[1]
Sandstead, H.H.W.O. Atwater memorial lecture. Zinc: Essentiality for brain development and function. Nutr. Rev., 1985, 43, 129-137.
[2]
Anderson, K.D.; Sengupta, J.; Morin, M.; Neve, R.L.; Valenzuela, C.F.; Perrone-Bizzozero, N.I. Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in cortical neurons and retinoic acid-induced embryonic stem cells in vitro. Exp. Neurol., 2001, 168, 250-258.
[3]
Deschenes-Furry, J.; Belanger, G.; Perrone-Bizzozero, N.; Jasmin, B.J. Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J. Biol. Chem., 2003, 278, 5710-5717.
[4]
Kasashima, K.; Terashima, K.; Yamamoto, K.; Sakashita, E.; Sakamoto, H. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells, 1999, 4, 667-683.
[5]
Mobarak, C.D.; Anderson, K.D.; Morin, M.; Beckel-Mitchener, A.; Rogers, S.L.; Furneaux, H.; King, P. Perrone-Bizzozero, N.I. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol. Biol. Cell, 2000, 11, 3191-3203.
[6]
Deschênes-Furry, J.; Angus, L.M.; Bélanger, G.; Mwanjewe, J.; Jasmin, B.J. Role of ELAV-like RNA-binding proteins HuD and HuR in the post-transcriptional regulation of acetylcholinesterase in neurons and skeletal muscle cells. Chem. Biol. Interact., 2005, 157-158, 43-49.
[7]
Lin, L.; Zhang, X.X.; Jian, W.; Rong, J. Distribution and differentiation of transplanted neural tissuse committed stem cells to the brain after ischemic stroke. Med. J. Chin. PLA, 2012, 37, 1031-1035.
[8]
Duggal, N.; Iskander, S.; Hammond, R.R. MAP2 and nestin co-expression in dysembryoplastic neuroepithelial tumors. Clin. Neuropathol., 2003, 22, 57-65.
[9]
Lasek, R.J.; Phillips, L.; Katz, M.J.; Autilio-Gambetti, L. Function and evolution of neurofilament proteins. Ann. N. Y. Acad. Sci., 1985, 455, 462-478.
[10]
Maccioni, R.B.; Cambiazo, V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev., 1995, 75, 835-864.
[11]
Liu, Z.; Zeng, S.L.; Li, F.F. Effects of schwann cells on proliferation and differentiation of co-cultured neural stem cells. China Med. Herald, 2007, 4, 98-99.
[12]
Pettingill, L.N.; Minter, R.L.; Shepherd, R.K. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience, 2008, 152, 821-828.
[13]
Chen, J.M.; Li, B.C.; Wang, J.M. Effects of coculture of schwann cells and anterior horn motor neurons of spinal cord on its function. J. Third Mil. Med. Univ., 2007, 29, 2226-2229.
[14]
Song, P.; Zhang, R.; Wang, X.; He, P.; Tan, L.; Ma, X. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. J. Agric. Food Chem., 2011, 59, 6227-6232.
[15]
Kushwaha, P.; Khedgikar, V.; Sharma, D.; Yuen, T.; Gautam, J.; Ahmad, N.; Karvande, A.; Mishra, P.R.; Trivedi, P.K.; Sun, L.; Bhadada, S.K.; Zaidi, M.; Trivedi, R. MicroRNA 874-3p exerts skeletal anabolic effects epigenetically during weaning by suppressing hdac1 expression. J. Biol. Chem., 2016, 291, 3959-3966.
[16]
Moisa, S.J.; Shike, D.W.; Shoup, L.; Loor, J.J. Maternal plane of nutrition during late-gestation and weaning age alter steer calf longissimus muscle adipogenic microrna and target gene expression. Lipids, 2016, 51, 123-138.
[17]
Plagemann, A.; Waas, T.; Harder, T.; Rittel, F.; Ziska, T.; Rohde, W. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides, 2000, 34, 1-6.
[18]
Nomura, S.; Kami, K.; Kawano, F.; Oke, Y.; Nakai, N.; Ohira, T.; Fujita, R.; Terada, M.; Imaizumi, K.; Ohira, Y. Effects of hindlimb unloading on neurogenesis in the hippocampus of newly weaned rats. Neurosci. Lett., 2012, 509, 76-81.
[19]
Kapoor, R.; Ghosh, H.; Nordstrom, K.; Vennstrom, B.; Vaidya, V.A. Loss of thyroid hormone receptor beta is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus. Neurosci. Lett., 2011, 487, 199-203.
[20]
Chengshu, W. The effect of taking fluoxetine during breastfeeding on offspring’s behavior and serotonin neurons loop function; , 2016. Kunming Medical University: Kunming, China.
[21]
Kepser, L.J.; Homberg, J.R. The neurodevelopmental effects of serotonin: A behavioural perspective. Behav. Brain Res., 2015, 277, 3-13.
[22]
Yu, Z. The influence of prenatal stress on offspring behaviors and brain myelin development mice; , 2016. Chongqing Medical University:
Chongqing, China.
[23]
Nose-Ishibashi, K.; Watahiki, J.; Yamada, K.; Maekawa, M.; Watanabe, A.; Yamamoto, G.; Enomoto, A.; Matsuba, Y.; Nampo, T.; Taguchi, T.; Ichikawa, Y.; Saido, T.C.; Mishima, K.; Yamaguchi, Y.; Yoshikawa, T.; Maki, K. Soft-diet feeding after weaning affects behavior in mice: Potential increase in vulnerability to mental disorders. Neuroscience, 2014, 263, 257-268.
[24]
Meister, A. Advances in Enzymology and Related Areas of Molecular
Biology. John Wiley & Sons 2006, 53, 201-237.
[25]
Walker, W.A.; Iyengar, R.S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res., 2015, 77, 220-228.
[26]
Changzhi, P. The effect of glutamate on weaned piglet nutrition and intestinal nervous system; , 2012. Nanchang University:
Nanchang, China
[27]
Ma, N.; Tian, Y.A.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18, 795-808.
[28]
Fan, P.; Tan, Y.; Jin, K.; Lin, C.; Xia, S.; Han, B.; Zhang, F.; Wu, L.; Ma, X. Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. J. Anim. Physiol. Anim. Nutr. , 2017, 101, 136-146.
[29]
Xia, T.; Lai, W.; Han, M.; Han, M.; Ma, X.; Zhang, L. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget, 2017, 8, 64878-64891.
[30]
Shuang, W. Preliminary study on neuronal circuit mechanism of attention deficit&; hyperactivity disoeder induced by chronic lead exposure; , 2016. HeFei University of Technology: HeFei, China
[31]
Xingdong, Y. Study on the impact and mechanism of developmental hippocampal neuronal development induced by food-derived Pb exposure; , 2017. Hefei University of Technology: Hefei, China.
[32]
Lim, A.P.; Aris, A.Z. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev. Environ. Sci. Biotechnol., 2014, 13, 163-181.
[33]
Tanaka, T.; Hasegawa-Baba, Y.; Watanabe, Y.; Mizukami, S.; Kangawa, Y.; Yoshida, T.; Shibutani, M. Maternal exposure to ochratoxin A targets intermediate progenitor cells of hippocampal neurogenesis in rat offspring via cholinergic signal downregulation and oxidative stress responses. Reprod. Toxicol., 2016, 65, 113-122.
[34]
Watanabe, Y.; Nakajima, K.; Mizukami, S.; Akahori, Y.; Imatanaka, N.; Woo, G.H.; Yoshida, T.; Shibutani, M. Differential effects between developmental and postpubertal exposure to N-methyl-N-nitrosourea on progenitor cell proliferation of rat hippocampal neurogenesis in relation to COX2 expression in granule cells. Toxicology, 2017, 389, 55-66.
[35]
Abe, H.; Tanaka, T.; Kimura, M.; Mizukami, S.; Saito, F.; Imatanaka, N.; Akahori, Y.; Yoshida, T.; Shibutani, M. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study. Toxicol. Appl. Pharmacol., 2015, 287, 210-221.
[36]
Wang, C.Y.; Cheng, C.W.; Wang, W.H.; Chen, P.S.; Tzeng, S.F. Postnatal stress induced by injection with valproate leads to developing emotional disorders along with molecular and cellular changes in the hippocampus and amygdala. Mol. Neurobiol., 2016, 53, 6774-6785.
[37]
Montalvo-Ortiz, J.L.; Bordner, K.A.; Carlyle, B.C.; Gelernter, J.; Simen, A.A.; Kaufman, J. The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behav. Brain Res., 2016, 315, 71-74.
[38]
Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA, 2015, 112, 6807-6813.
[39]
Kikusui, T.; Kiyokawa, Y.; Mori, Y. Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain Res., 2007, 1133, 115-122.
[40]
Yang, N.V.; Pannia, E.; Chatterjee, D.; Kubant, R.; Ho, M.; Hammoud, R.; Pausova, Z.; Anderson, G.H. Gestational folic acid content alters the development and function of hypothalamic food intake regulating neurons in Wistar rat offspring post-weaning. Nutr. Neurosci., 2018, 30, 1-12.
[41]
Abarinov, E.V.; Beaudin, A.E.; Field, M.S.; Perry, C.A.; Allen, R.H.; Stabler, S.P.; Stover, P.J. Disruption of shmt1 impairs hippocampal neurogenesis and mnemonic function in mice. J. Nutr., 2013, 143, 1028-1035.
[42]
Ogawa, M.; Nagai, T.; Saito, Y.; Miyaguchi, H.; Kumakura, K.; Abe, K.; Asakura, T. Short-term mastication after weaning upregulates GABAergic signalling and reduces dendritic spine in thalamus. Biochem. Biophys. Res. Commun., 2018, 498, 621-626.
[43]
Paxinos, G.; Watson, C.R.; Emson, P.C. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods, 1980, 3, 129-149.