.B.; Odum, S.M. Systemic safety of liposomal bupivacaine in simultaneous bilateral total knee arthroplasty. J. Arthroplasty, 2018, 33(1), 97-101.
[42]
Bagsby, D.T.; Ireland, P.H.; Meneghini, R.M. Liposomal bupivacaine versus traditional periarticular injection for pain control after total knee arthroplasty. J. Arthroplasty, 2014, 29(8), 1687-1690.
[43]
Meneghini, R.M.; Bagsby, D.; Ireland, P.H.; Ziemba-Davis, M.; Lovro, L.R. Liposomal bupivacaine injection technique in total knee arthroplasty. J. Knee Surg., 2017, 30(1), 88-96.
[44]
Wu, Z.Q.; Min, J.K.; Wang, D.; Yuan, Y.J.; Li, H. Liposome bupivacaine for pain control after total knee arthroplasty: A meta-analysis. J. Orthop. Surg. Res., 2016, 11(1), 84.
[45]
Uskova, A.; O’Connor, J.E. Liposomal bupivacaine for regional anesthesia. Curr. Opin. Anaesthesiol., 2015, 28(5), 593-597.
[46]
Franz-Montan, M.; Cereda, C.M.; Gaspari, A.; Da Silva, C.M.; de Araujo, D.R.; Padula, C.; Santi, P.; Narvaes, E.; Novaes, P.D.; Groppo, F.C.; De Paula, E. Liposomal-benzocaine gel formulation: correlation between in vitro assays and in vivo topical anesthesia in volunteers. J. Liposome Res., 2013, 23(1), 54-60.
[47]
Mura, P.; Maestrelli, F.; Gonzalez-Rodriguez, M.L.; Michelacci, I.; Ghelardini, C.; Rabasco, A.M. Development, characterization and in vivo evaluation of benzocaine-loaded liposomes. Eur. J. Pharm. Biopharm., 2007, 67(1), 86-95.
[48]
Tofoli, G.R.; Cereda, C.M.; Araujo, D.R.; Franz-Montan, M.; Groppo, F.C.; Quaglio, D.; Pedrazzoli, Junior J.; Calafatti, S.A.; Barros, F.A.; De Paula, E. Pharmacokinetic study of liposome-encapsulated and plain mepivacaine formulations injected intra-orally in volunteers. J. Pharm. Pharmacol., 2012, 64(3), 397-403.
[49]
Tofoli, G.R.; Cereda, C.M.; Groppo, F.C.; Volpato, M.C.; Franz-Montan, M.; Ranali, J.; De Araujo, D.R.; De Paula, E. Efficacy of liposome-encapsulated mepivacaine for infiltrative anesthesia in volunteers. J. Liposome Res., 2011, 21(1), 88-94.
[50]
Franz-Montan, M.; Silva, A.L.; Cogo, K.; Bergamaschi Cde, C.; Volpato, M.C.; Ranali, J.; De Paula, E.; Groppo, F.C. Liposome-encapsulated ropivacaine for topical anesthesia of human oral mucosa. Anesth. Analg., 2007, 104(6), 1528-1531.
[51]
Zhan, C.; Wang, W.; McAlvin, J.B.; Guo, S.; Timko, B.P.; Santamaria, C.; Kohane, D.S. Phototriggered local anesthesia. Nano Lett., 2016, 16(1), 177-181.
[52]
Zhan, C.; Wang, W.; Santamaria, C.; Wang, B.; Rwei, A.; Timko, B.P.; Kohane, D.S. Ultrasensitive phototriggered local anesthesia. Nano Lett., 2017, 17(2), 660-665.
[53]
Arakawa, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Effect of low-molecular-weight beta-cyclodextrin polymer on release of drugs from mucoadhesive buccal film dosage forms. Biol. Pharm. Bull., 2005, 28(9), 1679-1683.
[54]
Kamada, M.; Hirayama, F.; Udo, K.; Yano, H.; Arima, H.; Uekama, K. Cyclodextrin conjugate-based controlled release system: Repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. Control. Release, 2002, 82(2-3), 407-416.
[55]
Nakanishi, K.; Masukawa, T.; Nadai, T.; Yoshii, K.; Okada, S.; Miyajima, K. Sustained release of flufenamic acid from a drug-triacetyl-beta-cyclodextrin complex. Biol. Pharm. Bull., 1997, 20(1), 66-70.
[56]
Cook, O.; Nusstein, J.; Drum, M.; Fowler, S.; Reader, A.; Draper, J. Anesthetic efficacy of a combination of 4% prilocaine/2% lidocaine with epinephrine for the inferior alveolar nerve block: A prospective, randomized, double-blind study. J. Endod., 2018, 44(5), 683-688.