[1]
Blikslager, A.T.; Moeser, A.J.; Gookin, J.L.; Jones, S.L.; Odle, J. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev., 2007, 87, 545-564.
[2]
Miller, B.G.; James, P.S.; Smith, M.; Bourne, F.J. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. J. Agr. Sci-Cambridge, 1986, 107, 579-590.
[3]
Cera, K.R.; Mahan, D.C.; Cross, R.F. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci., 1988, 66, 574-584.
[4]
Pluske, J.R.; Williams, I.H.; Aherne, F.X. Villous height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. J. Anim. Sci., 1996, 62, 145-158.
[5]
Gaëlle, B.; Vincent, P.; Isabelle, L.; Le Huërou-Luron, I. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr., 2004, 134, 2256-2262.
[6]
Moeser, A.J.; Klok, C.V.; Ryan, K.A.; Wooten, J.G.; Little, D.; Cook, V.L.; Blikslager, A.T. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292, 173-181.
[7]
Lalles, J.P.; Bosi, P.; Smidt, H. Weaning-A challenge to gut physiologists. Livest. Sci., 2007, 108, 82-93.
[8]
Gu, X.; Li, D.; She, R. Effect of weaning on small intestinal structure and function in the piglet. Arch. Anim. Nutr., 2002, 56, 275-286.
[9]
Liu, Y. Fatty acids, inflammation and intestinal health in pigs. J. Anim. Sci. Biotechnol., 2016, 6, 321-329.
[10]
Chiu, S.C.; Chao, C.Y.; Chiang, E.I.; Syu, J.N.; Rodriguez, R.L.; Tang, F.Y. N-3 polyunsaturated fatty acids alleviate high glucose-mediated dysfunction of endothelial progenitor cells and prevent ischemic injuries both in vitro and in vivo. J. Nutr. Biochem., 2017, 42, 172-181.
[11]
Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res., 2008, 52, 885-897.
[12]
Calder, P.C. Fatty acids and inflammation: The cutting edge between food and pharma. Eur. J. Pharmacol., 2011, 668, 50-58.
[13]
Hontecillas, R.; Wannemeulher, M.J.; Zimmerman, D.R.; Hutto, D.L.; Wilson, J.H.; Ahn, D.U. Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. J. Nutr., 2002, 132, 2019-2027.
[14]
Manzanilla, E.G.; Nofrarías, M.; Anguita, M.; Castillo, M.; Perez, J.F.; Martín-Orúe, S.M.; Kamel, C.; Gasa, J. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci., 2006, 84, 2743-2751.
[15]
Kotunia, A.; Woliński, J.; Laubitz, D.; Jurkowska, M.; Romé, V.; Guilloteau, P.; Zabielski, R. Effect of sodium butyrate on the small intestine development in neonatal piglets fed (correction of feed) by artificial sow. J. Physiol. Pharmacol., 2004, 55, 59-68.
[16]
Mroz, Z. Organic acids as potential alternatives to antibiotic growth promoters for pigs. Adv. Pork. Prod, 2012, 16, 169-182.
[17]
Sanz, Y.; Palma, G.D. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function. Int. Rev. Immunol., 2009, 28, 397-413.
[18]
Enig, M.G. Fatty acid composition of the fat in selected food items with emphasis on trans components. J. Am. Oil Chem. Soc., 1983, 10, 1788-1795.
[19]
Gálfi, P.; Bokori, J. Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Vet. Hung., 1990, 38, 3-17.
[20]
Huang, C.; Song, P.; Fan, P.; Hou, C.; Thacker, P.; Ma, X. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J. Nutr., 2015, 145, 2774-2780.
[21]
Ma, X.; Fan, P.X.; Li, L.S.; Qiao, S.Y.; Zhang, G.L.; Li, D.F. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci., 2012, 90, 266-268.
[22]
Zeng, X.; Sunkara, L.T.; Jiang, W.; Bible, M.; Carter, S.; Ma, X.; Qiao, S.; Zhang, G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One, 2013, 8e72922
[23]
Fang, C.L.; Sun, H.; Wu, J.; Niu, H.H.; Feng, J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J. Anim. Physiol. Anim. Nutr. , 2014, 98, 680-685.
[24]
Hanczakowska, E.; Szewczyk, A. Effects of dietary caprylic and capric acids on piglet performance and mucosal epithelium structure of the ileum. J. Anim. Feed Sci., 2011, 20, 556-565.
[25]
Chwen, L.T.; Foo, H.L.; Thanh, N.T.; Choe, D.W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas. J. Anim. Sci., 2013, 26, 700-704.
[26]
Dierick, N.; Michiels, J.; Van Nevel, C. Effect of medium chain fatty acids and benzoic acid, as alternatives for antibiotics, on growth and some gut parameters in piglets. Commun. Agric. Appl. Biol. Sci., 2004, 69, 187-190.
[27]
Zentek, J.; Buchheit-Renko, S.; Männer, K.; Pieper, R.; Vahjen, W. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Arch. Anim. Nutr., 2012, 66, 14-26.
[28]
Zentek, J.; Ferrara, F.; Pieper, R.; Tedin, L.; Meyer, W.; Vahjen, W. Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets. J. Anim. Sci., 2013, 91, 3200-3210.
[29]
Dulloo, A.G.; Mensi, N.; Seydoux, J.; Girardier, L. Differential effects of high-fat diets varying in fatty acid composition on the efficiency of lean and fat tissue deposition during weight recovery after low food intake. Metabolism, 1995, 44, 273-279.
[30]
Buettner, R.; Parhofer, K.G.; Woenckhaus, M.; Wrede, C.E.; Kunz-Schughart, L.A.; Schölmerich, J.; Bollheimer, L.C. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J. Mol. Endocrinol., 2006, 36, 485-501.
[31]
Takeuchi, H.; Nakamoto, T.; Mori, Y.; Kawakami, M.; Mabuchi, H.; Ohishi, Y.; Ichikawa, N.; Koike, A.; Masuda, K. Comparative effects of dietary fat types on hepatic enzyme activities related to the synthesis and oxidation of fatty acid and to lipogenesis in rats. Biosci. Biotechnol. Biochem., 2001, 65, 1748-1754.
[32]
Rodríguez, V.M.; Portillo, M.P.; Picó, C.; Macarulla, M.T.; Palou, A. Olive oil feeding up-regulates uncoupling protein genes in rat brown adipose tissue and skeletal muscle. Am. J. Clin. Nutr., 2002, 75, 213-220.
[33]
Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors and lipid physiology: Opening the X-files. Science, 2001, 294, 1866-1870.
[34]
Hirai, T.; Fukui, Y.; Motojima, K. PPARα agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biol. Pharm. Bull., 2007, 30, 2185-2190.
[35]
Liehr, M.; Mereu, A.; Pastor, J.J.; Quintela, J.C.; Staats, S.; Rimbach, G.; Ipharraguerre, I.R. Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota. PLoS One, 2017, 12e0174239
[36]
Trichopoulou, A.; Dilis, V. Olive oil and longevity. Mol. Nutr. Food Res., 2007, 51, 1275-1278.
[37]
Chen, F.; Liu, Y.; Zhu, H.; Hong, Y.; Wu, Z.; Hou, Y.; Li, Q.; Ding, B.; Yi, D.; Chen, H. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. Innate Immun., 2013, 19, 504-515.
[38]
Liu, Y.; Chen, F.; Odle, J.; Lin, X.; Jacobi, S.K.; Zhu, H.; Wu, Z.; Hou, Y. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J. Nutr., 2012, 142, 2017-2024.
[39]
Mani, V.; Hollis, J.H.; Gabler, N.K. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr. Metab. , 2013, 10, 6-10.
[40]
Shen, Y.; Wan, H.; Zhu, J.; Fang, Z.; Che, L.; Xu, S.; Lin, Y.; Li, J.; Wu, D. Fish oil and olive oil supplementation in late pregnancy and lactation differentially affect oxidative stress and inflammation in sows and piglets. Lipids, 2015, 50, 647-658.
[41]
Mateo, R.J.D. Arginine and omega-3 fatty acids for enhancing
reproductive performance of sows[D]. Dissertation for the Doctor’s
Degree, Texas Tech University,. 2011.
[42]
Chartrand, R.; Matte, J.J.; Lessard, M.; Chouinard, P.Y.; Giguère, A.; Laforest, J.P. Effect of dietary fat sources on systemic and intrauterine synthesis of prostaglandins during early pregnancy in gilts. J. Anim. Sci., 2003, 81, 726-734.
[43]
Zhan, Z.P.; Huang, F.R.; Luo, J.; Dai, J.J.; Yan, X.H.; Peng, J. Duration of feeding linseed diet influences expression of inflammation-related genes and growth performance of growing-finishing barrows. J. Anim. Sci., 2009, 87, 603-611.
[44]
Luo, J.; Huang, F.R.; Xiao, C.L. Effect of dietary supplementation of fish oil for lactating sows and weaned piglets on piglet Th polarization. Livest. Sci., 2009, 126, 286-291.
[45]
Jacobi, S.K.; Odle, J. Nutritional factors influencing intestinal health of the neonate. Adv. Nutr., 2012, 3, 687-696.
[46]
Sakakibara, S.; Yamauchi, T.; Oshima, Y.; Tsukamoto, Y.; Kadowaki, T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun., 2006, 344, 597-604.
[47]
Den, B.G.; Bleeker, A.; Gerding, A. Short-chain fatty acids protect against high-fat diet-induced obesity via a alpha-dependent switch from lipogenesis to fat oxidation. Diabetes, 2015, 64, 2398-2408.
[48]
Gao, Z.; Gao, Z.; Yin, J. Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 2009, 58, 1509-1517.
[49]
Takeuchi, H.; Kubota, F.; Itakura, M. Effect of triacylglycerols containing medium- and long-chain fatty acids on body fat accumulation in rats. J. Nutr. Sci. Vitaminol. , 2001, 47, 267-269.
[50]
Han, J.; Hamilton, J.A.; Kirkland, J.L.; Corkey, B.E.; Guo, W. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes. Res., 2003, 11, 734-744.
[51]
Nagao, K.; Yanagita, T. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol. Res., 2010, 61, 208-212.
[52]
Shinohara, H.; Wu, J.; Kasai, M.; Aoyama, T. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci. Biotechnol. Biochem., 2006, 70, 2919-2926.
[53]
Takeuchi, H.; Noguchi, O.; Sekine, S.; Kobayashi, A.; Aoyama, T. Lower weight gain and higher expression and blood levels of adiponectin in rats fed medium-chain TAG compared with long-chain TAG. Lipids, 2006, 41, 207-212.
[54]
Turner, N.; Hariharan, K. TidAng, J.; Frangioudakis, G.; Beale, S.M.; Wright, L.E.; Zeng, X.Y.; Leslie, S.J.; Li, J.Y. Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: Potent tissue-specific effects of medium-chain fatty acids. Diabetes, 2009, 58, 2547-2554.
[55]
Takikawa, M.; Kumagai, A.; Hirata, H.; Soga, M.; Yamashita, Y.; Ueda, M.; Ashida, H.; Tsuda, T. 10-Hydroxy-2-decenoic acid, a unique medium-chain fatty acid, activates 5′-AMP-activated protein kinase in L6 myotubes and mice. Mol. Nutr. Food Res., 2013, 57, 1794-1802.
[56]
Nestel, P.J. Fish oil and cardiovascular disease: Lipids and arterial function. Am. J. Clin. Nutr., 2000, 71, 228-231.
[57]
Nakatani, T.; Kim, H.J.; Kaburagi, Y.; Yasuda, K.; Ezaki, O.A. Low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver relationship to anti-obesity. J. Lipid Res., 2003, 44, 369-379.
[58]
Xu, J.; Nakamura, M.T.; Cho, H.P.; Clarke, S.D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem., 1999, 274, 23577-23583.
[59]
Flachs, P.; Brauner, P.; Rossmeisl, M.; Pecina, P. Franssen-van, Hal.N.; Ruzickova, J.; Sponarova, J. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia, 2005, 48, 2365-2375.
[60]
Kim, H.K.; Della-Fera, M.; Lin, J.; Baile, C.A. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J. Nutr., 2006, 136, 2965-2969.
[61]
Kang, S.; Huang, J.; Lee, B.K.; Jung, Y.S. Im, E.; Koh, J.M.; Im D.S. Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). Biochim. Biophys. Acta, 2018, 1863, 105-116.
[62]
Wang, M.; Zhang, X.; Ma, L.J.; Feng, R.B.; Yan, C.; Su, H.; He, C.; Kang, J.X.; Liu, B. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease. Biochim. Biophys. Acta, 2017, 1863, 3190-3201.
[63]
Castilla-madrigal, R.; Barrenetxe, J.; Moreno-Aliaga, M.J.; Lostao, M.P. EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK. J. Cell. Physiol., 2017, 233, 2426-2433.
[64]
Kim, S.; Jin, Y.; Park, Y. Estrogen and n-3 polyunsaturated fatty acid supplementation have a synergistic hypotriglyceridemic effect in ovariectomized rats. Genes Nutr., 2015, 10, 1-11.
[65]
Kawaguchi, T.; Osatomi, K.; Yamashita, H.; Kabashima, T.; Uyeda, K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem., 2002, 277, 3829-3835.
[66]
Kaji, I.; Otomo, Y.; Kaji, I.; Tanaka, R.; Karaki, S.I.; Kuwahara, A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol., 2008, 59, 251-262.
[67]
Wang, J.; Wu, X.; Simonavicius, N.; Tian, H.; Ling, L. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J. Biol. Chem., 2006, 281, 34457-34464.
[68]
Hirasawa, A.; Tsumaya, K.; Awaji, T.; Katsuma, S.; Adachi, T.; Yamada, M.; Sugimoto, Y.; Miyazaki, S.; Tsujimoto, G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med., 2005, 1, 90-94.
[69]
Wang, M.Y.; Unger, R.H. Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone. Am. J. Physiol., 2005, 288, 216-221.
[70]
Nagao, K.; Inoue, N.; Wang, Y.M.; Yanagita, T. Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in Zucker diabetic fatty (fa/fa) rats. Biochem. Biophys. Res. Commun., 2003, 310, 562-566.
[71]
Braza, F.; Brouard, S.; Chadban, S.; Goldstein, D.R. Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nat. Rev. Nephrol., 2016, 12, 281-290.
[72]
Peng, L.Y.; Li, Z.R.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr., 2009, 139, 1619-1625.
[73]
Elamin, E.E.; Masclee, A.A.; Dekker, J.; Pieters, H.J.; Jonkers, D.M. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J. Nutr., 2013, 143, 1872-1881.
[74]
Lindmark, T.; Nikkilä, T.; Artursson, P. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 1995, 275, 958-964.
[75]
Lindmark, T.; Kimura, Y.; Artursson, P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther., 1998, 284, 362-369.
[76]
Usami, M.; Komurasaki, T.; Hanada, A.; Kinoshita, K.; Ohata, A. Effect of gamma-linolenic acid or docosahexaenoic acid on tight junction permeability in intestinal monolayer cells and their mechanism by protein kinase C activation and/or eicosanoid formation. Nutrition, 2003, 19, 150-156.
[77]
Canani, R.B.; Costanzo, M.; Leone, L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin. Epigenetics, 2012, 4, 1-7.
[78]
Lawhon, S.D.; Maurer, R.; Suyemoto, M.; Altier, C. Intestinal short chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol., 2002, 46, 1451-1464.
[79]
Castillo, M.; Martín-Orúe, S.M.; Roca, M.; Manzanilla, E.G.; Badiol, I.; Perez, J.F.; Gasa, J. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J. Anim. Sci., 2006, 84, 2725-2734.
[80]
Ganapathy, V.; Thangaraju, M.; Prasad, P.D.; Martin, P.M.; Singh, R.M. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr. Opin. Pharmacol., 2013, 13, 869-874.
[81]
Messens, W.; Goris, J.; Dierick, N.; Herman, L.; Heyndrickx, M. Inhibition of Salmonella typhimurium by medium-chain fatty acids in an in vitro simulation of the porcine cecum. Vet. Microbiol., 2010, 141, 73-80.
[82]
Sang, I.L.; Kim, H.S.; Kim, I. Microencapsulated organic acid blend with MCFAs can be used as analternative to antibiotics for laying hens. Turk. J. Vet. Anim. Sci., 2015, 39, 520-527.
[83]
Solis, D.L.; Donoghue, A.M.; Venkitanarayanan, K.; Dirain, M.L.; Reyes-Herrera, I.; Blore, P.J.; Donoghue, D.J. Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poult. Sci., 2008, 87, 800-804.
[84]
Martin, Rodriguez.. Caballo, C.; Gutierrez, G.; Vera, M.; Cruzado, J.M.; Cases, A.; Escolar, G.; Diaz-Ricart, M. TLR4 and NALP3 inflammasome in the development of endothelial dysfunction in uraemia. Eur. J. Clin. Invest., 2015, 45, 160-169.
[85]
Vinolo, M.A.; Rodrigues, H.G.; Hatanaka, E.; Sato, F.T.; Sampaio, S.C.; Curi, R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem., 2011, 22, 849-855.
[86]
Yang, S.; Li, X.; Wang, N.; Yin, G.; Ma, S.; Fu, Y.; Wei, C.; Chen, Y.; Xu, W. GPR109A expression in the murine min6 pancreatic beta cell line, and its relation with glucose metabolism and inflammation. Ann. Clin. Lab. Sci., 2015, 45, 315-322.
[87]
Cruzbravo, R.K.; Guevara-González, R.G.; Ramos-Gómez, M.; Oomah, B.D.; Wiersma, P.; Campos-Vega, R.; Loarca-Piña, G. The fermented non-digestible fraction of common bean (Phaseolus vulgaris L.) triggers cell cycle arrest and apoptosis in human colon adenocarcinoma cells. Genes Nutr., 2014, 9, 1-12.
[88]
Asarat, M.; Vasiljevic, T.; Apostolopoulos, V.; Donkor, O. Short-chain fatty acids regulate secretion of il-8 from human intestinal epithelial cell lines in vitro. Immunol. Invest., 2015, 44, 678-693.
[89]
Kim, M.; Qie, Y.; Park, J.; Kim, C.H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe, 2016, 20, 202-214.
[90]
Bergsson, G.; Arnfinnsson, J.; Steingrímsson, O.; Thormar, H. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS, 2001, 109, 670-678.
[91]
Kono, H.; Enomoto, N.; Connor, H.D.; Wheeler, M.D.; Bradford, B.U.; Rivera, C.A.; Kadiiska, M.B.; Mason, R.P. Medium-chain triglycerides inhibit free radical formation and TNF-α production in rats given enteral ethanol. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278, 467-476.
[92]
Skřivanová, E.; Molatová, Z.; Skrivanová, V.; Marounek, M. Inhibitory activity of rabbit milk and medium-chain fatty acids against enteropathogenic Escherichia coli O128. Vet. Microbiol., 2009, 135, 358-362.
[93]
Intahphuak, S.; Khonsung, P.; Panthong, A. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharm. Biol., 2010, 48, 151-157.
[94]
Trebble, T.; Arden, N.K.; Stroud, M.A.; Wootton, S.A.; Burdge, G.C.; Miles, E.A.; Ballinger, A.B.; Thompson, R.L.; Calder, P.C. Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br. J. Nutr., 2003, 90, 405-412.
[95]
Musiek, E.S.; Brooks, J.D.; Joo, M.; Brunoldi, E.; Porta, A.; Zanoni, G.; Vidari, G.; Blackwell, T.S.; Montine, T.J.; Milne, G.L.; McLaughlin, B. Electrophilic cyclopentenone neuroprostanes are anti-inflammatory mediators formed from the peroxidation of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. J. Biol. Chem., 2008, 283, 19927-19935.
[96]
Huang, F.; Wei, H.; Luo, H.; Jiang, S.; Peng, J. EPA inhibits the inhibitor of κBα (IκBα)/NF-κB/muscle RING finger 1 pathway in C2C12 myotubes in a PPARγ-dependent manner. Br. J. Nutr., 2011, 105, 348-356.
[97]
Ghosh-Choudhury, T.; Mandal, C.C.; Woodruff, K.; St Clair, P.; Fernandes, G.; Choudhury, G.G.; Ghosh-Choudhury, N. Fish oil targets PTEN to regulate NFkappaB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res. Treat., 2009, 118, 213-228.