Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Formulation and Characterization of Transethosomes for Enhanced Transdermal Delivery of Propranolol Hydrochloride

Author(s): Lalit Kumar and Puneet Utreja*

Volume 12, Issue 1, 2020

Page: [38 - 47] Pages: 10

DOI: 10.2174/1876402911666190603093550

Abstract

Objective: The objective of the present work was to develop transethosomes loaded with propranolol hydrochloride using Lipoid S100 as phospholipid, and oleic acid as permeation enhancer and evaluate them for prolonged release effect, in-vitro skin permeation, and in-vivo plasma concentration.

Methods: Transethosomes loaded with propranolol hydrochloride were prepared by homogenization method. Furthermore, they were characterized by using Transmission Electron Microscopy (TEM), zeta sizer, Differential Scanning Calorimetry (DSC), and Confocal Laser Scanning Microscopy (CLSM) for in-vitro skin permeation. Plasma concentration profile of transethosomal gel was determined using Sprague Dawley rats and compared with a marketed oral tablet of propranolol hydrochloride.

Results: Developed transethosomes loaded with propranolol hydrochloride showed acceptable size (182.7 ± 5.4 nm), high drug entrapment (81.98 ± 2.9%) and good colloidal characteristics [polydispersity index (PDI) = 0.234 ± 0.039, zeta potential = -21.91 ± 0.65 mV]. Transethosomes showed prolonged in-vitro release of propranolol hydrochloride for 24 h. Results of in-vitro skin permeation studies of transethosomal gel showed 74.34 ± 2.33% permeation of propranolol hydrochloride after 24 h and confocal microscopy revealed accumulation of transethosomes in the stratum basale layer of the skin. Transethosomal gel was capable to prolong the in-vivo release of propranolol hydrochloride upto 24 h. The value of peak plasma concentration (Cmax) of propranolol hydrochloride was found to be 93.8 ± 3.6 ng/mL which was very high compared to the marketed oral tablet of propranolol hydrochloride (45.6 ± 3.1 ng/mL).

Conclusion: The results suggested that transethosomal gel of propranolol hydrochloride could be a better alternative to oral propranolol hydrochloride as it can avoid various disadvantages of oral propranolol hydrochloride like high dosing frequency, first pass effect, and organ toxicity.

Keywords: First pass effect, propranolol hydrochloride, prolonged release, skin permeation, transethosomes, transdermal delivery.

Graphical Abstract

[1]
Al-Kassas, R.; Wen, J.; Cheng, A.E.; Kim, A.M.; Liu, S.S.M.; Yu, J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr. Polym., 2016, 153, 176-186.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.096] [PMID: 27561485]
[2]
Tanner, T.; Marks, R. Delivering drugs by the transdermal route: Review and comment. Skin Res. Technol., 2008, 14(3), 249-260.
[http://dx.doi.org/10.1111/j.1600-0846.2008.00316.x] [PMID: 19159369]
[3]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[4]
Shaji, J.; Garude, S. Transethosomes and ethosomes for enhanced transdermal delivery of ketorolac tromethamine: A comparative assessment. Int. J. Curr. Pharm. Res., 2014, 6(4), 88-93.
[5]
Elmoslemany, R.M.; Abdallah, O.Y.; El-Khordagui, L.K.; Khalafallah, N.M. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: Comparison with conventional liposomes. AAPS PharmSciTech, 2012, 13(2), 723-731.
[http://dx.doi.org/10.1208/s12249-012-9783-6] [PMID: 22566173]
[6]
Bennet, D.; Marimuthu, M.; Kim, S.; An, J. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery. Int. J. Nanomedicine, 2012, 7, 3399-3419.
[PMID: 22888222]
[7]
Kohli, A.K.; Alpar, H.O. Potential use of nanoparticles for transcutaneous vaccine delivery: Effect of particle size and charge. Int. J. Pharm., 2004, 275(1-2), 13-17.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.038] [PMID: 15081134]
[8]
Ma, M.; Wang, J.; Guo, F.; Lei, M.; Tan, F.; Li, N. Development of nanovesicular systems for dermal imiquimod delivery: Physicochemical characterization and in vitro/in vivo evaluation. J. Mater. Sci. Mater. Med., 2015, 26(6), 191.
[http://dx.doi.org/10.1007/s10856-015-5524-1] [PMID: 25989936]
[9]
Ubrich, N.; Bouillot, P.; Pellerin, C.; Hoffman, M.; Maincent, P. Preparation and characterization of propranolol hydrochloride nanoparticles: A comparative study. J. Control. Release, 2004, 97(2), 291-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.023] [PMID: 15196756]
[10]
Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic development of transethosomal gel system of piroxicam: Formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech, 2017, 18(1), 58-71.
[http://dx.doi.org/10.1208/s12249-016-0489-z] [PMID: 26868380]
[11]
Gokce, E.H.; Korkmaz, E.; Tuncay-Tanrıverdi, S.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int. J. Nanomedicine, 2012, 7, 5109-5117.
[PMID: 23055723]
[12]
Verma, S.; Bhardwaj, A.; Vij, M.; Bajpai, P.; Goutam, N.; Kumar, L. Oleic acid vesicles: A new approach for topical delivery of antifungal agent. Artif. Cells Nanomed. Biotechnol., 2014, 42(2), 95-101.
[http://dx.doi.org/10.3109/21691401.2013.794351] [PMID: 23656670]
[13]
Li, S.; Qiu, Y.; Zhang, S.; Gao, Y. Enhanced transdermal delivery of 18β-glycyrrhetic acid via elastic vesicles: In vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2012, 38(7), 855-865.
[http://dx.doi.org/10.3109/03639045.2011.630395] [PMID: 22077323]
[14]
Patel, P.R.; Patel, H.H.; Baria, H.A. Formulation and evaluation of carbopol gel containing liposomes of ketoconazole. Int. J. Drug Del. Tech., 2009, 1, 42-45.
[http://dx.doi.org/10.25258/ijddt.v1i2.8839]
[15]
Mohamed, M.I. Optimization of chlorphenesin emulgel formulation. AAPS J., 2004, 6(3)e26
[http://dx.doi.org/10.1208/aapsj060326] [PMID: 15760111]
[16]
Mishra, A.D.; Patel, C.N.; Shah, D.R. Formulation and optimization of ethosomes for transdermal delivery of ropinirole hydrochloride. Curr. Drug Deliv., 2013, 10(5), 500-516.
[http://dx.doi.org/10.2174/1567201811310050002] [PMID: 23410071]
[17]
Verma, S.; Utreja, P. Transethosomes of econazole nitrate for transdermal delivery: Development, in-vitro characterization, and ex-vivo assessment. Pharm. Nanotechnol., 2018, 6(3), 171-179.
[http://dx.doi.org/10.2174/2211738506666180813122102] [PMID: 30101725]
[18]
Zakir, F.; Vaidya, B.; Goyal, A.K.; Malik, B.; Vyas, S.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv., 2010, 17(4), 238-248.
[http://dx.doi.org/10.3109/10717541003680981] [PMID: 20235758]
[19]
Kumar, L.; Verma, S.; Jamwal, S.; Vaidya, S.; Vaidya, B. Polymeric microparticles-based formulation for the eradication of cutaneous candidiasis: Development and characterization. Pharm. Dev. Technol., 2014, 19(3), 318-325.
[http://dx.doi.org/10.3109/10837450.2013.778874] [PMID: 23560821]
[20]
Mishra, D.; Garg, M.; Dubey, V.; Jain, S.; Jain, N.K. Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: Propranolol hydrochloride. J. Pharm. Sci., 2007, 96(1), 145-155.
[http://dx.doi.org/10.1002/jps.20737] [PMID: 16960826]
[21]
Anraku, M.; Hiraga, A.; Iohara, D.; Pipkin, J.D.; Uekama, K.; Hirayama, F. Slow-release of famotidine from tablets consisting of chitosan/sulfobutyl ether β-cyclodextrin composites. Int. J. Pharm., 2015, 487(1-2), 142-147.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.022] [PMID: 25882010]
[22]
Imam, S.S.; Ahad, A.; Aqil, M.; Sultana, Y.; Ali, A. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation. J. Pharm. Bioallied Sci., 2013, 5(1), 61-65.
[http://dx.doi.org/10.4103/0975-7406.106573] [PMID: 23559826]
[23]
Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm., 2003, 258(1-2), 141-151.
[http://dx.doi.org/10.1016/S0378-5173(03)00183-2] [PMID: 12753761]
[24]
Bodade, S.S.; Shaikh, K.S.; Kamble, M.S.; Chaudhari, P.D. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv., 2013, 20(1), 40-46.
[http://dx.doi.org/10.3109/10717544.2012.752420] [PMID: 23311652]
[25]
Wilson, V.; Siram, K.; Rajendran, S.; Sankar, V. Development and evaluation of finasteride loaded ethosomes for targeting to the pilosebaceous unit. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1892-1901.
[PMID: 29087225]
[26]
Abdulbaqi, I.M.; Darwis, Y.; Assi, R.A.; Khan, N.A.K. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. Ther., 2018, 12, 795-813.
[http://dx.doi.org/10.2147/DDDT.S158018] [PMID: 29670336]
[27]
Sarwa, K.K.; Suresh, P.K.; Rudrapal, M.; Verma, V.K. Penetration of tamoxifen citrate loaded ethosomes and liposomes across human skin: A comparative study with confocal laser scanning microscopy. Curr. Drug Deliv., 2014, 11(3), 332-337.
[http://dx.doi.org/10.2174/1567201811666140115113127] [PMID: 24428443]

© 2024 Bentham Science Publishers | Privacy Policy