Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

A Review of Theranostics Applications and Toxicities of Carbon Nanomaterials

Author(s): Nitin Gupta, Divya Bharti Rai, Ashok Kumar Jangid and Hitesh Kulhari*

Volume 20, Issue 6, 2019

Page: [506 - 532] Pages: 27

DOI: 10.2174/1389200219666180925094515

Price: $65

Abstract

Background: In the last few years, the use of modified Carbon Nanomaterials (CNMs) for theranostics (therapeutic and diagnosis) applications is a new and rapidly growing area in pharmacy and medical fields. Owing to this, their specific physicochemical behaviors like high stability, drug loading, surface area to volume ratio, with low toxicity and immunogenicity are mainly responsible to be considered those as smart nanomaterials.

Objectives: This review describes the different dimensions of carbon-based nanocarriers including 0-D fullerene, 1-D Carbon Nanotubes (CNTs), and 2-D graphene and Graphene Oxide (GO) and their surface modification with different biocompatible and biodegradable molecules via covalent or non-covalent functionalization. The major focus of this article is on the different theranostics applications of CNMs like targeted drugs and genes delivery, photodynamic therapy, photothermal therapy, bioimaging, and biosensing. The therapeutic efficacy of drugs could be enhanced by delivering them directly on a specific site using different targeted ligands such as vitamins, peptide, carbohydrates, proteins, etc. A section of the article also discusses the toxicity of the CNMs to the living systems.

Conclusions: In brief, this review article discusses the numerous theranostics applications and toxicities of CNMs.

Keywords: Carbon nanomaterials, targeted drugs, and genes delivery, surface modification, theranostics applications, cytotoxicity.

Graphical Abstract

[1]
Yadav, K.K.; Singh, J.K.; Gupta, N.; Kumar, V. A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. J. Mater. Environ. Sci., 2017, 8(2), 740-757.
[2]
Weiss, P.S. Dr. Heinrich Rohrer (1933-2013), Founding father of nanotechnology. ACS Nano, 2013, 7(6), 4693.
[3]
Bakker, R.M.; Yuan, H.K.; Liu, Z.; Drachev, V.P.; Kildishev, A.V.; Shalaev, V.M.; Pedersen, R.H.; Gresillon, S.; Boltasseva, A. Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett., 2008, 92(4), 18-23.
[4]
Geetha Bai, R.; Ninan, N.; Muthoosamy, K.; Manickam, S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Prog. Mater. Sci., 2018, 91, 24-69.
[5]
Lince, F.; Bolognesi, S.; Stella, B.; Marchisio, D.L. Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery. Chem. Eng. Res. Des., 2011, 89(11), 2410-2419.
[6]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2015, 6(2), 257-262.
[7]
Kumar, K.Y.; Muralidhara, H.B.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol., 2013, 246, 125-136.
[8]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179.
[9]
Bimberg, D.; Pohl, U.W. Quantum Dots: Promises and accomplishments. Mater. Today, 2011, 14(9), 388-397.
[10]
Ginsberg, J. The Discovery of fullerenes. Am. Chem. Soc., 2010, 1-4.
[11]
Sarkar, J.; Khan, G.G.; Basumallick, A. Nanowires: Properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci., 2007, 30(3), 271-290.
[12]
Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res., 2002, 35(12), 1035-1044.
[13]
Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2017, 217, 36-48.
[14]
Stoller, M.D.; Park, S.; Yanwu, Z.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[15]
Botas, C.; Álvarez, P.; Blanco, P.; Granda, M.; Blanco, C.; Santamaría, R.; Romasanta, L.J.; Verdejo, R.; López-Manchado, M.A.; Menéndez, R. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon N.Y., 2013, 65, 156-164.
[16]
Jimenez-Solomon, M.F.; Song, Q.; Jelfs, K.E.; Munoz-Ibanez, M.; Livingston, A.G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater., 2016, 15(7), 760-767.
[17]
Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem., 1994, 66(9), 1893-1901.
[18]
Reich, E.S. Nobel prize committee under fire. Nature, 2010, 50005, 1-10.
[19]
Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science, 2007, 315(5811), 490-493.
[20]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed., 2009, 48(42), 7752-7777.
[21]
Feng, L.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine, 2011, 6(2), 317-324.
[22]
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217-224.
[23]
Lim, C.H.Y.X.; Nesladek, M.; Loh, K.P. Observing high-pressure chemistry in graphene bubbles. Angew. Chem. Int. Ed., 2014, 53(1), 215-219.
[24]
Chung, D.D.L. Review: Graphite. J. Mater. Sci., 2002, 37(8), 1475-1489.
[25]
Lipson, H.; Stokes, A.R. A new structure of carbon. Nature, 1942, 149(3777), 328-328.
[26]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[27]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[28]
Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano, 2012, 6(4), 2904-2916.
[29]
Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett., 2008, 8(12), 4469-4476.
[30]
Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; De La Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng. C, 2017, 74, 568-581.
[31]
Whitehead, K.A.; Vaidya, M.; Liauw, C.M.; Brownson, D.A.C.; Ramalingam, P.; Kamieniak, J.; Rowley-Neale, S.J.; Tetlow, L.A.; Wilson-Nieuwenhuis, J.S.T.; Brown, D. Antimicrobial activity of graphene oxide-metal hybrids. Int. Biodeterior. Biodegradation, 2017, 123, 182-190.
[32]
Akhavan, O.; Choobtashani, M.; Ghaderi, E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J. Phys. Chem. C, 2012, 116(17), 9653-9659.
[33]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[34]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[35]
Heo, C.; Yoo, J.; Lee, S.; Jo, A.; Jung, S.; Yoo, H.; Lee, Y.H.; Suh, M. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials, 2011, 32(1), 19-27.
[36]
Agarwal, S.; Zhou, X.; Ye, F.; He, Q.; Chen, G.C.K.; Soo, J.; Boey, F.; Zhang, H.; Chen, P. Interfacing live cells with nanocarbon substrates. Langmuir, 2010, 26(4), 2244-2247.
[37]
Lee, C-S.; Yu, S.; Kim, T. One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid. Nanomaterials, 2017, 8(1), 17.
[38]
Giuliodori, A.M.; Brandi, A.; Kotla, S.; Perrozzi, F.; Gunnella, R.; Ottaviano, L.; Spurio, R.; Fabbretti, A. Development of a graphene oxide-based assay for the sequence-specific detection of double-stranded DNA molecules. PLoS One, 2017, 12(8)e0183952
[39]
Esum, K. Chemical treatment of carbon nanotubes. Carbon N.Y., 2003, 34(2), 1-3.
[40]
Yu, R.; Chen, L.; Liu, Q.; Lin, J.; Tan, K.L.; Ng, S.C.; Chan, H.S.O.; Xu, G.Q.; Hor, T.S.A. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater., 1998, 10(3), 718-722.
[41]
Sham, M.L.; Kim, J.K. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatment. Carbon, 2006, 44(4), 768-777.
[42]
Wang, S.C.; Chang, K.S.; Yuan, C.J. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim. Acta, 2009, 54(21), 4937-4943.
[43]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int., 2013, 578290, 1-12.
[44]
Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity. J. Med. Chem., 2016, 59(18), 8149-8167.
[45]
Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7), 2206-2214.
[46]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater., 2012, 24(14), 1868-1872.
[47]
Iijima, S. Helical Microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[48]
Smalley, R.E. Self-assembly of the fullerenes. Acc. Chem. Res., 1992, 25(3), 98-105.
[49]
Lieber, C.M.; Chen, C.C. Preparation of fullerenes and fullerene-based materials. Solid State Phys., 1994, 48, 109-148.
[50]
Lin, T.; Zhang, W.De; Huang, J.; He, C. A DFT study of the amination of fullerenes and carbon nanotubes: Reactivity and curvature. J. Phys. Chem. B, 2005, 109(28), 13755-13760.
[51]
Friedman, S.H.; DeCamp, D.L.; Sijbesma, R.P.; Srdanov, G.; Wudl, F.; Kenyon, G.L. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc., 1993, 115(15), 6506-6509.
[52]
Brettreich, M.; Hirsch, A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett., 1998, 39(18), 2731-2734.
[53]
Lyon, D.Y.; Adams, L.K.; Falkner, J.C.; Alvarez, P.J.J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol., 2006, 40(14), 4360-4366.
[54]
Krusic, P.J.; Wasserman, E.; Keizer, P.N.; Morton, J.R.; Preston, K.F. Radical reactions of C60. Science, 1991, 254(5035), 1183-1185.
[55]
Prylutska, S.; Grynyuk, I.; Matyshevska, O.; Prylutskyy, Y.; Evstigneev, M.; Scharff, P.; Ritter, U. C.60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R D., 2014, 14(4), 333-340.
[56]
Prylutska, S.; Panchuk, R.; Gołuński, G.; Skivka, L.; Prylutskyy, Y.; Hurmach, V.; Skorohyd, N.; Borowik, A.; Woziwodzka, A.; Piosik, J. C.60 Fullerene enhances cisplatin anticancer activity and overcomes tumor cell drug resistance. Nano Res., 2017, 10(2), 652-671.
[57]
Dellinger, A.; Zhou, Z.; Connor, J.; Madhankumar, A.; Pamujula, S.; Sayes, C.M.; Kepley, C.L. Application of fullerenes in nanomedicine: An update. Nanomedicine, 2013, 8(7), 1191-1208.
[58]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[59]
Sano, M.; Okamura, J. Colloidal nature of single-walled carbon nanotubes in electrolyte solution: The Schulze-Hardy rule. Langmuir, 2001, 17(12), 7172-7173.
[60]
Kim, K.S.; Bourlinos, A.B.; Otyepka, M.; Kim, N.; Hobza, P.; Zboril, R.; Georgakilas, V.; Kemp, K.C.; Chandra, V. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev., 2012, 112(11), 6156-6214.
[61]
Matyjaszewski, K.; Miller, P.J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B.B.; Siclovan, T.M.; Kickelbick, G.; Valiant, T.; Hoffmann, H. Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 1999, 32(26), 8716-8724.
[62]
Yan, T.; Zhang, H.; Huang, D.; Feng, S.; Fujita, M.; Gao, X-D. Chitosan-functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials, 2017, 7(3) pii: E59
[63]
Pan, Y.; Bao, H.; Sahoo, N.G.; Wu, T.; Li, L. Water-soluble poly(n-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater., 2011, 21(14), 2754-2763.
[64]
Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir, 2009, 25(20), 12030-12033.
[65]
Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60(15), 1650-1662.
[66]
Veca, L.M.; Lu, F.; Meziani, M.J.; Cao, L.; Zhang, P.; Qi, G.; Qu, L.; Shrestha, M.; Sun, Y-P. Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun., 2009, 18, 2565.
[67]
Vacchi, I.A.; Spinato, C.; Raya, J.; Bianco, A.; Ménard-Moyon, C. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale, 2016, 8(28), 13714-13721.
[68]
Jia, Z.; Wang, Y.; Shi, W.; Wang, J. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation. J. Membr. Sci., 2016, 520, 139-144.
[69]
Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; García, H. Isotropic and oriented copper nanoparticles supported on graphene as aniline guanylation catalysts. ACS Catal., 2016, 6(6), 3863-3869.
[70]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[71]
Niu, L.; Meng, L.; Lu, Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol. Biosci., 2013, 13(6), 735-744.
[72]
Cheng, J.; Meziani, M.J.; Sun, Y.P.; Cheng, S.H. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicol. Appl. Pharmacol., 2011, 250(2), 184-193.
[73]
Maeda, H. The Enhanced Permeability and Retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[74]
Das, M.; Datir, S.R.; Singh, R.P.; Jain, S. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol. Pharm., 2013, 10(7), 2543-2557.
[75]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[76]
Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J-P.; Muller, S. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2, 108.
[77]
Zheng, M.; Jagota, A.; Semke, E.; Diner, B. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater., 2003, 2(5), 338-342.
[78]
Mehra, N.K.; Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283.
[79]
Lu, Y.J.; Wei, K.C.; Ma, C.C.M.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces, 2012, 89(1), 1-9.
[80]
Mukherjee, B. Nanosize drug delivery system. Curr. Pharm. Biotechnol., 2014, 14(15), 1221-1221.
[81]
Pooja, D.; Kulhari, H.; Kuncha, M.; Rachamalla, S.S.; Adams, D.J.; Bansal, V.; Sistla, R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm., 2016, 13(11), 3903-3912.
[82]
Kulhari, H.; Pooja, D.; Singh, M.K.; Kuncha, M.; Adams, D.J.; Sistla, R. Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine, 2015, 10(18), 2847-2859.
[83]
Zhao, X.; Liu, P. Biocompatible graphene oxide as a folate receptor-targeting drug delivery system for the controlled release of anti-cancer drugs. RSC Advances, 2014, 4(46), 24232-24239.
[84]
Yang, Z.R.; Wang, H.F.; Zhao, J.; Peng, Y.Y.; Wang, J.; Guinn, B.A.; Huang, L.Q. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther., 2007, 14(7), 599-615.
[85]
Naldini, L.; Blomer, U.; Gallay, P.; Ory, D.; Mulligan, R.; Gage, F.H.; Verma, I.M.; Trono, D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996, 272(5259), 263-267.
[86]
Ramamoorth, M.; Narvekar, A. Nonviral vectors in gene therapy- An overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[87]
Kulhari, H.; Pooja, D.; Rompicharla, S.V.K.; Sistla, R.; Adams, D.J. Biomedical applications of trastuzumab: As a therapeutic agent and a targeting ligand. Med. Res. Rev., 2015, 35(4), 849-876.
[88]
Lee, H.J.; Park, J.; Yoon, O.J.; Kim, H.W.; Lee, D.Y.; Kim, D.H.; Lee, W.B.; Lee, N.E.; Bonventre, J.V.; Kim, S.S. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol., 2011, 6, 121-125.
[89]
Martinelli, V.; Cellot, G.; Toma, F.M.; Long, C.S.; Caldwell, J.H.; Zentilin, L.; Giacca, M.; Turco, A.; Prato, M.; Ballerini, L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett., 2012, 12(4), 1831-1838.
[90]
Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60.
[91]
Yamakoshi, Y.N.; Yagami, T.; Fukuhara, K.; Sueyoshi, S.; Miyata, N. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J. Chem. Soc. Chem. Commun., 1994, 4, 517-518.
[92]
Bensasson, R.V.; Bienvenue, E.; Dellinger, M.; Leach, S.; Seta, P.C. 60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation. J. Phys. Chem., 1994, 98(13), 3492-3500.
[93]
Singh, S. Nanomaterials as non-viral siRNA delivery agents for cancer therapy. Bioimpacts, 2013, 3(2), 53-65.
[94]
Sitharaman, B.; Shi, X.; Walboomers, X.F.; Liao, H.; Cuijpers, V.; Wilson, L.J.; Mikos, A.G.; Jansen, J.A. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone, 2008, 43(2), 362-370.
[95]
Nayak, T.R.; Jian, L.; Phua, L.C.; Ho, H.K.; Ren, Y.; Pastorin, G. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano, 2010, 4(12), 7717-7725.
[96]
Meng, L.; Zhang, X.; Lu, Q.; Fei, Z.; Dyson, P.J. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials, 2012, 33(6), 1689-1698.
[97]
Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004, 43(39), 5242-5246.
[98]
Prato, M. [60]Fullerene chemistry for materials science applications. J. Mater. Chem., 1997, 7(7), 1097-1109.
[99]
Youle, R.J.; Karbowski, M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol., 2005, 6(8), 657-663.
[100]
Shinkai, S.; Ikeda, A. Cheminform abstract: Calixarene-fullerene conjugates: Marriage of the third generations of inclusion compounds and carbon clusters. ChemInform, 2010, 29(32)
[http://dx.doi.org/10.1002/chin.199832325]
[101]
Tan, L.; Wu, T.; Tang, Z.W.; Xiao, J.Y.; Zhuo, R.X.; Shi, B.; Liu, C.J. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology, 2016, 27(31)315104
[102]
Liu, W.; Wei, J.; Chen, Y.; Huo, P.; Wei, Y. Electrospinning of poly(l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces, 2013, 5(3), 680-685.
[103]
Wen, J.; Xu, Y.; Li, H.; Lu, A.; Sun, S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun., 2015, 51(57), 11346-11358.
[104]
Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E. Nonviral gene delivery by tetraamino fullerene. Mol. Pharm., 2006, 3(2), 124-134.
[105]
Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc., 2013, 8(12), 2392-2403.
[106]
Li, Q.; Ruan, H.; Li, H. Nanocarbon materials for photodynamic therapy and photothermal therapy. Pharm. Nanotechnol., 2014, 2(2), 58-64.
[107]
Huang, P.; Wang, S.; Wang, X.; Shen, G.; Lin, J.; Wang, Z.; Guo, S.; Cui, D.; Yang, M.; Chen, X. Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J. Biomed. Nanotechnol., 2015, 11(1), 117-125.
[108]
Rana, V.K.; Choi, M.C.; Kong, J.Y.; Kim, G.Y.; Kim, M.J.; Kim, S.H.; Mishra, S.; Singh, R.P.; Ha, C.S. Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng., 2011, 296(2), 131-140.
[109]
Case, B.L.; Liu, Y.S.; Bergbreiter, D.E. “Smart” soluble polymer supports for catalysis and synthesis. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., 1998, 39(1), 298-299.
[110]
Feng, L.; Zhang, S.; Liu, Z. Graphene based gene transfection. Nanoscale, 2011, 3(3), 1252-1257.
[111]
Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7(4), 460-464.
[112]
Yin, D.; Li, Y.; Lin, H.; Guo, B.; Du, Y.; Li, X.; Jia, H.; Zhao, X.; Tang, J.; Zhang, L. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology, 2013, 24(10)105102
[113]
Villa, C.H.; Dao, T.; Ahearn, I.; Fehrenbacher, N.; Casey, E.; Rey, D.A.; Korontsvit, T.; Zakhaleva, V.; Batt, C.A.; Philips, M.R. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 2011, 5(7), 5300-5311.
[114]
Khazaei, A.; Rad, M.N.S.; Borazjani, M.K. Organic functionalization of single-walled carbon nanotubes (SWCNTs) with some chemotherapeutic agents as a potential method for drug delivery. Int. J. Nanomedicine, 2010, 5(1), 639-645.
[115]
Cheng, Q.; Blais, M.O.; Harris, G.; Jabbarzadeh, E. PLGA-carbon nanotube conjugates for intercellular delivery of caspase-3 into osteosarcoma cells. PLoS One, 2013, 8(12)e81947
[116]
Qin, W.; Yang, K.; Tang, H.; Tan, L.; Xie, W.; Ma, M.; Zhang, Y.; Yao, S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces, 2011, 84(1), 206-213.
[117]
Huang, Y.P.; Lin, I.J.; Chen, C.C.; Hsu, Y.C.; Chang, C.C.; Lee, M.J. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Res. Lett., 2013, 8(1), 267.
[118]
Khang, D.; Kim, S.Y.; Liu-Snyder, P.; Palmore, G.T.R.; Durbin, S.M.; Webster, T.J. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials, 2007, 28(32), 4756-4768.
[119]
Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L.; Mahmoudi, M. Nanoparticles and protein corona. Protein-Nanoparticle Interact., 2013, 15(1), 21-45.
[120]
Dutta, D. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci., 2007, 100(1), 303-315.
[121]
Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed., 2007, 46(12), 2023-2027.
[122]
Kam, N.W.S.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 2005, 127(36), 12492-12493.
[123]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[124]
Yun, Y.S.; Bak, H.; Cho, S.Y.; Jin, H.J. Adsorption behavior of carbon nanotubes on polystyrene surfaces. J. Nanosci. Nanotechnol., 2011, 11(2), 1668-1671.
[125]
Yinghuai, Z.; Peng, A.T.; Carpenter, K.; Maguire, J.A.; Hosmane, N.S.; Takagaki, M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc., 2005, 127(27), 9875-9880.
[126]
Ladeira, M.S.; Andrade, V.A.; Gomes, E.R.M.; Aguiar, C.J.; Moraes, E.R.; Soares, J.S.; Silva, E.E.; Lacerda, G.R.; Ladeira, L.O.; Jorio, A.; Lima, P.; Leite, M.; Resende, R.R.; Guatimosim, S. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology, 2010, 21(38), 2976-2980.
[127]
Al-Jamal, K.T.; Nerl, H.; Müller, K.H.; Ali-Boucetta, H.; Li, S.; Haynes, P.D.; Jinschek, J.R.; Prato, M.; Bianco, A.; Kostarelos, K. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3(6), 2627.
[128]
Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E. Gene delivery by aminofullerenes: Structural requirements for efficient transfection. Chem. Asian J., 2006, 1(1-2), 167-175.
[129]
Rouse, J.G.; Yang, J.; Ryman-Rasmussen, J.P.; Barron, A.R.; Monteiro-Riviere, N.A. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett., 2007, 7(1), 155-160.
[130]
Goyal, R.N.; Gupta, V.K.; Bachheti, N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone-An anabolic steroid used in doping. Anal. Chim. Acta, 2007, 597(1), 82-89.
[131]
Zakharian, T.Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B.E.; Knight, V.; Wilson, L.J. A fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc., 2005, 127(36), 12508-12509.
[132]
Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H.; Meziani, M.J.; Haque, S.A.; Liu, Y.; Lacher, S. Fullerene-conjugated doxorubicin in cells. ACS Appl. Mater. Interfaces, 2010, 2(5), 1384-1389.
[133]
Maeda-Mamiya, R.; Noiri, E.; Isobe, H.; Nakanishi, W.; Okamoto, K.; Doi, K.; Sugaya, T.; Izumi, T.; Homma, T.; Nakamura, E. In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci., 2010, 107(12), 5339-5344.
[134]
Nakamura, E.; Isobe, H. In vitro and in vivo gene delivery with tailor-designed aminofullerenes. Chem. Rec., 2010, 10(5), 260-270.
[135]
Sigwalt, D.; Holler, M.; Iehl, J.; Nierengarten, J-F.; Nothisen, M.; Morin, E.; Remy, J.S. Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun., 2011, 47(16), 4640-4642.
[136]
Shibu, E.S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C Photochem. Rev., 2013, 15, 53-72.
[137]
Gannon, C.J.; Cherukuri, P.; Yakobson, B.I.; Cognet, L.; Kanzius, J.S.; Kittrell, C.; Weisman, R.B.; Pasquali, M.; Schmidt, H.K.; Smalley, R.E. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12), 2654-2665.
[138]
Torti, S.V.; Byrne, F.; Whelan, O.; Levi, N.; Ucer, B.; Schmid, M.; Torti, F.M.; Akman, S.; Liu, J.; Ajayan, P.M. Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int. J. Nanomedicine, 2007, 2(4), 707-714.
[139]
Sreejith, S.; Ma, X.; Zhao, Y. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J. Am. Chem. Soc., 2012, 134(42), 17346-17349.
[140]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[141]
Hu, Z.; Huang, Y.; Sun, S.; Guan, W.; Yao, Y.; Tang, P.; Li, C. Visible light driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid. Carbon, 2012, 50(3), 994-1004.
[142]
Markovic, Z.M.; Harhaji-Trajkovic, L.M.; Todorovic-Markovic, B.M.; Kepić, D.P.; Arsikin, K.M.; Jovanović, S.P.; Pantovic, A.C.; Dramićanin, M.D.; Trajkovic, V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4), 1121-1129.
[143]
Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[144]
Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res., 2013, 46(10), 2211-2224.
[145]
Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9), 7000-7009.
[146]
Du, D.; Wang, K.; Wen, Y.; Li, Y.; Li, Y.Y. Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS Appl. Mater. Interfaces, 2016, 8(5), 3287-3294.
[147]
Wei, Y.; Zhou, F.; Zhang, D.; Chen, Q.; Xing, D. A Graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale, 2016, 8(6), 3530-3538.
[148]
Wang, S.; Zhang, Q.; Luo, X.F.; Li, J.; He, H.; Yang, F.; Di, Y.; Jin, C.; Jiang, X.G.; Shen, S. Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials, 2014, 35(35), 9473-9483.
[149]
Kim, D.G.; Jang, M.J.; Choi, C.Y.; Kim, T.H.; Jang, M.K.; Nah, J.W. Enhance of tumor targeting by receptor-mediated endocytosis using low molecular water-soluble chitosan nanoparticles loaded with anticancer agent. Key Eng. Mater., 2007, 342-343, 469-472.
[150]
Wang, X.; Wang, C.; Cheng, L.; Lee, S.T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc., 2012, 134(17), 7414-7422.
[151]
Shi, J.; Ma, R.; Wang, L.; Zhang, J.; Liu, R.; Li, L.; Liu, Y.; Hou, L.; Yu, X.; Gao, J. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int. J. Nanomedicine, 2013, 8, 2361-2373.
[152]
Zhang, P.; Huang, H.; Huang, J.; Chen, H.; Wang, J.; Qiu, K.; Zhao, D.; Ji, L.; Chao, H. Noncovalent ruthenium (II) complexes-single-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation. ACS Appl. Mater. Interfaces, 2015, 7(41), 23278-23290.
[153]
Lee, D.J.; Park, S.Y.; Oh, Y.T.; Oh, N.M.; Oh, K.T.; Youn, Y.S.; Lee, E.S. Preparation of chlorine e6-conjugated single-wall carbon nanotube for photodynamic therapy. Macromol. Res., 2011, 19(8), 848-852.
[154]
Ogbodu, R.O.; Limson, J.L.; Prinsloo, E.; Nyokong, T. Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synth. Met., 2015, 204, 122-132.
[155]
Banerjee, I.; Douaisi, M.P.; Mondal, D.; Kane, R.S. Light-activated nanotube-porphyrin conjugates as effective antiviral agents. Nanotechnology, 2012, 23(10)105101
[156]
Liao, X.; Zhang, X. Preparation, characterization and cytotoxicity of carbon nanotube-chitosan-phycocyanin complex. Nanotechnology, 2012, 23(3), 35101.
[157]
Zheng, X.; Zhou, F. Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy 2011, 19(2), 275-284.
[158]
Lukyanets, E.A. Phthalocyanines as Photosensitizers in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines, 1999, 03(06), 424-432.
[159]
Anbarasan, R.; Wang, C-H.; Peng, C.A. Rose Bengal Conjugated with Carbon Nanotube for Photodynamic and Hyperthermic Cancer Phototherapy.2009 AIChE Annual Meeting November-11 2009.
[160]
Cheung, W.; Pontoriero, F.; Taratula, O.; Chen, A.M.; He, H. DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev., 2010, 62(6), 633-649.
[161]
An, Y.; Foote, C.S.; Angeles, L. Sequence-specific modification of guanosine in DNA by a C60-linked deoxyoligonucleotide: Evidence for a non-singlet oxygen mechanism. Science, 1996, 52(14), 5179-5189.
[162]
Rancan, F.; Rosan, S.; Boehm, F.; Cantrell, A.; Brellreich, M.; Schoenberger, H.; Hirsch, A.; Moussa, F. Cytotoxicity and photocytotoxicity of a dendritic C60 mono-adduct and a malonic acid C60 tris-adduct on Jurkat cells. J. Photochem. Photobiol. B Biol., 2002, 67(3), 157-162.
[163]
Ji, Z.Q.; Sun, H.; Wang, H.; Xie, Q.; Liu, Y.; Wang, Z. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res., 2006, 8(1), 53-63.
[164]
Iwamoto, Y.; Yamakoshi, Y. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chem. Commun., 2006, 46, 4805-4807.
[165]
Liu, J.; Ohta, S.; Sonoda, A.; Yamada, M.; Yamamoto, M.; Nitta, N.; Murata, K.; Tabata, Y. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Control. Release, 2007, 117(1), 104-110.
[166]
Lu, Z.; Dai, T.; Huang, L.; Kurup, D.B.; Tegos, G.P.; Jahnke, A.; Wharton, T.; Hamblin, M.R. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine, 2010, 5(10), 1525-1533.
[167]
Huang, L.; Wang, M.; Sharma, S.; Sperandio, F.; Maragani, S.; Nayka, S.; Chang, J.; Hamblin, M.; Chiang, L. Decacationic [70]fullerene approach for efficient photokilling of infectious bacteria and cancer cells. ECS Trans., 2013, 45(20), 65-73.
[168]
Manjón, F.; Santana-Magaña, M.; García-Fresnadillo, D.; Orellana, G. Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection? Photochem. Photobiol. Sci., 2014, 13(2), 397-406.
[169]
Aoshima, H.; Kokubo, K.; Shirakawa, S.; Ito, M.; Yamana, S.; Oshima, T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci., 2009, 14(2), 69-72.
[170]
Yu, C.; Avci, P.; Canteenwala, T.; Chiang, L.Y.; Chen, B.J.; Hamblin, M.R. Photodynamic therapy with hexa(sulfo-n-butyl)[60]fullerene against sarcoma in vitro and in vivo. J. Nanosci. Nanotechnol., 2016, 16(1), 171-181.
[171]
Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M.; Imahori, H. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J. Am. Chem. Soc., 2012, 134(43), 17862-17865.
[172]
Bleehen, N.M. Hyperthermia in the treatment of cancer. Br. J. Cancer Suppl., 1982, 5, 96-100.
[173]
Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11600-11605.
[174]
Hu, S.H.; Chen, Y.W.; Hung, W.T.; Chen, I.W.; Chen, S.Y. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater., 2012, 24(13), 1748-1754.
[175]
Burke, A.; Ding, X.; Singh, R.; Kraft, R.A.; Levi-Polyachenko, N.; Rylander, M.N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12897-12902.
[176]
Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R.D.; Cavicchi, R.E.; Avedisian, C.T.; Mitra, S.; Savla, R. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9, 351.
[177]
Burlaka, A.; Lukin, S.; Prylutska, S.; Remeniak, O.; Prylutskyy, Y.; Shuba, M.; Maksimenko, S.; Ritter, U.; Scharff, P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: In vitro studies. Exp. Oncol., 2010, 32(1), 48-50.
[178]
Marches, R.; Chakravarty, P.; Musselman, I.H.; Bajaj, P.; Azad, R.N.; Pantano, P.; Draper, R.K.; Vitetta, E.S. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int. J. Cancer, 2009, 125(12), 2970-2977.
[179]
Loh, K.P.; Bao, Q.L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2010, 2, 1015-1024.
[180]
Vallabani, N.V.S.; Mittal, S.; Shukla, R.K.; Pandey, A.K.; Dhakate, S.R.; Pasricha, R.; Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol., 2011, 7(1), 106-107.
[181]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived Pc12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[182]
Harrison, B.S.; Atala, A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007, 28(2), 344-353.
[183]
Song, M.; Yuan, S.; Yin, J.; Wang, X.; Meng, Z.; Wang, H.; Jiang, G. Size-dependent toxicity of nano-C60 aggregates: More sensitive indication by apoptosis-related Bax translocation in cultured human cells. Environ. Sci. Technol., 2012, 46(6), 3457-3464.
[184]
Chen, M.L.; Liu, J.W.; Hu, B.; Chen, M.L.; Wang, J.H. Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst, 2011, 136(20), 4277-4283.
[185]
Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun., 2011, 47(24), 6858-6860.
[186]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[187]
Wate, P.S.; Banerjee, S.S.; Jalota-Badhwar, A.; Mascarenhas, R.R.; Zope, K.R.; Khandare, J.; Misra, R.D.K. Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology, 2012, 23(41)415101
[188]
Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2011, 3(10), 4085-4091.
[189]
Gollavelli, G.; Ling, Y.C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15), 4499-4507.
[190]
Shi, S.; Yang, K.; Hong, H.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009.
[191]
Yi, H.; Ghosh, D.; Ham, M.H.; Qi, J.; Barone, P.W.; Strano, M.S.; Belcher, A.M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett., 2012, 12(3), 1176-1183.
[192]
Ghosh, D.; Bagley, A.F.; Na, Y.J.; Birrer, M.J.; Bhatia, S.N.; Belcher, A.M. Deep, Noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13948-13953.
[193]
Krüger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.; Aleksenskii, A.E.; Vul’, A.Y.; Osawa, E. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon, 2005, 43(8), 1722-1730.
[194]
Wang, R.; Cui, H.; Wang, J.; Li, N.; Zhao, Q.; Zhou, Y.; Lv, Z.; Zhong, W. Enhancing the antitumor effect of methotrexate in intro and in vivo by a novel targeted single-walled carbon nanohorn-based drug delivery system. RSC Advances, 2016, 6(53), 47272-47280.
[195]
Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 2011, 7(14), 1876-1902.
[196]
Heller, D.A.; Baik, S.; Eurell, T.E.; Strano, M.S. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater., 2005, 17(23), 2793-2799.
[197]
Liu, Z.; Li, X.; Tabakman, S.M.; Jiang, K.; Fan, S.; Dai, H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc., 2008, 130(41), 13540-13541.
[198]
Gao, D.; Yuan, Z. Photoacoustic-based multimodal nanoprobes: From constructing to biological applications. Int. J. Biol. Sci., 2017, 13(4), 401-412.
[199]
Delogu, L.G.; Vidili, G.; Venturelli, E.; Menard-Moyon, C.; Zoroddu, M.A.; Pilo, G.; Nicolussi, P.; Ligios, C.; Bedognetti, D.; Sgarrella, F. Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc. Natl. Acad. Sci. USA, 2012, 109(41), 16612-16617.
[200]
Wu, H.; Shi, H.; Zhang, H.; Wang, X.; Yang, Y.; Yu, C.; Hao, C.; Du, J.; Hu, H.; Yang, S. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35(20), 5369-5380.
[201]
Kim, J.W.; Galanzha, E.I.; Shashkov, E.V.; Moon, H.M.; Zharov, V.P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol., 2009, 4(10), 688-694.
[202]
Ruggiero, A.; Villa, C.H.; Holland, J.P.; Sprinkle, S.R.; May, C.; Lewis, J.S.; Scheinberg, D.A.; McDevitt, M.R. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomedicine, 2010, 5(1), 783-802.
[203]
Cisneros, B.T.; Law, J.J.; Matson, M.L.; Azhdarinia, A.; Sevick-Muraca, E.M.; Wilson, L.J. Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging. Nanomedicine, 2014, 9(16), 2499-2509.
[204]
Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics, 2016, 6(11), 1833-1843.
[205]
Chen, M.L.; He, Y.J.; Chen, X.W.; Wang, J.H. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir, 2012, 28(47), 16469-16476.
[206]
Kam, N.W.S.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[207]
Thrash, T.P.; Cagle, D.W.; Alford, J.M.; Wright, K.; Ehrhardt, G.J.; Mirzadeh, S.; Wilson, L.J. Toward fullerene-based radiopharmaceuticals: High-yield neutron activation of endohedral 165Ho metallofullerenes. Chem. Phys. Lett., 1999, 308(3-4), 329-336.
[208]
Karam, L.R.; Mitch, M.G.; Coursey, B.M. Encapsulation of 99mTc within fullerenes: A novel radionuclidic carrier. Appl. Radiat. Isot., 1997, 48(6), 771-776.
[209]
Vallant, R.M.; Szabo, Z.; Trojer, L.; Najam-Ul-Haq, M.; Rainer, M.; Huck, C.W.; Bakry, R.; Bonn, G.K. A new Analytical Material-enhanced Laser Desorption Ionization (MELDI) based approach for the determination of low-mass serum constituents using fullerene derivatives for selective enrichment. J. Proteome Res., 2007, 6(1), 44-53.
[210]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[211]
Bai, H.; Li, C.; Wang, X.; Shi, G. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun., 2010, 46(14), 2376-2378.
[212]
Zhang, Y.; Zhang, J.; Huang, X.; Zhou, X.; Wu, H.; Guo, S. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small, 2012, 8(1), 154-159.
[213]
Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010, 26(9), 6158-6160.
[214]
Kim, Y.K.; Na, H.K.; Kwack, S.J.; Ryoo, S.R.; Lee, Y.; Hong, S.; Hong, S.; Jeong, Y.; Min, D.H. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano, 2011, 5(6), 4550-4561.
[215]
Feng, L.; Wu, L.; Wang, J.; Ren, J.; Miyoshi, D.; Sugimoto, N.; Qu, X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv. Mater., 2012, 24(1), 125-131.
[216]
Bonanni, A.; Chua, C.K.; Zhao, G.; Sofer, Z.; Pumera, M. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano, 2012, 6(10), 8546-8551.
[217]
Ren, W.; Fang, Y.; Wang, E. A Binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano, 2011, 5(8), 6425-6433.
[218]
Fan, Z.; Kanchanapally, R.; Ray, P.C. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett., 2013, 4(21), 3813-3818.
[219]
Zafar, M.N.; Safina, G.; Ludwig, R.; Gorton, L. Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Anal. Biochem., 2012, 425(1), 36-42.
[220]
Wang, C.Y.; Tan, X.R.; Chen, S.H.; Hu, F.X.; Zhong, H.A.; Zhang, Y. The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites. Appl. Biochem. Biotechnol., 2012, 166(4), 889-902.
[221]
Sajjadi, S.; Keihan, A.H.; Norouzi, P.; Mahdi Habibi, M.; Eskandari, K.; Hadizadeh Shirazi, N. Fabrication of an amperometric glucose biosensor based on a prussian blue/carbon nanotube/ionic liquid modified glassy carbon electrode. J. Appl. Biotech. Rep., 2017, 4(2), 603-608.
[222]
Zargoosh, K.; Chaichi, M.J.; Shamsipur, M.; Hossienkhani, S.; Asghari, S.; Qandalee, M. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase /carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta, 2012, 93, 37-43.
[223]
Hoshino, T.; Sekiguchi, S.I.; Muguruma, H. Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry, 2012, 84, 1-5.
[224]
Lu, L.M.; Zhang, X.B.; Shen, G.L.; Yu, R.Q. Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Anal. Chim. Acta, 2012, 715, 99-104.
[225]
Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors, 2016, 16(6), 780.
[226]
Niu, H.; Yuan, R.; Chai, Y.; Mao, L.; Liu, H.; Cao, Y. Highly Amplified electrochemiluminescence of peroxydisulfate using bienzyme functionalized palladium nanoparticles as labels for ultrasensitive immunoassay. Biosens. Bioelectron., 2013, 39(1), 296-299.
[227]
Wang, B.; Anzai, J.I. Recent progress in lectin-based biosensors. Materials (Basel), 2015, 8(12), 8590-8607.
[228]
Yu, G.; Wu, W.; Pan, X.; Zhao, Q.; Wei, X.; Lu, Q. High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets. Sensors, 2015, 15(2), 2709-2722.
[229]
Lin, L.H.; Shih, J.S. Immobilized fullerene C60-enzyme-based electrochemical glucose sensor. J. Chin. Chem. Soc., 2011, 58(2), 228-235.
[230]
Shiraishi, H.; Itoh, T.; Hayashi, H.; Takagi, K.; Sakane, M.; Mori, T.; Wang, J. Electrochemical detection of E. coli 16S rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry, 2007, 70(2), 481-487.
[231]
Han, J.; Zhuo, Y.; Chai, Y.; Yuan, R.; Xiang, Y.; Zhu, Q.; Liao, N. Multi-labeled functionalized C60 nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing. Biosens. Bioelectron., 2013, 46, 74-79.
[232]
Gholivand, M.B.; Jalalvand, A.R.; Goicoechea, H.C. Multivariate analysis for resolving interactions of carbidopa with dsDNA at a fullerene-C60/GCE. Int. J. Biol. Macromol., 2014, 69, 369-381.
[233]
Chuang, C.W.; Shih, J.S. Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor. Sens. Actuators B Chem., 2001, 81(1), 1-8.
[234]
Zhang, X.; Qu, Y.; Piao, G.; Zhao, J.; Jiao, K. Reduced working electrode based on fullerene C60 nanotubes@DNA: Characterization and application. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2010, 175(2), 159-163.
[235]
Sheng, Q.; Liu, R.; Zheng, J. Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing. Bioelectrochemistry, 2013, 94, 39-46.
[236]
Bae, J.G.; Park, M.; Kim, D.H.; Lee, E.Y.; Kim, W.S.; Seo, T.S. Tunable three-dimensional graphene assembly architectures through controlled diffusion of aqueous solution from a micro-droplet. NPG Asia Mater., 2016, 8(11)e329
[237]
Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T.W.; Mioskowski, C. Helical Crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed., 1999, 38(13-14), 1912-1915.
[238]
Pilehvar, S.; De Wael, K. Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms. Biosensors, 2015, 5(4), 712-735.
[239]
Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol. Vitr., 2017, 42, 292-298.
[240]
Zhang, T.; Tang, M.; Kong, L.; Li, H.; Zhang, T.; Xue, Y.; Pu, Y. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. J. Hazard. Mater., 2015, 284, 73-82.
[241]
Allegri, M.; Perivoliotis, D.K.; Bianchi, M.G.; Chiu, M.; Pagliaro, A.; Koklioti, M.A.; Trompeta, A.F.A.; Bergamaschi, E.; Bussolati, O.; Charitidis, C.A. Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration. Toxicol. Rep., 2016, 3, 230-243.
[242]
Bobylev, A.G.; Okuneva, A.D.; Bobyleva, L.G.; Fadeeva, I.S.; Fadeev, R.S.; Salmov, N.N.; Podlubnaya, Z.A. Study of cytotoxicity of fullerene C60 derivatives. Biophysics (Oxf.), 2012, 57(5), 572-576.
[243]
Mittal, S.; Kumar, V.; Dhiman, N.; Chauhan, L.K.S.; Pasricha, R.; Pandey, A.K. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep., 2016, 6, 39548.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy