[1]
Yadav, K.K.; Singh, J.K.; Gupta, N.; Kumar, V. A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. J. Mater. Environ. Sci., 2017, 8(2), 740-757.
[2]
Weiss, P.S. Dr. Heinrich Rohrer (1933-2013), Founding father of nanotechnology. ACS Nano, 2013, 7(6), 4693.
[3]
Bakker, R.M.; Yuan, H.K.; Liu, Z.; Drachev, V.P.; Kildishev, A.V.; Shalaev, V.M.; Pedersen, R.H.; Gresillon, S.; Boltasseva, A. Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett., 2008, 92(4), 18-23.
[4]
Geetha Bai, R.; Ninan, N.; Muthoosamy, K.; Manickam, S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Prog. Mater. Sci., 2018, 91, 24-69.
[5]
Lince, F.; Bolognesi, S.; Stella, B.; Marchisio, D.L. Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery. Chem. Eng. Res. Des., 2011, 89(11), 2410-2419.
[6]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2015, 6(2), 257-262.
[7]
Kumar, K.Y.; Muralidhara, H.B.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol., 2013, 246, 125-136.
[8]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179.
[9]
Bimberg, D.; Pohl, U.W. Quantum Dots: Promises and accomplishments. Mater. Today, 2011, 14(9), 388-397.
[10]
Ginsberg, J. The Discovery of fullerenes. Am. Chem. Soc., 2010, 1-4.
[11]
Sarkar, J.; Khan, G.G.; Basumallick, A. Nanowires: Properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci., 2007, 30(3), 271-290.
[12]
Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res., 2002, 35(12), 1035-1044.
[13]
Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2017, 217, 36-48.
[14]
Stoller, M.D.; Park, S.; Yanwu, Z.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[15]
Botas, C.; Álvarez, P.; Blanco, P.; Granda, M.; Blanco, C.; Santamaría, R.; Romasanta, L.J.; Verdejo, R.; López-Manchado, M.A.; Menéndez, R. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon N.Y., 2013, 65, 156-164.
[16]
Jimenez-Solomon, M.F.; Song, Q.; Jelfs, K.E.; Munoz-Ibanez, M.; Livingston, A.G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater., 2016, 15(7), 760-767.
[17]
Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem., 1994, 66(9), 1893-1901.
[18]
Reich, E.S. Nobel prize committee under fire. Nature, 2010, 50005, 1-10.
[19]
Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science, 2007, 315(5811), 490-493.
[20]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed., 2009, 48(42), 7752-7777.
[21]
Feng, L.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine, 2011, 6(2), 317-324.
[22]
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217-224.
[23]
Lim, C.H.Y.X.; Nesladek, M.; Loh, K.P. Observing high-pressure chemistry in graphene bubbles. Angew. Chem. Int. Ed., 2014, 53(1), 215-219.
[24]
Chung, D.D.L. Review: Graphite. J. Mater. Sci., 2002, 37(8), 1475-1489.
[25]
Lipson, H.; Stokes, A.R. A new structure of carbon. Nature, 1942, 149(3777), 328-328.
[26]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[27]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[28]
Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano, 2012, 6(4), 2904-2916.
[29]
Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett., 2008, 8(12), 4469-4476.
[30]
Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; De La Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng. C, 2017, 74, 568-581.
[31]
Whitehead, K.A.; Vaidya, M.; Liauw, C.M.; Brownson, D.A.C.; Ramalingam, P.; Kamieniak, J.; Rowley-Neale, S.J.; Tetlow, L.A.; Wilson-Nieuwenhuis, J.S.T.; Brown, D. Antimicrobial activity of graphene oxide-metal hybrids. Int. Biodeterior. Biodegradation, 2017, 123, 182-190.
[32]
Akhavan, O.; Choobtashani, M.; Ghaderi, E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J. Phys. Chem. C, 2012, 116(17), 9653-9659.
[33]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[34]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[35]
Heo, C.; Yoo, J.; Lee, S.; Jo, A.; Jung, S.; Yoo, H.; Lee, Y.H.; Suh, M. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials, 2011, 32(1), 19-27.
[36]
Agarwal, S.; Zhou, X.; Ye, F.; He, Q.; Chen, G.C.K.; Soo, J.; Boey, F.; Zhang, H.; Chen, P. Interfacing live cells with nanocarbon substrates. Langmuir, 2010, 26(4), 2244-2247.
[37]
Lee, C-S.; Yu, S.; Kim, T. One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid. Nanomaterials, 2017, 8(1), 17.
[38]
Giuliodori, A.M.; Brandi, A.; Kotla, S.; Perrozzi, F.; Gunnella, R.; Ottaviano, L.; Spurio, R.; Fabbretti, A. Development of a graphene oxide-based assay for the sequence-specific detection of double-stranded DNA molecules. PLoS One, 2017, 12(8)e0183952
[39]
Esum, K. Chemical treatment of carbon nanotubes. Carbon N.Y., 2003, 34(2), 1-3.
[40]
Yu, R.; Chen, L.; Liu, Q.; Lin, J.; Tan, K.L.; Ng, S.C.; Chan, H.S.O.; Xu, G.Q.; Hor, T.S.A. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater., 1998, 10(3), 718-722.
[41]
Sham, M.L.; Kim, J.K. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatment. Carbon, 2006, 44(4), 768-777.
[42]
Wang, S.C.; Chang, K.S.; Yuan, C.J. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim. Acta, 2009, 54(21), 4937-4943.
[43]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int., 2013, 578290, 1-12.
[44]
Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity. J. Med. Chem., 2016, 59(18), 8149-8167.
[45]
Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7), 2206-2214.
[46]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater., 2012, 24(14), 1868-1872.
[47]
Iijima, S. Helical Microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[48]
Smalley, R.E. Self-assembly of the fullerenes. Acc. Chem. Res., 1992, 25(3), 98-105.
[49]
Lieber, C.M.; Chen, C.C. Preparation of fullerenes and fullerene-based materials. Solid State Phys., 1994, 48, 109-148.
[50]
Lin, T.; Zhang, W.De; Huang, J.; He, C. A DFT study of the amination of fullerenes and carbon nanotubes: Reactivity and curvature. J. Phys. Chem. B, 2005, 109(28), 13755-13760.
[51]
Friedman, S.H.; DeCamp, D.L.; Sijbesma, R.P.; Srdanov, G.; Wudl, F.; Kenyon, G.L. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc., 1993, 115(15), 6506-6509.
[52]
Brettreich, M.; Hirsch, A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett., 1998, 39(18), 2731-2734.
[53]
Lyon, D.Y.; Adams, L.K.; Falkner, J.C.; Alvarez, P.J.J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol., 2006, 40(14), 4360-4366.
[54]
Krusic, P.J.; Wasserman, E.; Keizer, P.N.; Morton, J.R.; Preston, K.F. Radical reactions of C60. Science, 1991, 254(5035), 1183-1185.
[55]
Prylutska, S.; Grynyuk, I.; Matyshevska, O.; Prylutskyy, Y.; Evstigneev, M.; Scharff, P.; Ritter, U.
C.60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R D., 2014, 14(4), 333-340.
[56]
Prylutska, S.; Panchuk, R.; Gołuński, G.; Skivka, L.; Prylutskyy, Y.; Hurmach, V.; Skorohyd, N.; Borowik, A.; Woziwodzka, A.; Piosik, J.
C.60 Fullerene enhances cisplatin anticancer activity and overcomes tumor cell drug resistance. Nano Res., 2017, 10(2), 652-671.
[57]
Dellinger, A.; Zhou, Z.; Connor, J.; Madhankumar, A.; Pamujula, S.; Sayes, C.M.; Kepley, C.L. Application of fullerenes in nanomedicine: An update. Nanomedicine, 2013, 8(7), 1191-1208.
[58]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[59]
Sano, M.; Okamura, J. Colloidal nature of single-walled carbon nanotubes in electrolyte solution: The Schulze-Hardy rule. Langmuir, 2001, 17(12), 7172-7173.
[60]
Kim, K.S.; Bourlinos, A.B.; Otyepka, M.; Kim, N.; Hobza, P.; Zboril, R.; Georgakilas, V.; Kemp, K.C.; Chandra, V. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev., 2012, 112(11), 6156-6214.
[61]
Matyjaszewski, K.; Miller, P.J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B.B.; Siclovan, T.M.; Kickelbick, G.; Valiant, T.; Hoffmann, H. Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 1999, 32(26), 8716-8724.
[62]
Yan, T.; Zhang, H.; Huang, D.; Feng, S.; Fujita, M.; Gao, X-D. Chitosan-functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials, 2017, 7(3) pii: E59
[63]
Pan, Y.; Bao, H.; Sahoo, N.G.; Wu, T.; Li, L. Water-soluble poly(n-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater., 2011, 21(14), 2754-2763.
[64]
Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir, 2009, 25(20), 12030-12033.
[65]
Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60(15), 1650-1662.
[66]
Veca, L.M.; Lu, F.; Meziani, M.J.; Cao, L.; Zhang, P.; Qi, G.; Qu, L.; Shrestha, M.; Sun, Y-P. Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun., 2009, 18, 2565.
[67]
Vacchi, I.A.; Spinato, C.; Raya, J.; Bianco, A.; Ménard-Moyon, C. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale, 2016, 8(28), 13714-13721.
[68]
Jia, Z.; Wang, Y.; Shi, W.; Wang, J. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation. J. Membr. Sci., 2016, 520, 139-144.
[69]
Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; García, H. Isotropic and oriented copper nanoparticles supported on graphene as aniline guanylation catalysts. ACS Catal., 2016, 6(6), 3863-3869.
[70]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[71]
Niu, L.; Meng, L.; Lu, Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol. Biosci., 2013, 13(6), 735-744.
[72]
Cheng, J.; Meziani, M.J.; Sun, Y.P.; Cheng, S.H. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicol. Appl. Pharmacol., 2011, 250(2), 184-193.
[73]
Maeda, H. The Enhanced Permeability and Retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[74]
Das, M.; Datir, S.R.; Singh, R.P.; Jain, S. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol. Pharm., 2013, 10(7), 2543-2557.
[75]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[76]
Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J-P.; Muller, S. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2, 108.
[77]
Zheng, M.; Jagota, A.; Semke, E.; Diner, B. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater., 2003, 2(5), 338-342.
[78]
Mehra, N.K.; Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283.
[79]
Lu, Y.J.; Wei, K.C.; Ma, C.C.M.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces, 2012, 89(1), 1-9.
[80]
Mukherjee, B. Nanosize drug delivery system. Curr. Pharm. Biotechnol., 2014, 14(15), 1221-1221.
[81]
Pooja, D.; Kulhari, H.; Kuncha, M.; Rachamalla, S.S.; Adams, D.J.; Bansal, V.; Sistla, R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm., 2016, 13(11), 3903-3912.
[82]
Kulhari, H.; Pooja, D.; Singh, M.K.; Kuncha, M.; Adams, D.J.; Sistla, R. Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine, 2015, 10(18), 2847-2859.
[83]
Zhao, X.; Liu, P. Biocompatible graphene oxide as a folate receptor-targeting drug delivery system for the controlled release of anti-cancer drugs. RSC Advances, 2014, 4(46), 24232-24239.
[84]
Yang, Z.R.; Wang, H.F.; Zhao, J.; Peng, Y.Y.; Wang, J.; Guinn, B.A.; Huang, L.Q. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther., 2007, 14(7), 599-615.
[85]
Naldini, L.; Blomer, U.; Gallay, P.; Ory, D.; Mulligan, R.; Gage, F.H.; Verma, I.M.; Trono, D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996, 272(5259), 263-267.
[86]
Ramamoorth, M.; Narvekar, A. Nonviral vectors in gene therapy- An overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[87]
Kulhari, H.; Pooja, D.; Rompicharla, S.V.K.; Sistla, R.; Adams, D.J. Biomedical applications of trastuzumab: As a therapeutic agent and a targeting ligand. Med. Res. Rev., 2015, 35(4), 849-876.
[88]
Lee, H.J.; Park, J.; Yoon, O.J.; Kim, H.W.; Lee, D.Y.; Kim, D.H.; Lee, W.B.; Lee, N.E.; Bonventre, J.V.; Kim, S.S. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol., 2011, 6, 121-125.
[89]
Martinelli, V.; Cellot, G.; Toma, F.M.; Long, C.S.; Caldwell, J.H.; Zentilin, L.; Giacca, M.; Turco, A.; Prato, M.; Ballerini, L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett., 2012, 12(4), 1831-1838.
[90]
Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60.
[91]
Yamakoshi, Y.N.; Yagami, T.; Fukuhara, K.; Sueyoshi, S.; Miyata, N. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J. Chem. Soc. Chem. Commun., 1994, 4, 517-518.
[92]
Bensasson, R.V.; Bienvenue, E.; Dellinger, M.; Leach, S.; Seta, P.C. 60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation. J. Phys. Chem., 1994, 98(13), 3492-3500.
[93]
Singh, S. Nanomaterials as non-viral siRNA delivery agents for cancer therapy. Bioimpacts, 2013, 3(2), 53-65.
[94]
Sitharaman, B.; Shi, X.; Walboomers, X.F.; Liao, H.; Cuijpers, V.; Wilson, L.J.; Mikos, A.G.; Jansen, J.A. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone, 2008, 43(2), 362-370.
[95]
Nayak, T.R.; Jian, L.; Phua, L.C.; Ho, H.K.; Ren, Y.; Pastorin, G. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano, 2010, 4(12), 7717-7725.
[96]
Meng, L.; Zhang, X.; Lu, Q.; Fei, Z.; Dyson, P.J. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials, 2012, 33(6), 1689-1698.
[97]
Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004, 43(39), 5242-5246.
[98]
Prato, M. [60]Fullerene chemistry for materials science applications. J. Mater. Chem., 1997, 7(7), 1097-1109.
[99]
Youle, R.J.; Karbowski, M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol., 2005, 6(8), 657-663.
[101]
Tan, L.; Wu, T.; Tang, Z.W.; Xiao, J.Y.; Zhuo, R.X.; Shi, B.; Liu, C.J. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology, 2016, 27(31)315104
[102]
Liu, W.; Wei, J.; Chen, Y.; Huo, P.; Wei, Y. Electrospinning of poly(l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces, 2013, 5(3), 680-685.
[103]
Wen, J.; Xu, Y.; Li, H.; Lu, A.; Sun, S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun., 2015, 51(57), 11346-11358.
[104]
Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E. Nonviral gene delivery by tetraamino fullerene. Mol. Pharm., 2006, 3(2), 124-134.
[105]
Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc., 2013, 8(12), 2392-2403.
[106]
Li, Q.; Ruan, H.; Li, H. Nanocarbon materials for photodynamic therapy and photothermal therapy. Pharm. Nanotechnol., 2014, 2(2), 58-64.
[107]
Huang, P.; Wang, S.; Wang, X.; Shen, G.; Lin, J.; Wang, Z.; Guo, S.; Cui, D.; Yang, M.; Chen, X. Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J. Biomed. Nanotechnol., 2015, 11(1), 117-125.
[108]
Rana, V.K.; Choi, M.C.; Kong, J.Y.; Kim, G.Y.; Kim, M.J.; Kim, S.H.; Mishra, S.; Singh, R.P.; Ha, C.S. Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng., 2011, 296(2), 131-140.
[109]
Case, B.L.; Liu, Y.S.; Bergbreiter, D.E. “Smart” soluble polymer supports for catalysis and synthesis. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., 1998, 39(1), 298-299.
[110]
Feng, L.; Zhang, S.; Liu, Z. Graphene based gene transfection. Nanoscale, 2011, 3(3), 1252-1257.
[111]
Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7(4), 460-464.
[112]
Yin, D.; Li, Y.; Lin, H.; Guo, B.; Du, Y.; Li, X.; Jia, H.; Zhao, X.; Tang, J.; Zhang, L. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology, 2013, 24(10)105102
[113]
Villa, C.H.; Dao, T.; Ahearn, I.; Fehrenbacher, N.; Casey, E.; Rey, D.A.; Korontsvit, T.; Zakhaleva, V.; Batt, C.A.; Philips, M.R. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 2011, 5(7), 5300-5311.
[114]
Khazaei, A.; Rad, M.N.S.; Borazjani, M.K. Organic functionalization of single-walled carbon nanotubes (SWCNTs) with some chemotherapeutic agents as a potential method for drug delivery. Int. J. Nanomedicine, 2010, 5(1), 639-645.
[115]
Cheng, Q.; Blais, M.O.; Harris, G.; Jabbarzadeh, E. PLGA-carbon nanotube conjugates for intercellular delivery of caspase-3 into osteosarcoma cells. PLoS One, 2013, 8(12)e81947
[116]
Qin, W.; Yang, K.; Tang, H.; Tan, L.; Xie, W.; Ma, M.; Zhang, Y.; Yao, S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces, 2011, 84(1), 206-213.
[117]
Huang, Y.P.; Lin, I.J.; Chen, C.C.; Hsu, Y.C.; Chang, C.C.; Lee, M.J. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Res. Lett., 2013, 8(1), 267.
[118]
Khang, D.; Kim, S.Y.; Liu-Snyder, P.; Palmore, G.T.R.; Durbin, S.M.; Webster, T.J. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials, 2007, 28(32), 4756-4768.
[119]
Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L.; Mahmoudi, M. Nanoparticles and protein corona. Protein-Nanoparticle Interact., 2013, 15(1), 21-45.
[120]
Dutta, D. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci., 2007, 100(1), 303-315.
[121]
Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed., 2007, 46(12), 2023-2027.
[122]
Kam, N.W.S.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 2005, 127(36), 12492-12493.
[123]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[124]
Yun, Y.S.; Bak, H.; Cho, S.Y.; Jin, H.J. Adsorption behavior of carbon nanotubes on polystyrene surfaces. J. Nanosci. Nanotechnol., 2011, 11(2), 1668-1671.
[125]
Yinghuai, Z.; Peng, A.T.; Carpenter, K.; Maguire, J.A.; Hosmane, N.S.; Takagaki, M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc., 2005, 127(27), 9875-9880.
[126]
Ladeira, M.S.; Andrade, V.A.; Gomes, E.R.M.; Aguiar, C.J.; Moraes, E.R.; Soares, J.S.; Silva, E.E.; Lacerda, G.R.; Ladeira, L.O.; Jorio, A.; Lima, P.; Leite, M.; Resende, R.R.; Guatimosim, S. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology, 2010, 21(38), 2976-2980.
[127]
Al-Jamal, K.T.; Nerl, H.; Müller, K.H.; Ali-Boucetta, H.; Li, S.; Haynes, P.D.; Jinschek, J.R.; Prato, M.; Bianco, A.; Kostarelos, K. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3(6), 2627.
[128]
Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E. Gene delivery by aminofullerenes: Structural requirements for efficient transfection. Chem. Asian J., 2006, 1(1-2), 167-175.
[129]
Rouse, J.G.; Yang, J.; Ryman-Rasmussen, J.P.; Barron, A.R.; Monteiro-Riviere, N.A. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett., 2007, 7(1), 155-160.
[130]
Goyal, R.N.; Gupta, V.K.; Bachheti, N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone-An anabolic steroid used in doping. Anal. Chim. Acta, 2007, 597(1), 82-89.
[131]
Zakharian, T.Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B.E.; Knight, V.; Wilson, L.J. A fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc., 2005, 127(36), 12508-12509.
[132]
Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H.; Meziani, M.J.; Haque, S.A.; Liu, Y.; Lacher, S. Fullerene-conjugated doxorubicin in cells. ACS Appl. Mater. Interfaces, 2010, 2(5), 1384-1389.
[133]
Maeda-Mamiya, R.; Noiri, E.; Isobe, H.; Nakanishi, W.; Okamoto, K.; Doi, K.; Sugaya, T.; Izumi, T.; Homma, T.; Nakamura, E. In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci., 2010, 107(12), 5339-5344.
[134]
Nakamura, E.; Isobe, H. In vitro and in vivo gene delivery with tailor-designed aminofullerenes. Chem. Rec., 2010, 10(5), 260-270.
[135]
Sigwalt, D.; Holler, M.; Iehl, J.; Nierengarten, J-F.; Nothisen, M.; Morin, E.; Remy, J.S. Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun., 2011, 47(16), 4640-4642.
[136]
Shibu, E.S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C Photochem. Rev., 2013, 15, 53-72.
[137]
Gannon, C.J.; Cherukuri, P.; Yakobson, B.I.; Cognet, L.; Kanzius, J.S.; Kittrell, C.; Weisman, R.B.; Pasquali, M.; Schmidt, H.K.; Smalley, R.E. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12), 2654-2665.
[138]
Torti, S.V.; Byrne, F.; Whelan, O.; Levi, N.; Ucer, B.; Schmid, M.; Torti, F.M.; Akman, S.; Liu, J.; Ajayan, P.M. Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int. J. Nanomedicine, 2007, 2(4), 707-714.
[139]
Sreejith, S.; Ma, X.; Zhao, Y. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J. Am. Chem. Soc., 2012, 134(42), 17346-17349.
[140]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[141]
Hu, Z.; Huang, Y.; Sun, S.; Guan, W.; Yao, Y.; Tang, P.; Li, C. Visible light driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid. Carbon, 2012, 50(3), 994-1004.
[142]
Markovic, Z.M.; Harhaji-Trajkovic, L.M.; Todorovic-Markovic, B.M.; Kepić, D.P.; Arsikin, K.M.; Jovanović, S.P.; Pantovic, A.C.; Dramićanin, M.D.; Trajkovic, V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4), 1121-1129.
[143]
Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[144]
Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res., 2013, 46(10), 2211-2224.
[145]
Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9), 7000-7009.
[146]
Du, D.; Wang, K.; Wen, Y.; Li, Y.; Li, Y.Y. Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS Appl. Mater. Interfaces, 2016, 8(5), 3287-3294.
[147]
Wei, Y.; Zhou, F.; Zhang, D.; Chen, Q.; Xing, D. A Graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale, 2016, 8(6), 3530-3538.
[148]
Wang, S.; Zhang, Q.; Luo, X.F.; Li, J.; He, H.; Yang, F.; Di, Y.; Jin, C.; Jiang, X.G.; Shen, S. Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials, 2014, 35(35), 9473-9483.
[149]
Kim, D.G.; Jang, M.J.; Choi, C.Y.; Kim, T.H.; Jang, M.K.; Nah, J.W. Enhance of tumor targeting by receptor-mediated endocytosis using low molecular water-soluble chitosan nanoparticles loaded with anticancer agent. Key Eng. Mater., 2007, 342-343, 469-472.
[150]
Wang, X.; Wang, C.; Cheng, L.; Lee, S.T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc., 2012, 134(17), 7414-7422.
[151]
Shi, J.; Ma, R.; Wang, L.; Zhang, J.; Liu, R.; Li, L.; Liu, Y.; Hou, L.; Yu, X.; Gao, J. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int. J. Nanomedicine, 2013, 8, 2361-2373.
[152]
Zhang, P.; Huang, H.; Huang, J.; Chen, H.; Wang, J.; Qiu, K.; Zhao, D.; Ji, L.; Chao, H. Noncovalent ruthenium (II) complexes-single-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation. ACS Appl. Mater. Interfaces, 2015, 7(41), 23278-23290.
[153]
Lee, D.J.; Park, S.Y.; Oh, Y.T.; Oh, N.M.; Oh, K.T.; Youn, Y.S.; Lee, E.S. Preparation of chlorine e6-conjugated single-wall carbon nanotube for photodynamic therapy. Macromol. Res., 2011, 19(8), 848-852.
[154]
Ogbodu, R.O.; Limson, J.L.; Prinsloo, E.; Nyokong, T. Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synth. Met., 2015, 204, 122-132.
[155]
Banerjee, I.; Douaisi, M.P.; Mondal, D.; Kane, R.S. Light-activated nanotube-porphyrin conjugates as effective antiviral agents. Nanotechnology, 2012, 23(10)105101
[156]
Liao, X.; Zhang, X. Preparation, characterization and cytotoxicity of carbon nanotube-chitosan-phycocyanin complex. Nanotechnology, 2012, 23(3), 35101.
[157]
Zheng, X.; Zhou, F. Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy 2011, 19(2), 275-284.
[158]
Lukyanets, E.A. Phthalocyanines as Photosensitizers in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines, 1999, 03(06), 424-432.
[159]
Anbarasan, R.; Wang, C-H.; Peng, C.A. Rose Bengal Conjugated with Carbon Nanotube for Photodynamic and Hyperthermic Cancer Phototherapy.2009 AIChE Annual Meeting November-11 2009.
[160]
Cheung, W.; Pontoriero, F.; Taratula, O.; Chen, A.M.; He, H. DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev., 2010, 62(6), 633-649.
[161]
An, Y.; Foote, C.S.; Angeles, L. Sequence-specific modification of guanosine in DNA by a C60-linked deoxyoligonucleotide: Evidence for a non-singlet oxygen mechanism. Science, 1996, 52(14), 5179-5189.
[162]
Rancan, F.; Rosan, S.; Boehm, F.; Cantrell, A.; Brellreich, M.; Schoenberger, H.; Hirsch, A.; Moussa, F. Cytotoxicity and photocytotoxicity of a dendritic C60 mono-adduct and a malonic acid C60 tris-adduct on Jurkat cells. J. Photochem. Photobiol. B Biol., 2002, 67(3), 157-162.
[163]
Ji, Z.Q.; Sun, H.; Wang, H.; Xie, Q.; Liu, Y.; Wang, Z. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res., 2006, 8(1), 53-63.
[164]
Iwamoto, Y.; Yamakoshi, Y. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chem. Commun., 2006, 46, 4805-4807.
[165]
Liu, J.; Ohta, S.; Sonoda, A.; Yamada, M.; Yamamoto, M.; Nitta, N.; Murata, K.; Tabata, Y. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Control. Release, 2007, 117(1), 104-110.
[166]
Lu, Z.; Dai, T.; Huang, L.; Kurup, D.B.; Tegos, G.P.; Jahnke, A.; Wharton, T.; Hamblin, M.R. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine, 2010, 5(10), 1525-1533.
[167]
Huang, L.; Wang, M.; Sharma, S.; Sperandio, F.; Maragani, S.; Nayka, S.; Chang, J.; Hamblin, M.; Chiang, L. Decacationic [70]fullerene approach for efficient photokilling of infectious bacteria and cancer cells. ECS Trans., 2013, 45(20), 65-73.
[168]
Manjón, F.; Santana-Magaña, M.; García-Fresnadillo, D.; Orellana, G. Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection? Photochem. Photobiol. Sci., 2014, 13(2), 397-406.
[169]
Aoshima, H.; Kokubo, K.; Shirakawa, S.; Ito, M.; Yamana, S.; Oshima, T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci., 2009, 14(2), 69-72.
[170]
Yu, C.; Avci, P.; Canteenwala, T.; Chiang, L.Y.; Chen, B.J.; Hamblin, M.R. Photodynamic therapy with hexa(sulfo-n-butyl)[60]fullerene against sarcoma in vitro and in vivo. J. Nanosci. Nanotechnol., 2016, 16(1), 171-181.
[171]
Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M.; Imahori, H. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J. Am. Chem. Soc., 2012, 134(43), 17862-17865.
[172]
Bleehen, N.M. Hyperthermia in the treatment of cancer. Br. J. Cancer Suppl., 1982, 5, 96-100.
[173]
Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11600-11605.
[174]
Hu, S.H.; Chen, Y.W.; Hung, W.T.; Chen, I.W.; Chen, S.Y. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater., 2012, 24(13), 1748-1754.
[175]
Burke, A.; Ding, X.; Singh, R.; Kraft, R.A.; Levi-Polyachenko, N.; Rylander, M.N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12897-12902.
[176]
Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R.D.; Cavicchi, R.E.; Avedisian, C.T.; Mitra, S.; Savla, R. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9, 351.
[177]
Burlaka, A.; Lukin, S.; Prylutska, S.; Remeniak, O.; Prylutskyy, Y.; Shuba, M.; Maksimenko, S.; Ritter, U.; Scharff, P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: In vitro studies. Exp. Oncol., 2010, 32(1), 48-50.
[178]
Marches, R.; Chakravarty, P.; Musselman, I.H.; Bajaj, P.; Azad, R.N.; Pantano, P.; Draper, R.K.; Vitetta, E.S. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int. J. Cancer, 2009, 125(12), 2970-2977.
[179]
Loh, K.P.; Bao, Q.L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2010, 2, 1015-1024.
[180]
Vallabani, N.V.S.; Mittal, S.; Shukla, R.K.; Pandey, A.K.; Dhakate, S.R.; Pasricha, R.; Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol., 2011, 7(1), 106-107.
[181]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived Pc12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[182]
Harrison, B.S.; Atala, A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007, 28(2), 344-353.
[183]
Song, M.; Yuan, S.; Yin, J.; Wang, X.; Meng, Z.; Wang, H.; Jiang, G. Size-dependent toxicity of nano-C60 aggregates: More sensitive indication by apoptosis-related Bax translocation in cultured human cells. Environ. Sci. Technol., 2012, 46(6), 3457-3464.
[184]
Chen, M.L.; Liu, J.W.; Hu, B.; Chen, M.L.; Wang, J.H. Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst, 2011, 136(20), 4277-4283.
[185]
Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun., 2011, 47(24), 6858-6860.
[186]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[187]
Wate, P.S.; Banerjee, S.S.; Jalota-Badhwar, A.; Mascarenhas, R.R.; Zope, K.R.; Khandare, J.; Misra, R.D.K. Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology, 2012, 23(41)415101
[188]
Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2011, 3(10), 4085-4091.
[189]
Gollavelli, G.; Ling, Y.C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15), 4499-4507.
[190]
Shi, S.; Yang, K.; Hong, H.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009.
[191]
Yi, H.; Ghosh, D.; Ham, M.H.; Qi, J.; Barone, P.W.; Strano, M.S.; Belcher, A.M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett., 2012, 12(3), 1176-1183.
[192]
Ghosh, D.; Bagley, A.F.; Na, Y.J.; Birrer, M.J.; Bhatia, S.N.; Belcher, A.M. Deep, Noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13948-13953.
[193]
Krüger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.; Aleksenskii, A.E.; Vul’, A.Y.; Osawa, E. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon, 2005, 43(8), 1722-1730.
[194]
Wang, R.; Cui, H.; Wang, J.; Li, N.; Zhao, Q.; Zhou, Y.; Lv, Z.; Zhong, W. Enhancing the antitumor effect of methotrexate in intro and in vivo by a novel targeted single-walled carbon nanohorn-based drug delivery system. RSC Advances, 2016, 6(53), 47272-47280.
[195]
Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 2011, 7(14), 1876-1902.
[196]
Heller, D.A.; Baik, S.; Eurell, T.E.; Strano, M.S. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater., 2005, 17(23), 2793-2799.
[197]
Liu, Z.; Li, X.; Tabakman, S.M.; Jiang, K.; Fan, S.; Dai, H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc., 2008, 130(41), 13540-13541.
[198]
Gao, D.; Yuan, Z. Photoacoustic-based multimodal nanoprobes: From constructing to biological applications. Int. J. Biol. Sci., 2017, 13(4), 401-412.
[199]
Delogu, L.G.; Vidili, G.; Venturelli, E.; Menard-Moyon, C.; Zoroddu, M.A.; Pilo, G.; Nicolussi, P.; Ligios, C.; Bedognetti, D.; Sgarrella, F. Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc. Natl. Acad. Sci. USA, 2012, 109(41), 16612-16617.
[200]
Wu, H.; Shi, H.; Zhang, H.; Wang, X.; Yang, Y.; Yu, C.; Hao, C.; Du, J.; Hu, H.; Yang, S. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35(20), 5369-5380.
[201]
Kim, J.W.; Galanzha, E.I.; Shashkov, E.V.; Moon, H.M.; Zharov, V.P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol., 2009, 4(10), 688-694.
[202]
Ruggiero, A.; Villa, C.H.; Holland, J.P.; Sprinkle, S.R.; May, C.; Lewis, J.S.; Scheinberg, D.A.; McDevitt, M.R. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomedicine, 2010, 5(1), 783-802.
[203]
Cisneros, B.T.; Law, J.J.; Matson, M.L.; Azhdarinia, A.; Sevick-Muraca, E.M.; Wilson, L.J. Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging. Nanomedicine, 2014, 9(16), 2499-2509.
[204]
Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics, 2016, 6(11), 1833-1843.
[205]
Chen, M.L.; He, Y.J.; Chen, X.W.; Wang, J.H. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir, 2012, 28(47), 16469-16476.
[206]
Kam, N.W.S.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[207]
Thrash, T.P.; Cagle, D.W.; Alford, J.M.; Wright, K.; Ehrhardt, G.J.; Mirzadeh, S.; Wilson, L.J. Toward fullerene-based radiopharmaceuticals: High-yield neutron activation of endohedral 165Ho metallofullerenes. Chem. Phys. Lett., 1999, 308(3-4), 329-336.
[208]
Karam, L.R.; Mitch, M.G.; Coursey, B.M. Encapsulation of 99mTc within fullerenes: A novel radionuclidic carrier. Appl. Radiat. Isot., 1997, 48(6), 771-776.
[209]
Vallant, R.M.; Szabo, Z.; Trojer, L.; Najam-Ul-Haq, M.; Rainer, M.; Huck, C.W.; Bakry, R.; Bonn, G.K. A new Analytical Material-enhanced Laser Desorption Ionization (MELDI) based approach for the determination of low-mass serum constituents using fullerene derivatives for selective enrichment. J. Proteome Res., 2007, 6(1), 44-53.
[210]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[211]
Bai, H.; Li, C.; Wang, X.; Shi, G. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun., 2010, 46(14), 2376-2378.
[212]
Zhang, Y.; Zhang, J.; Huang, X.; Zhou, X.; Wu, H.; Guo, S. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small, 2012, 8(1), 154-159.
[213]
Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010, 26(9), 6158-6160.
[214]
Kim, Y.K.; Na, H.K.; Kwack, S.J.; Ryoo, S.R.; Lee, Y.; Hong, S.; Hong, S.; Jeong, Y.; Min, D.H. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano, 2011, 5(6), 4550-4561.
[215]
Feng, L.; Wu, L.; Wang, J.; Ren, J.; Miyoshi, D.; Sugimoto, N.; Qu, X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv. Mater., 2012, 24(1), 125-131.
[216]
Bonanni, A.; Chua, C.K.; Zhao, G.; Sofer, Z.; Pumera, M. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano, 2012, 6(10), 8546-8551.
[217]
Ren, W.; Fang, Y.; Wang, E. A Binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano, 2011, 5(8), 6425-6433.
[218]
Fan, Z.; Kanchanapally, R.; Ray, P.C. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett., 2013, 4(21), 3813-3818.
[219]
Zafar, M.N.; Safina, G.; Ludwig, R.; Gorton, L. Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Anal. Biochem., 2012, 425(1), 36-42.
[220]
Wang, C.Y.; Tan, X.R.; Chen, S.H.; Hu, F.X.; Zhong, H.A.; Zhang, Y. The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites. Appl. Biochem. Biotechnol., 2012, 166(4), 889-902.
[221]
Sajjadi, S.; Keihan, A.H.; Norouzi, P.; Mahdi Habibi, M.; Eskandari, K.; Hadizadeh Shirazi, N. Fabrication of an amperometric glucose biosensor based on a prussian blue/carbon nanotube/ionic liquid modified glassy carbon electrode. J. Appl. Biotech. Rep., 2017, 4(2), 603-608.
[222]
Zargoosh, K.; Chaichi, M.J.; Shamsipur, M.; Hossienkhani, S.; Asghari, S.; Qandalee, M. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase /carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta, 2012, 93, 37-43.
[223]
Hoshino, T.; Sekiguchi, S.I.; Muguruma, H. Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry, 2012, 84, 1-5.
[224]
Lu, L.M.; Zhang, X.B.; Shen, G.L.; Yu, R.Q. Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Anal. Chim. Acta, 2012, 715, 99-104.
[225]
Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors, 2016, 16(6), 780.
[226]
Niu, H.; Yuan, R.; Chai, Y.; Mao, L.; Liu, H.; Cao, Y. Highly Amplified electrochemiluminescence of peroxydisulfate using bienzyme functionalized palladium nanoparticles as labels for ultrasensitive immunoassay. Biosens. Bioelectron., 2013, 39(1), 296-299.
[227]
Wang, B.; Anzai, J.I. Recent progress in lectin-based biosensors. Materials (Basel), 2015, 8(12), 8590-8607.
[228]
Yu, G.; Wu, W.; Pan, X.; Zhao, Q.; Wei, X.; Lu, Q. High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets. Sensors, 2015, 15(2), 2709-2722.
[229]
Lin, L.H.; Shih, J.S. Immobilized fullerene C60-enzyme-based electrochemical glucose sensor. J. Chin. Chem. Soc., 2011, 58(2), 228-235.
[230]
Shiraishi, H.; Itoh, T.; Hayashi, H.; Takagi, K.; Sakane, M.; Mori, T.; Wang, J. Electrochemical detection of E. coli 16S rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry, 2007, 70(2), 481-487.
[231]
Han, J.; Zhuo, Y.; Chai, Y.; Yuan, R.; Xiang, Y.; Zhu, Q.; Liao, N. Multi-labeled functionalized C60 nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing. Biosens. Bioelectron., 2013, 46, 74-79.
[232]
Gholivand, M.B.; Jalalvand, A.R.; Goicoechea, H.C. Multivariate analysis for resolving interactions of carbidopa with dsDNA at a fullerene-C60/GCE. Int. J. Biol. Macromol., 2014, 69, 369-381.
[233]
Chuang, C.W.; Shih, J.S. Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor. Sens. Actuators B Chem., 2001, 81(1), 1-8.
[234]
Zhang, X.; Qu, Y.; Piao, G.; Zhao, J.; Jiao, K. Reduced working electrode based on fullerene C60 nanotubes@DNA: Characterization and application. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2010, 175(2), 159-163.
[235]
Sheng, Q.; Liu, R.; Zheng, J. Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing. Bioelectrochemistry, 2013, 94, 39-46.
[236]
Bae, J.G.; Park, M.; Kim, D.H.; Lee, E.Y.; Kim, W.S.; Seo, T.S. Tunable three-dimensional graphene assembly architectures through controlled diffusion of aqueous solution from a micro-droplet. NPG Asia Mater., 2016, 8(11)e329
[237]
Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T.W.; Mioskowski, C. Helical Crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed., 1999, 38(13-14), 1912-1915.
[238]
Pilehvar, S.; De Wael, K. Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms. Biosensors, 2015, 5(4), 712-735.
[239]
Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol. Vitr., 2017, 42, 292-298.
[240]
Zhang, T.; Tang, M.; Kong, L.; Li, H.; Zhang, T.; Xue, Y.; Pu, Y. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. J. Hazard. Mater., 2015, 284, 73-82.
[241]
Allegri, M.; Perivoliotis, D.K.; Bianchi, M.G.; Chiu, M.; Pagliaro, A.; Koklioti, M.A.; Trompeta, A.F.A.; Bergamaschi, E.; Bussolati, O.; Charitidis, C.A. Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration. Toxicol. Rep., 2016, 3, 230-243.
[242]
Bobylev, A.G.; Okuneva, A.D.; Bobyleva, L.G.; Fadeeva, I.S.; Fadeev, R.S.; Salmov, N.N.; Podlubnaya, Z.A. Study of cytotoxicity of fullerene C60 derivatives. Biophysics (Oxf.), 2012, 57(5), 572-576.
[243]
Mittal, S.; Kumar, V.; Dhiman, N.; Chauhan, L.K.S.; Pasricha, R.; Pandey, A.K. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep., 2016, 6, 39548.