Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation

Author(s): Navjeet Kaur*

Volume 16, Issue 5, 2019

Page: [481 - 503] Pages: 23

DOI: 10.2174/1570193X15666180709144028

Price: $65

Abstract

Ultrasonic irradiation is employed to accelerate organic reactions. Under sonication reduced time, good selectivity, excellent yield, and milder conditions were observed for many organic reactions. Ultrasonic reactions are increasingly used as green, clean, and environment-friendly methods in organic synthesis in terms of energy conservation and waste minimization. The use of ultrasound irradiation is increasing in coming years. The use of ultrasound irradiation in the synthesis of five-membered N-heterocycles is depicted in the present review article.

Keywords: Heterocycles, nitrogen, ultrasound, ultrasonic irradiation, nitrogen heteroatom, pyrrole ring.

« Previous
Graphical Abstract

[1]
Cox, C.D.; Breslin, M.J.; Mariano, B.J. Two-step synthesis of β-alkyl chalcones and their use in the synthesis of 3,5-diaryl-5-alkyl-4,5-dihydropyrazoles. Tetrahedron Lett., 2004, 45(7), 1489-1493.
[2]
(a) Kaur, N. Metal catalysts: Applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N,N-heterocycles. Synth. Commun., 2015, 45(11), 1269-1300.
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
(d) Li, J.T.; Zhang, X.H.; Lin, Z.P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3, 1-4.
[3]
Li, J.T.; Yang, W.Z.; Wang, S.X.; Li, S.H.; Li, T.S. Improved synthesis of chalcones under ultrasound irradiation. Ultrason. Sonochem., 2002, 9, 237-239.
[4]
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Nikpassand, M. Ultrasound-promoted regio and chemoselective synthesis of pyridazinones and phthalazinones catalyzed by ionic liquid [bmim]Br/AlCl3. Ultrason. Sonochem., 2012, 19, 740-744.
[5]
(a) Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.L.; Shi, D.Q. A novel and environment-friendly method for preparing dihydropyrano [2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18, 708-712.
(b) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57(4), 478-564.
[6]
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: Solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
(c) Li, J.T.; Han, J.F.; Yang, J.H.; Li, T.S. An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrason. Sonochem., 2003, 10, 199-122.
[7]
Mahdavinia, G.H.; Rostamizadeh, S.; Amani, A.M.; Emdadi, Z. Ultrasound-promoted greener synthesis of aryl-14-H-dibenzo[a,j] xanthenes catalyzed by NH4H2PO4/SiO2 in water. Ultrason. Sonochem., 2009, 16, 7-10.
[8]
Duarte, A.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Freitag, R.A.; Siqueira, G.M. Ultrasound promoted synthesis of thioesters from 2-mercaptobenzoxa(thia)zoles. Ultrason. Sonochem., 2010, 17(2), 281-283.
[9]
Li, J.T.; Meng, X.T.; Zhai, X.L. One-pot synthesis of benzylacetamide from oxime under ultrasound irradiation. Ultrason. Sonochem., 2009, 16(5), 590-592.
[10]
Sreedhar, B.; Reddy, P.S. Sonochemical synthesis of 1, 4‐disubstituted 1, 2, 3‐triazoles in aqueous medium. Synth. Commun., 2007, 37(5), 805-812.
[11]
Nuchter, M.; Ondruschka, B.; Jungnickel, A.; Muller, U. Organic processes initiated by non-classical energy sources. J. Phys. Org. Chem., 2000, 13(10), 579-586.
[12]
(a) Ji, S.J.; Shen, Z.L.; Gu, D.G.; Huang, X.Y. Ultrasound-promoted alkynylation of ethynylbenzene to ketones under solvent-free condition. Ultrason. Sonochem., 2005, 12, 161-163.
(b) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
(c) Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(12), 1379-1410.
(d) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-Benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[13]
Li, J.T.; Yin, Y.; Li, L.; Sun, M.X. A convenient and efficient protocol for the synthesis of 5-aryl-1,3-diphenylpyrazole catalyzed by hydrochloric acid under ultrasound irradiation. Ultrason. Sonochem., 2010, 17, 11-13.
[14]
Pizzuti, L.; Martins, P.L.G.; Ribeiro, B.A.; Quina, F.H.; Pinto, E.; Flores, A.F.C.; Venzke, D.; Pereira, C.M.P. Efficient sonochemical synthesis of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides. Ultrason. Sonochem., 2010, 17, 34-37.
[15]
(a) Juarez, R.; Concepcion, P.; Corma, A.; Garcia, H. Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by omega-aminoalcohols. Chem. Commun., 2010, 46(23), 4181-4183.
(b) Trilleras, J.; Polo, E.; Quiroga, J.; Cobo, J.; Nogueras, M. Ultrasonics promoted synthesis of 5-(pyrazol-4-yl)-4,5-dihydropyrazoles derivatives. Appl. Sci., 2013, 3(2), 457-468.
[16]
Cravotto, G.; Cintas, P. Power ultrasound in organic synthesis: Moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 2006, 35, 180-196.
[17]
Muravyova, E.A.; Desenko, S.M.; Musatov, V.I.; Knyazeva, I.V.; Shishkina, S.V.; Shishkin, O.V.; Chebanov, V.A. Ultrasonic-promoted three-component synthesis of some biologically active 1,2,5,6-tetrahydropyrimidines. J. Comb. Chem., 2007, 9, 797-803.
[18]
(a) Kaur, N. Microwave-assisted synthesis: Fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
(c) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: Applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
(d) Cintas, P.; Palmisano, G.; Cravoto, G. Power ultrasound in metal-assisted synthesis: From classical Barbier-like reactions to click chemistry. Ultrason. Sonochem., 2011, 18(4), 836-841.
(e) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[19]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A convenient and efficient protocol for the one pot synthesis of 3,4-dihydro-pyrimidin-2-(1H)-ones catalyzed by ionic liquids under ultrasound irradiation. J. Braz. Chem. Soc., 2011, 22(3), 511-516.
[20]
Franco, C.F.J.; Jordao, A.K.; Ferreira, V.F.; Pinto, A.C.; de Souza, M.C.B.V.; Resende, J.A.L.C.; Cunha, A.C. Synthesis of new 2-aminocarbohydrate-1,4-naphthoquinone derivatives promoted by ultrasonic irradiation. J. Braz. Chem. Soc., 2011, 22(1), 187-193.
[21]
Jiang, Y.; Chen, X.; Qu, L.; Wang, J.; Yuan, J.; Chen, S.; Li, X.; Qu, C. Ultrasonic-assisted synthesis of chrysin derivatives linked with 1,2,3-triazoles by 1,3-dipolar cycloaddition reaction. Ultrason. Sonochem., 2011, 18, 527-533.
[22]
(a) Martings, M.A.; Pereira, C.M.; Cunico, W.; Moura, S.; Rosa, F.A.; Peres, R.L.; Machado, P.; Zanatta, N.; Bonacorso, H.G. Ultrasound promoted synthesis of 5-hydroxy-5-trihalomethyl-4,5-dihydroisoxazoles and beta-enamino trihalomethyl ketones in water. Ultrason. Sonochem., 2006, 13, 364-370.
(b) Alaoui, S.; Driowya, M.; Demange, L.; Benhida, R.; Bougrin, K. Ultrasound-assisted facile one-pot sequential synthesis of novel sulfonamide-isoxazoles using cerium (IV) ammonium nitrate (CAN) as an efficient oxidant in aqueous medium. Ultrason. Sonochem., 2018, 40, 289-297.
[23]
(a) Kaur, N. Palladium catalysts: Synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57(1), 1-78.
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44(21), 3047-3081.
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44(19), 2739-2755.
(f) Ji, S.J.; Wang, S.Y. An expeditious synthesis of β-indolylketones catalyzed by p-toluenesulfonic acid (PTSA) using ultrasonic irradiation. Ultrason. Sonochem., 2005, 12, 339-343.
[24]
Shen, Z.L.; Ji, S.J.; Wang, S.Y.; Zeng, X.F. A novel base-promoted synthesis of β-indolylketones via a three-component condensation under ultrasonic irradiation. Tetrahedron, 2005, 61, 10552-10558.
[25]
(a) Cella, R.; Stefani, H.A. Ultrasound in heterocycles chemistry. Tetrahedron, 2009, 65, 2619-2641.
(b) Pizzuti, L.; Franco, M.S.F.; Flores, A.F.C.; Quina, F.H.; Pereira, C.M.P. Recent advances in the ultrasound-assisted synthesis of azoles, green chemistryenvironmentally benign approaches, Dr. Mazaahir Kidwai (Ed.). 2012, ISBN: 978-953-51-0334-9, InTech.
[http://dx.doi.org/10.5772/35171]
(c) Khosropour, A.R. Ultrasound-promoted greener synthesis of 2,4,5-trisubstituted imidazoles catalyzed by Zr(acac)4 under ambient conditions. Ultrason. Sonochem., 2008, 15(5), 659-664.
[26]
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
(c) Kaur, N. Photochemical reactions: Synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
(d) Kaur, N. Ionic liquids: Promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47(2), 163-187.
(g) Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9, 927-934.
[27]
Azarifar, D.; Sheikh, D. Ultrasound-promoted one-pot synthesis of 8-aryl-7,8-dihydro-1,3-dioxolo 4,5-quinolin-6(5H)-one derivatives under catalyst-free and solvent-free conditions. Acta Chim. Slov., 2012, 59, 664-669.
[28]
(a) Xu, H.; Liao, W.M.; Li, H.F. A mild and efficient ultrasound-assisted synthesis of diaryl ethers without any catalyst. Ultrason. Sonochem., 2007, 14(6), 779-782.
(b) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
[29]
Guzen, K.P.; Guarezemini, A.S.; Orfao, A.T.G.; Cella, R.; Pereira, C.M.P.; Stefani, P.H.A. Eco-friendly synthesis of imines by ultrasound irradiation. Tetrahedron Lett., 2007, 48, 1845-1848.
[30]
Saleh, T.S.; El-Rahman, N.M.A.; Elkateb, A.A.; Shaker, N.O.; Mahmoud, N.A.; Gabal, S.A. Ultrasound promoted synthesis of some novel fused pyrans. Ultrason. Sonochem., 2012, 19, 491-497.
[31]
(a) Zhang, Z.H.; Li, J.J.; Li, T.S. Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrason. Sonochem., 2012, 19, 264-269.
(b) Nguyen, H.T.; Chau, D.K.N.; Tran, P.H. A green and efficient method for the synthesis of pyrroles using a deep eutectic solvent ([CholineCl][ZnCl2]3) under solvent-free sonication. New J. Chem., 2017, 41, 12481-12489.
[32]
Nagargoje, D.; Mandhane, P.; Shingote, S.; Badadhe, P.; Gill, C. Ultrasound assisted one pot synthesis of imidazole derivatives using diethyl bromophosphate as an oxidant. Ultrason. Sonochem., 2012, 19, 94-96.
[33]
Dabiri, M.; Noroozi Tisseh, Z.; Bahramnejad, M.; Bazgir, A. Sonochemical multi-component synthesis of spirooxindoles. Ultrason. Sonochem., 2011, 18, 1153-1159.
[34]
Jiang, Y.; Chen, X.; Qu, L.; Wang, J.; Yuan, J.; Chen, S.; Li, X.; Qu, C. Ultrasonic-assisted synthesis of chrysin derivatives linked with 1,2,3-triazoles by 1,3-dipolar cycloaddition reaction. Ultrason. Sonochem., 2011, 18(2), 527-533.
[35]
Abdel-Rahman, N.M.; Saleh, T.S.; Mady, M.F. Ultrasound assisted synthesis of some new 1,3,4-thiadiazole and bi(1,3,4-thiadiazole) derivatives incorporating pyrazolone moiety. Ultrason. Sonochem., 2009, 16, 70-74.
[36]
Gao, W.; Liu, J.; Jiang, Y.; Li, Y. First synthesis of 2-(benzofuran-2-yl)-6,7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein J. Org. Chem., 2011, 7, 210-217.
[37]
(a) Bazgir, A.; Ahadi, S.; Ghahremanzadeh, R.; Khavasi, H.R.; Mirzaei, P. Ultrasound-assisted one-pot, three-component synthesis of spiro[indoline-3,4′-pyrazolo [3,4-b]pyridine]-2,6′(1′H)-diones in water. Ultrason. Sonochem., 2010, 17, 447-452.
(b) Cella, R.; Stefani, H.A. Ultrasound in heterocycles chemistry. Tetrahedron, 2009, 65, 2619-2641.
(c) Cravotto, G.; Cintas, P. Power ultrasound in organic synthesis: Moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 2006, 35, 180-196.
[38]
Chen, H.; Wang, S.Y.; Xu, X.P.; Ji, S.J. Facile three-component synthesis of spirooxindolepyrrololine ring systems via 1,3-dipolar cycloaddition with 1,4-naphthoquinone. Synth. Commun., 2011, 41, 3280-3288.
[39]
Lashgari, N.; Ziarani, G.M. Synthesis of heterocyclic compounds based on isatin through 1, 3-dipolar cycloaddition reactions. ARKIVOC, 2012, (i), 277-320.
[40]
Tabatabaei Rezaei, S.J.; Nabid, M.R.; Yari, A.; Ng, S.W. Ultrasound-promoted synthesis of novel spirooxindolo/spiroacenaphthen dicyano pyrrolidines and pyrrolizidines through regioselective azomethine ylide cycloaddition reaction. Ultrason. Sonochem., 2011, 18(1), 49-53.
[41]
Ge, S.; Hua, Y.; Xia, M. Ultrasound-promoted synthesis of novel dispirocyclic frameworks from aza-Claisen rearrangements of Baylis-Hillman amines. Ultrason. Sonochem., 2009, 16(2), 232-236.
[42]
Hu, Y.; Zou, Y.; Wu, H.; Shi, D. A facile and efficient ultrasound-assisted synthesis of novel dispiroheterocycles through 1,3-dipolar cycloaddition reactions. Ultrason. Sonochem., 2012, 19(2), 264-269.
[43]
Liu, H.; Zou, Y.; Hu, Y.; Shi, D.Q. An efficient one-pot synthesis of dispiropyrrolidine derivatives through 1,3-dipolar cycloaddition reactions under ultrasound irradiation. J. Heterocycl. Chem., 2011, 48(4), 877-881.
[44]
Ponnala, S.; Kumar, R.; Maulik, P.R.; Sahu, D.P. One pot synthesis of novel dispiro[oxindole-thiazolidinedione/thioxo-thiazoli-dinone/ dihydro pyrazolone]-pyrrolidines via 1,3-dipolar cycloaddition reaction of azomethine ylides. J. Heterocycl. Chem., 2006, 43(6), 1635-1640.
[45]
Murugan, R.; Anbazhagan, S.; Sriman Narayanan, S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279.
[46]
Hayashi, Y.; Shoji, M.; Yamaguchi, S.; Mukaiyama, T.; Yamaguchi, J.; Kakeya, H.; Osada, H. Asymmetric total synthesis of pseurotin A. Org. Lett., 2003, 5(13), 2287-2290.
[47]
Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev., 1997, 26, 443-451.
[48]
Cintas, P.; Luche, J.L. The sonochemical approach. Green Chem., 1999, 1, 115-125.
[49]
Mason, T.J.; Phillip, L.J. An introduction to sonochemistry. Endeavour, 1989, 13(3), 123-128.
[50]
Mason, T.J. Sonochemistry and the environment-providing a “green” link between chemistry, physics and engineering. Ultrason. Sonochem., 2007, 14, 476-483.
[51]
Smits, R.A.; Adami, M.; Istyastono, E.P.; Zuiderveld, O.P.; van Dam, C.M.E.; de Kanter, F.J.J.; Jongejan, A.; Coruzzi, G.; Leurs, R.; de Esch, I.J.P. Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H-4 receptor inverse agonists. J. Med. Chem., 2010, 53, 2390-2400.
[52]
(a) Satyanarayana, V.S.V.; Sivakumar, A. Ultrasound-assisted synthesis of 2,5-dimethyl-N-substituted pyrroles catalyzed by uranyl nitrate hexahydrate. Ultrason. Sonochem., 2011, 18, 917-922.
(b) Li, D.; Zang, H.; Wu, C.; Yu, N.Q. 1-Methylimidazolium hydrogen sulfate catalyzed convenient synthesis of 2,5-dimethyl-N-substituted pyrroles under ultrasonic irradiation. Ultrason. Sonochem., 2013, 20(5), 1144-1148.
[53]
Zhang, Z.H.; Li, J.J.; Li, T.S. Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrason. Sonochem., 2008, 15, 673-676.
[54]
Mantu, D.; Moldoveanu, C.; Nicolescu, A.; Deleanu, C.; Mangalagiu, I.I. A facile synthesis of pyridazinone derivatives under ultrasonic irradiation. Ultrason. Sonochem., 2009, 16, 452-454.
[55]
Eftekhari-Sis, B.; Abdollahifar, A.; Hashemi, M.M.; Zirak, M. Stereoselective synthesis of β-amino ketones via direct Mannich-type reactions, catalyzed with ZrOCl2·8H2O under solvent-free conditions. Eur. J. Org. Chem., 2006, 5152-5157.
[56]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A.; Hashemi, M.M. Synthesis of new 2-aryl-4-chloro-3-hydroxy-1H-indole-5,7-dicarbaldehydes via Vilsmeier-Haack reaction. J. Heterocycl. Chem., 2010, 47, 463-467.
[57]
Muravyova, E.A.; Shishkina, S.V.; Musatov, V.I.; Shishkin, O.V.; Desenko, S.M.; Chebanov, V.A. Chemoselectivity of multicomponent condensations of barbituric acids, 5-aminopyrazoles and aldehydes. Synthesis, 2009, 1375-1385.
[58]
Eftekhari, B.; Vahdati-Khajeh, S. Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals. Curr. Chem. Lett., 2013, 2, 85-92.
[59]
Pal, M.; Subramanian, V.; Batchu, V.R.; Dager, I. Synthesis of 2-substituted indoles via Pd/C-catalyzed reaction in water. Synlett, 2004, 11, 1965-1969.
[60]
Hong, K.B.; Lee, C.W.; Yum, E.K. Synthesis of 2-substituted indoles by palladium-catalyzed heteroannulation with Pd-NaY zeolite catalysts. Tetrahedron Lett., 2004, 45(4), 693-697.
[61]
Palimkar, S.S.; Kumar, P.H.; Lahoti, R.J.; Srinivasan, K.V. 'Ligand-, copper-, and amine-free one-pot synthesis of 2-substituted indoles via Sonogashira coupling 5-endo-dig cyclization. Tetrahedron, 2006, 62, 5109-5115.
[62]
Lu, B.Z.; Zhao, W.; Wei, H.X.; Dufour, M.; Farina, V.; Senanayake, C.H. A practical mild, one-pot, regiospecific synthesis of 2,3-disubstituted indoles via consecutive Sonogashira and Cacchi reactions. Org. Lett., 2006, 8, 3271-3274.
[63]
Hopkins, C.R.; Collar, N. 6-Substituted-5H-pyrrolo [2,3-b]pyra-zines via palladium-catalyzed heteroannulation from N-(3-chloropyrazin-2-yl)-methanesulfonamide and alkynes. Tetrahedron Lett., 2004, 45(43), 8087-8090.
[64]
Chinchilla, R.; Najera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107, 874-922.
[65]
Fink, B.E.; Mortensen, D.S.; Stauffer, S.R.; Aron, Z.D.; Katzenellenbogen, J.A. Novel structural templates for estrogen-receptor ligands and prospects for combinatorial synthesis of estrogens. Chem. Biol., 1999, 6(4), 205-219.
[66]
Sakhno, Y.I.; Shishkina, S.V.; Shishkin, O.V.; Musatov, V.I.; Vashchenko, E.V.; Desenko, S.M.; Chebanov, V.A. Diversity oriented heterocyclizations of pyruvic acids, aldehydes and 5-amino-N-aryl-1H-pyrazole-4-carboxamides: Catalytic and temperature control of chemoselectivity. Mol. Divers., 2010, 14, 523-531.
[67]
(a) Kantam, M.L.; Rajasekhar, C.V.; Gopikrishna, G.; Rajender, R.K.; Choudary, B.M. Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Lett., 2006, 47(33), 5965-5967.
(b) Kraus, G.A.; Nagy, J.O. The synthesis of amino acids by 1,3-dipolar cycloadditions of azomethine ylides. Tetrahedron, 1985, 41(17), 3537-3545.
[68]
Prasad, J.V.; Reddy, J.S.; Kumar, N.R.; Solomon, K.A.; Gopikrishna, G. An efficient ultrasound promoted catalyst-free protocol for the synthesis of chromeno [4,3-b]quinolin-6-ones. J. Chem. Sci., 2011, 123(5), 673-679.
[69]
Achiwa, K.; Motoyama, T.; Sekiya, M. 1, 3-Dipolar cycloaddition leading to N-acylated pyrrolidines and 2, 5-dihydropyrroles. Chem. Pharm. Bull., 1983, 31(11), 3939-3945.
[70]
Chebanov, V.A.; Gura, K.A.; Desenko, S.M. Aminoazoles as key reagents in multicomponent heterocyclizations. Top. Heterocycl. Chem., 2010, 23, 41-84.
[71]
Tsuge, O.; Kanemasa, S.; Kuraoka, S.; Takenaka, S. New C-C bond formation with pyridinium methylide: Hydromethylenation of olefin. Chem. Lett., 1984, 13(2), 281-284.
[72]
Tsuge, O.; Kanemasa, S.; Hatada, A.; Matsuda, K. Water-induced formation of azomethine ylide 1,3-dipole. stereospecific and regioselective cycloaddition reactions. Chem. Lett., 1984, 13(5), 801-804.
[73]
Tsuge, O.; Oe, K.; Kawaguchi, N. Photofragmentation of oxazolidines. A new method for the generation of aziridines. Chem. Lett., 1981, 10(11), 1585-1588.
[74]
(a) Tsuge, O.; Ueno, K. Intramolecular 1,3-dipolar cycloadditions of benzylidene-α-cyanobenzylamines bearing non-activated alkynyl and alkenyl functions. Heterocycles, 1983, 20(11), 2133-2139.
(b) Tsuge, O.; Ueno, K. Benzylidene(cyano)benzylamine as a 1,3-dipole. Heterocycles, 1982, 19(8), 1411-1414.
[75]
(a) Grigg, R.; Basanagoudar, L.D.; Kennedy, D.A.; Malone, J.F.; Thianpatanagul, S. X=Y-ZH systems as potential 1,3-dipoles. Cycloadditions of thiominoethers and thioiminocarbonates. Tetrahedron Lett., 1982, 23(27), 2803-2806.
(b) Grigg, R.; Gunaratne, H.Q.N.; Kemp, J. Reaction of Δ3-pyrrolines with dimethyl acetylenedicarboxylate. A novel pyrrole forming rearrangement. Tetrahedron Lett., 1984, 25(1), 99-102.
[76]
Hosomi, A.; Sakata, Y.; Sakurai, H.N. -(Trimethylsilyl-methyl) aminomethyl ethers as azomethine ylide synthons. A new and convenient access to pyrrolidine derivatives. Chem. Lett., 1984, 1117-1120.
[77]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Knyazeva, I.V.; Groth, U.; Glasnov, T.; Kappe, C.O. Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone and aldehydes. J. Org. Chem., 2008, 73, 5110-5118.
[78]
Padwa, A.; Dent, W. Use of N-[(trimethylsilyl)methyl]amino ethers as capped azomethine ylide equivalents. J. Org. Chem., 1987, 52(2), 235-244.
[79]
Padwa, A.; Dent, W.; Nimmesgern, H.; Venkatramanan, M.K.; Wong, G.S.K. Utilization of phenylthio substituted amines for the synthesis of pyrrolidines. Chem. Ber., 1986, 119(3), 813-828.
[80]
Parker, K.A.; Cohen, I.D.; Padwa, A.; Dent, W. Cycloadditions of non-stabilized azomethine ylides and quinones synthesis of the Reniera isoindole. Tetrahedron Lett., 1984, 25(43), 4917-4920.
[81]
Borik, R.M. A comparison on microwave and ultrasound accelerated synthetic route to dihydropyrimidinones catalyzed by sulfanilic acid in water. Aust. J. Basic Appl. Sci., 2013, 7(1), 543-547.
[82]
Rambabu, D.; Kiran Kumar, S.; Sreenivas, B.Y.; Sandra, S.; Kandale, A.; Misra, P.; Basaveswara Rao, M.V.; Pal, M. Ultrasound-based approach to spiro-2,3-dihydroquinazolin-4(1H)-ones: Their in vitro evaluation against chorismate mutase. Tetrahedron Lett., 2013, 54, 495-501.
[83]
Denis, J.M.; Firard, C.; Conia, J.M. Improved Simmons-Smith reactions. Synthesis, 1972, 10, 549-551.
[84]
Chou, T.S.; Tsai, C.Y. Synthesis of furan-fused 3-sulfolene. A stable precursor to furan analogue of o-quinodimethane. Heterocycles, 1992, 34(4), 663-666.
[85]
Liu, G.B.; Xu, J.L.; He, C.C.; Chen, G.; Xu, Q.; Xu, H.X.; Li, J.X. Synthesis and evaluation of a novel series of quinoline derivatives with immunosuppressive activity. Bioorg. Med. Chem., 2009, 17, 5433-5441.
[86]
Chou, T.S.; Chang, R.C. An efficient approach toward 2,3-dimethylene pyrroles. Preparation and reactions of pyrrolo-3-sulfolenes. J. Chem. Soc. Chem. Commun., 1992, 549-551.
[87]
Chou, T.S.; Tsai, C.Y. A new synthesis of pyrrolo-3-sulfolenes. J. Chin. Chem. Soc., 1993, 40, 581-585.
[88]
Mamaghani, M.; Dastmard, S. One-pot easy conversion of Baylis-Hillman adducts into arylpyrazoles under ultrasound irradiation. ARKIVOC, 2009, (ii), 168-173.
[89]
Shi, M.; Jiang, J.K.; Li, C.Q. Lewis base and L-proline co-catalyzed Baylis-Hillman reaction of arylaldehydes with methyl vinyl ketone. Tetrahedron Lett., 2002, 43(1), 127-130.
[90]
Pathak, V.N.; Joshi, R.; Sharma, J.; Gupta, N.; Rao, V.M. Mild and eco-friendly tandem synthesis, and spectral and antimicrobial studies of N1-acetyl-5-aryl-3-(substituted styryl)pyrazolines. Phosphorus Sulfur Silicon., 2009, 184, 1854-1865.
[91]
Al-Mutairi, A.A.; El-Baih, F.E.M.; Al-Hazimi, H.M. Microwave versus ultrasound assisted synthesis of some new heterocycles based on pyrazolone moiety. J. Saudi Chem. Soc., 2010, 14, 287-299.
[92]
Mojtahedi, M.M.; Javadpour, M.; Abaee, M.S. Convenient ultrasound mediated synthesis of substituted pyrazolones under solvent-free conditions. Ultrason. Sonochem., 2008, 15(5), 828-832.
[93]
Zhang, L.; Geng, M.; Teng, P.; Zhao, D.; Lu, X.; Li, J.X. Ultrasound-promoted intramolecular direct arylation in a capillary flow microreactor. Ultrason. Sonochem., 2012, 19, 250-256.
[94]
Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Niazimbetova, Z.I.; Evans, D.H. Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: Single-stage synthesis of 1′-substituted 6-amino-spiro-4-(piperidine-4′)-2H,4H-pyrano [2,3-c]pyrazole-5-carbonitri-les. Tetrahedron, 2003, 59(38), 7491-7496.
[95]
Refn, S. Infra-red spectra of substituted pyrazolones and some reflexions on the hydrogen bonding. Spectrochim. Acta, 1961, 17(1), 40-50.
[96]
Katritzky, A.R.; Maine, F.W. The tautomerism of heteroaromatic compounds with five-membered rings-IV: 1-Substituted pyrazolin-5-ones. Tetrahedron, 1964, 20(2), 299-314.
[97]
El-Rahman, N.M.A.; Saleh, T.S.; Mady, M.F. Ultrasound assisted synthesis of some new 1,3,4-thiadiazole and bi(1,3,4-thiadiazole) derivatives incorporating pyrazolone moiety. Ultrason. Sonochem., 2009, 16, 70-74.
[98]
Trilleras, J.; Quiroga, J.; Cobo, J.; Low, J.N.; Glidewelld, C. Hydrogen-bonded chains in 3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)-propenone and 3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(3,4,5-trimethoxyphenyl)propenone. Acta Crystallogr., 2005, C61, 414-416.
[99]
Trilleras, J.; Quiroga, J.; Cobo, J.; Low, J.N.; Glidewelld, C. 5-Chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde: Sheets built from C-H-O and C-H-arene hydrogen bonds. Acta Crystallogr., 2005, E61, 1055-1057.
[100]
Rostamizadeh, S.; Shadjou, N.; Amani, A.M.; Balalaie, S. Silica supported sodium hydrogen sulfate (NaHSO4/SiO2): A mild and efficient reusable catalyst for the synthesis of aryl-14-H-dibenzo [a, j] xanthenes under solvent. Chin. Chem. Lett., 2008, 19(10), 1151-1155.
[101]
Saleh, T.S.; Abd El-Rahman, N.M. Ultrasound promoted synthesis of substituted pyrazoles and isoxazoles containing sulphone moiety. Ultrason. Sonochem., 2009, 16(2), 237-242.
[102]
Arora, H.K.; Jain, S. The synthetic development of pyrazole nucleus: From reflux to microwave. Der. Pharm. Lett., 2013, 5(1), 340-354.
[103]
Pizzuti, L.; Piovesan, L.A.; Flores, A.F.C.; Quina, F.H.; Pereira, C.M.P. Environmentally friendly sonocatalysis promoted preparation of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles. Ultrason. Sonochem., 2009, 16, 728-731.
[104]
(a) Pizzuti, L.; Martins, P.L.G.; Ribeiro, B.A.; Quina, F.H.; Pinto, E.; Flores, A.F.C.; Venzke, D.; Pereira, C.M.P. Efficient sonochemical synthesis of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides. Ultrason. Sonochem., 2010, 17, 34-37.
(b) Hussein, E.M.; Khairou, K.S. Sonochemistry: Synthesis of bioactive heterocycles. Synth. Commun., 2014, 44, 2155-2191.
[105]
Gupta, R.; Gupta, N.; Jain, A. Improved synthesis of chalcones and pyrazolines under ultrasonic irradiation. Indian J. Chem., 2010, 49B, 351-355.
[106]
Nabid, M.R.; Rezaei, S.J.T.; Ghahremanzadeh, R.; Bazgir, A. Ultrasound-assisted one-pot, three-component synthesis of 1H-pyrazolo [1,2-b]phthalazine-5,10-diones. Ultrason. Sonochem., 2010, 17, 159-161.
[107]
Li, J.T.; Liu, X.R.; Sun, M.X. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation. Ultrason. Sonochem., 2010, 17, 55-57.
[108]
Ahmad, M.; Siddiqui, H.L.; Zia-ur-Rehman, M.; Parvez, M. Anti-oxidant and antibacterial activities of novel N’-arylmethylidene-2-(3,4-dimethyl-5,5-dioxidopyrazolo [4,3-c][1,2]benzothiazin-2(4H)-yl) acetohydrazides. Eur. J. Med. Chem., 2010, 45, 698-704.
[109]
Machado, P.; Lima, G.R.; Rotta, M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Efficient and highly regioselective synthesis of ethyl 1-(2,4-dichlorophenyl)-1Hpyrazole-3-carboxylates under ultrasound irradiation. Ultrason. Sonochem., 2011, 18, 293-299.
[110]
Kanagarajan, V.; Ezhilarasi, M.R.; Gopalakrishnan, M. ‘One-pot’ ultrasound irradiation promoted synthesis and spectral characterization of an array of novel 1,1′-(5,5′-(1,4-phenylene) bis(3-aryl-1H-pyrazole-5,1(4H,5H)-diyl))diethanones, a bis acetylated pyrazoles derivatives. Spectrochim. Acta Part A., 2011, 78, 635-639.
[111]
Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.; Shi, D. A novel and environmentfriendly method for preparing dihydropyrano [2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18, 708-712.
[112]
Rodrigues-Santos, C.E.; Echevarria, A. Convenient syntheses of pyrazolo [3,4-b]pyridin-6-ones using either microwave or ultrasound irradiation. Tetrahedron Lett., 2011, 52, 336-340.
[113]
Shekouhy, M.; Hasaninejad, A. Ultrasound-promoted catalyst-free one pot four component synthesis of 2H-indazolo [2,1-b] phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimi-dazolium bromide. Ultrason. Sonochem., 2012, 19, 307-313.
[114]
Silva, F.A.N.; Galluzzi, M.P.; Albuquerque, B.; Pizzuti, L.; Gressler, V.; Rivelli, D.P.; Barros, S.B.M.; Pereira, C.M.P. Ultrasound irradiation promoted largescale preparation in aqueous media and antioxidant activity of azoles. Lett. Drug Des. Discov., 2009, 6, 323-326.
[115]
Sangshetti, J.N.; Kokare, N.D.; Kotharkar, S.A.; Shinde, D.B. Sodium bisulfite as an efficient and inexpensive catalyst for the one-pot synthesis of 2,4,5-triaryl-1H-imidazoles from benzil or benzoin and aromatic aldehydes. Monatsh. Chem., 2008, 139(2), 125-127.
[116]
Sangshetti, J.N.; Chabukswar, A.R.; Shinde, D.B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(1), 444-448.
[117]
Peng, Y.; Song, G.; Dou, R. Surface cleaning under combined microwave and ultrasound irradiation: Flash synthesis of 4H-pyrano [2,3-c]pyrazoles in aqueous media. Green Chem., 2006, 8, 573-575.
[118]
Vasuki, G.; Kumaravel, K. Rapid four-component reactions in water: Synthesis of pyranopyrazoles. Tetrahedron Lett., 2008, 49(39), 5636-5638.
[119]
Kanagaraj, K.; Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles: Per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett., 2010, 51(25), 3312-3316.
[120]
Mecadon, H.; Rohman, M.R.; Kharbangar, I.; Laloo, B.M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2, 4-dihydropyrano [2, 3-c] pyrazole-5-carbonitriles in water. Tetrahedron Lett., 2011, 52(25), 3228-3231.
[121]
Mecadon, H.; Rohman, M.R.; Rajbangshi, M.; Myrboh, B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano [2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett., 2011, 52(19), 2523-2525.
[122]
Darandale, S.N.; Sangshetti, J.N.; Shinde, D.B. Ultrasound mediated, sodium bisulfite catalyzed, solvent free synthesis of 6-amino-3-methyl-4-substitued-2,4-dihydropyrano [2,3-c]pyrazole-5-carbonit-rile. J. Korean Chem. Soc., 2012, 56(3), 328-333.
[123]
Valduga, C.J.; Braibante, H.S.; Braibante, M.E.F. Reactivity of p-phenyl substituted β-enamino compounds using K-10/ultrasound. Synthesis of pyrazoles and pyrazolinones. J. Heterocycl. Chem., 1997, 34, 1453-1457.
[124]
Valduga, C.J.; Santis, D.B.; Braibante, H.S.; Braibante, M.E.F. Reactivity of p-phenyl substituted β-enamino compounds using K-10/ultrasound. Synthesis of isoxazoles and 5-isoxazolones. J. Heterocycl. Chem., 1998, 36(2), 505-508.
[125]
Wang, J.; Bai, X.; Xu, C.; Wang, Y.; Lin, W.; Zou, Y.; Shi, D. Ultrasound-promoted one-pot, three-component synthesis of spiro[indoline-3,1′-pyrazolo [1,2-b]phthalazine] derivatives. Molecules, 2012, 17, 8674-8686.
[126]
Mamaghani, M.; Loghmanifar, A.; Taati, M.R. An efficient one-pot synthesis of new 2-imino-1,3-thiazolidin-4-ones under ultrasonic conditions. Ultrason. Sonochem., 2011, 18, 45-48.
[127]
Ryabukhin, S.V.; Plaskon, A.S.; Volochnyuk, D.M.; Tolmachev, A.A. Synthesis of fused imidazoles and benzothiazoles from (hetero)aromatic ortho-diamines or ortho-aminothiophenol and aldehydes promoted by chlorotrimethylsilane. Synthesis, 2006, 3715-3726.
[128]
Sadjadi, S.; Sepehrian, H. Cu(OAc)2/MCM-41: An efficient and solid acid catalyst for synthesis of 2-arylbenzothiazoles under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(2), 480-483.
[129]
(a) Safar, J.; Zarnegar, Z. Magnetic Fe3O4 nanoparticles as a highly efficient catalyst for synthesis of imidazoles under ultrasound irradiation. Iran. J. Catal., 2012, 2, 121-128.
(b) Safari, J.; Zarnegar, Z. A highly efficient magnetic solid acid catalyst for synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. Ultrason. Sonochem., 2013, 20(2), 740-746.
[130]
Tu, S.; Li, C.; Li, G.; Cao, L.; Shao, Q.; Zhou, D.; Jiang, B.; Zhou, J.; Xia, M. Microwave-assisted combinatorial synthesis of polysubstituent imidazo [1,2-a]quinoline, pyrimido [1,2-a]quinoline and quinolino [1,2-a]quinazoline derivatives. J. Comb. Chem., 2007, 9(6), 1144-1148.
[131]
Ahmadi, S.J.; Hosseinpour, M.; Sadjadi, S. Nanocrystalline copper (II) oxide-catalyzed one-pot synthesis of imidazo [1, 2-a] quinoline and quinolino [1, 2-a] quinazoline derivatives via a three-component. Synth. Commun., 2011, 41(3), 426-435.
[132]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A convenient and efficient protocol for the one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by ionic liquids under ultrasound irradiation. J. Braz. Chem. Soc., 2011, 22, 511-516.
[133]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. Catalyst-free sonochemical synthesis of 1,8-dioxo-octahydroxanthene derivatives in carboxy functionalized ionic liquid. C. R. Chim., 2012, 15(5), 378-383.
[134]
(a) Patel, D.S.; Avalani, J.R.; Raval, D.K. Ionic liquid catalyzed convenient synthesis of imidazo [1,2-a]quinoline under sonic condition. J. Braz. Chem. Soc., 2012, 23(10), 1951-1954.
(b) Raghuvanshi, D.S.; Singh, K.N. A highly efficient green synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives and their photophysical studies. Tetrahedron Lett., 2011, 52(43), 5702-5705.
[135]
Pawar, S.S.; Dekhane, D.V.; Shingare, M.S.; Thore, S.N. Glyoxylic acid as catalyst: A simple selective synthesis of 1, 2-disubstituted benzimidazoles in aqueous media. Chin. Chem. Lett., 2008, 19(9), 1055-1058.
[137]
Hangarge, R.V.; Karale, B.K.; Mane, A.S.; Chavan, V.P.; Jarikote, D.V.; Shingare, M.S. Water mediated un-catalyzed facile synthesis of ylidenenitriles of 4-oxo-(4H)-1-benzopyran-3-carbaldehyde. Green Chem., 2001, 3, 310-312.Shindalkar, S.S.; Madje, B.R.; Shingare, M.S. Borate zirconia mediated Knoevenagel condensation reaction in water. J. Korean Chem. Soc., 2005, 49(4), 377-380.
[138]
Shindalkar, S.S.; Madje, B.R.; Shingare, M.S. A simple procedure for the preparation of acylals from 4-oxo-(4H)-1-benzopyran-3-carboxaldehyde using envirocat EPZ10R catalyst under ultrasonic irradiation. Ind. J. Hetero. Chem., 2005, 15(1), 81-82.
[139]
Shelke, K.F.; Madje, B.R.; Sadaphal, S.A.; Shitole, N.V.; Shingare, M.S. A facile and efficient one-pot synthesis of dihydropyrimidinones in ionic liquid under solvent-free condition. Org. Chem. Ind. J., 2008, 4(4), 277-280.
[140]
Hangarge, R.V.; Jarikote, D.V.; Shingare, M.S. Knoevenagel condensation reactions in an ionic liquid. Green Chem., 2002, 4, 266-268.
[141]
Madje, B.R.; Shindalkar, S.S.; Ware, M.N.; Shingare, M.S. An efficient condensation of 4-oxo-4H-benzopyran-3-carbaldehydes with 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one. ARKIVOC, 2005, 14, 82-86.
[142]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Shishkina, S.V.; Shishkin, O.V.; Kobzar, K.M.; Kappe, C.O. One-pot, multicomponent route to pyrazoloquinolizinones. Org. Lett., 2007, 9, 1691-1694.
[143]
Sadaphal, S.A.; Shelke, K.F.; Sonar, S.S.; Shingare, M.S. Ionic liquid promoted synthesis of bis(indolyl) methanes. Cent. Eur. J. Chem., 2008, 6(4), 622-626.
[144]
Diwakar, S.D.; Bhagwat, S.S.; Shingare, M.S.; Gill, C.H. Substituted 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chro-men-4-ones as novel anti-MRSA agents: Synthesis, SAR, and in-vitro assessment. Bioorg. Med. Chem. Lett., 2008, 18(16), 4678-4681.
[145]
Sapkal, S.B.; Shelke, K.F.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett., 2009, 50(15), 1754-1756.
[146]
Shelke, K.F.; Madje, B.R.; Sapkal, S.B.; Shingate, B.B.; Shingare, M.S. Alum catalyzed simple and efficient synthesis of 5- arylidene-2,4-thiazolidinedione in aqueous media. Green Chem. Lett. Rev., 2010, 3(1), 17-21.
[147]
(a) Shelke, K.F.; Sapkal, S.B.; Sonar, S.S.; Madje, B.R.; Shingate, B.B.; Shingare, M.S. An efficient synthesis of 2,4,5-triaryl-1H-imidazole derivatives catalyzed by boric acid in aqueous media under ultrasound-irradiation. Bull. Korean Chem. Soc., 2009, 30(5), 1057-1060.
(b) Shelke, K.F.; Sapkal, S.B.; Shingare, M.S. Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chin. Chem. Lett., 2009, 20, 283-287.
[148]
Sant’Anna, G.S.; Machado, P.; Sauzem, P.D.; Rosa, F.A.; Rubin, M.A.; Ferreira, J.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Ultrasound promoted synthesis of 2-imidazolines in water: A greener approach toward monoamine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19, 546-549.
[149]
Shelke, K.F.; Sapkal, S.B.; Sonar, S.S.; Madje, B.R.; Shingate, B.B.; Shingare, M.S. An efficient synthesis of 2,4,5-triaryl-1H-imidazole derivatives catalyzed by boric acid in aqueous media under ultrasound-irradiation. Bull. Korean Chem. Soc., 2009, 30, 1057-1060.
[150]
Zang, H.; Su, Q.; Mo, Y.; Cheng, B-W.; Jun, S. Ionic liquid [emim]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrason. Sonochem., 2010, 17, 749-751.
[151]
Joshi, R.S.; Mandhane, P.G.; Dabhade, S.K.; Gill, C.H. Tetrabutylammonium fluoride (TBAF) catalyzed synthesis of 2-arylbenzimidazole in water under ultrasound irradiation. J. Chin. Chem. Soc., 2010, 57, 1227-1231.
[152]
Joshi, R.S.; Mandhane, P.G.; Diwakar, S.D.; Gill, C.H. Ultrasound assisted green synthesis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt. Ultrason. Sonochem., 2010, 17(2), 298-300.
[153]
Joshi, R.S.; Mandhane, P.G.; Shaikh, M.U.; Kale, R.P.; Gill, C.H. Potassium dihydrogen phosphate catalyzed one-pot synthesis of 2, 4, 5-triaryl-1H-imidazoles. Chin. Chem. Lett., 2010, 21(4), 429-432.
[154]
Mandhane, P.G.; Joshi, R.S.; Nagargoje, D.R.; Gill, C.H. Ultrasound-promoted greener approach to synthesize α-hydroxy phosphonates catalyzed by potassium dihydrogen phosphate under solvent-free condition. Tetrahedron Lett., 2010, 51(11), 1490-1492.
[155]
Kale, R.P.; Jadhav, G.R.; Shaikh, M.U.; Gill, C.H. Eco-friendly and facile synthesis of 2-substituted-1H-imidazo [4,5-b]pyridine in aqueous medium by air oxidation. Tetrahedron Lett., 2009, 50(16), 1780-1782.
[156]
Arani, N.M.; Safari, V.J. A rapid and efficient ultrasound-assisted synthesis of 5,5-diphenylhydantoins and 5,5-diphenyl-2-thiohy-dantoins. Ultrason. Sonochem., 2011, 18, 640-643.
[157]
Yuan, Y-Q.; Guo, S-R. TMSCl/Fe(NO3)3-Catalyzed synthesis of 2-arylbenzothiazoles and 2-arylbenzimidazoles under ultrasonic irradiation. Synth. Commun., 2011, 41, 2169-2177.
[158]
Damavandi, S. Facile three-component synthesis of imidazo [4,5-b]indoles. J. Chem. Pharm. Res., 2011, 3(6), 1157-1162.
[159]
Li, J.; Li, L.; Li, T.; Wang, J. Ultrasound-promoted synthesis of 5-substituted and 5,5-disubstituted hydantoins. Indian J. Chem., 1998, 37B, 298-300.
[160]
Li, J.; Chen, G.; Wang, J.; Li, T. Ultrasound promoted synthesis of α,α’-bis(substituted furfurylidene) cycloalkanones and chalcones. Synth. Commun., 1999, 29, 965-971.
[161]
(a) Al-Zaydi, K.M. A simplified green chemistry approaches to synthesis of 2-substituted 1,2,3-triazoles and 4-amino-5-cyano-pyrazole derivatives conventional heating versus microwave and ultrasound as eco-friendly energy sources. Ultrason. Sonochem., 2009, 16, 805-809.
(b) Marzag, H.; Alaoui, S.; Amdouni, H.; Martin, A.R.; Bougrin, K.; Benhida, R. Efficient and selective azidation of per-O-acetylated sugars using ultrasound activation: Application to the one-pot synthesis of 1, 2, 3-triazole glycosides. New J. Chem., 2015, 39(7), 5437-5444.
(c) Driowya, M.; Puissant, A.; Robert, G.; Auberger, P.; Benhida, R.; Bougrin, K. Ultrasound-assisted one-pot synthesis of anti-CML nucleosides featuring 1, 2, 3-triazole nucleobase under iron-copper catalysis. Ultrason. Sonochem., 2012, 19(6), 1132-1138.
[162]
Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. Facile one-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles through Sonogashira coupling/1,3-dipolar cycloaddition of acid chlorides, terminal acetylenes, and sodium azide. Org. Lett., 2009, 11, 3024-3027.
[163]
Tu, N.P.; Hochlowski, J.E.; Djuric, S.W. Ultrasound-assisted click chemistry in continuous flow. Mol. Divers., 2012, 16, 53-58.
[164]
Barbosa, F.C.G.; de Oliveira, R.N. Synthesis of a new class of triazole-linked benzoheterocycles via 1,3-dipolar cycloaddition. J. Braz. Chem. Soc., 2011, 22(3), 592-597.
[165]
da Silva, M.T.; de Oliveira, R.N.; Valenca, W.O.; Barbosa, F.C.G.; da Silva, M.G.; Camara, C.A. Synthesis of N-substituted phthalimidoalkyl 1H-1,2,3-triazoles: A molecular diversity combining click chemistry and ultrasound irradiation. J. Braz. Chem. Soc., 2012, 23(10), 1839-1843.
[166]
Cravotto, G.; Fokin, V.V.; Garella, D.; Binello, A.; Boffa, L.; Barge, A. Ultrasound promoted copper-catalyzed azide-alkyne cycloaddition. J. Comb. Chem., 2010, 12, 13-15.
[167]
Safari, J.; Gandomi-Ravandi, S. Structure, synthesis and application of azines: A historical perspective. RSC Adv., 2014, 4, 46224-46249.
[168]
Shinde, A.D.; Sonar, S.S.; Shingate, B.B.; Shingare, M.S. Synthesis and biological screening of novel thiadiazoles, selenadiazoles, and spirocyclic benzopyran by ultrasonic and microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 1594-1603.
[169]
Padmaja, A.; Rajasekhar, C.; Muralikrishna, A.; Padmavathi, V. Synthesis and antioxidant activity of disubstituted 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. J. Chem. Pharm. Res., 2012, 4(1), 294-302.
[170]
Shelke, S.; Mhaske, G.; Gadakh, S.; Gill, C. Green synthesis and biological evaluation of some novel azoles as antimicrobial agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7200-7204.
[171]
Chermahini, A.N.; Teimouri, A.; Momenbeik, F.; Zarei, A.; Dalirnasab, Z.; Ghaedi, A.; Roosta, M. Clay-catalyzed synthesis of 5-substituent 1H-tetrazoles. J. Heterocycl. Chem., 2010, 47, 913-922.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy