Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in Electrochemistry for Monitoring Cellular Chemical Flux

Author(s): Mark A. Messerli* and Anyesha Sarkar

Volume 26, Issue 26, 2019

Page: [4984 - 5002] Pages: 19

DOI: 10.2174/0929867326666190506111629

Price: $65

Abstract

The transport of molecules and inorganic ions across the plasma membrane results in chemical fluxes that reflect cellular function in healthy and diseased states. Measurement of these chemical fluxes enables the characterization of protein function and transporter stoichiometry, characterization of the viability of single cells and embryos prior to implantation, and screening of pharmaceutical agents. Electrochemical sensors are sensitive and noninvasive tools for measuring chemical fluxes immediately outside the cells in the boundary layer, that are capable of monitoring a diverse range of transported analytes including inorganic ions, gases, neurotransmitters, hormones, and pharmaceutical agents. Used on their own or in combination with other methods, these sensors continue to expand our understanding of the function of rare cells and small tissues. Advances in sensor construction and detection strategies continue to improve sensitivity under physiological conditions, diversify analyte detection, and increase throughput. These advances will be discussed in the context of addressing technical challenges to measuring in the boundary layer of cells and measuring the resultant changes to the chemical concentration in the bulk media.

Keywords: Electrochemistry, molecular physiology, transmembrane flux, drug detection, electrochemical sensors, chemical flux.

[1]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283(47), 32860-32869.
[http://dx.doi.org/10.1074/jbc.M804916200] [PMID: 18782776]
[2]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14(9), 2421-2428.
[http://dx.doi.org/10.1110/ps.051528905] [PMID: 16131665]
[3]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[4]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[5]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[6]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[7]
Chou, K.C.; Wei, D.Q.; Zhong, W.Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun., 2003, 308(1), 148-151.
[http://dx.doi.org/10.1016/S0006-291X(03)01342-1] [PMID: 12890493]
[8]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[9]
Liao, Q.H.; Gao, Q.Z.; Wei, J.; Chou, K.C. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med. Chem., 2011, 7(1), 24-31.
[http://dx.doi.org/10.2174/157340611794072698] [PMID: 21235516]
[10]
Li, X.B.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 2011, 6(11)e28111
[http://dx.doi.org/10.1371/journal.pone.0028111] [PMID: 22140516]
[11]
Wang, J.F.; Chou, K.C. Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. PLoS One, 2011, 6(4)e18414
[http://dx.doi.org/10.1371/journal.pone.0018414] [PMID: 21494599]
[12]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7(6)e38546
[http://dx.doi.org/10.1371/journal.pone.0038546] [PMID: 22685582]
[13]
Wang, S.Q.; Du, Q.S.; Huang, R.B.; Zhang, D.W.; Chou, K.C. Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem. Biophys. Res. Commun., 2009, 386(3), 432-436.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.016] [PMID: 19523442]
[14]
Chou, K.C. Insights from modeling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3(4), 856-861.
[http://dx.doi.org/10.1021/pr049931q] [PMID: 15359741]
[15]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319(2), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.016] [PMID: 15178425]
[16]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4(5), 1681-1686.
[http://dx.doi.org/10.1021/pr050145a] [PMID: 16212421]
[17]
Chou, K.C. Insights from modeling the tertiary structure of human BACE2. J. Proteome Res., 2004, 3(5), 1069-1072.
[http://dx.doi.org/10.1021/pr049905s] [PMID: 15473697]
[18]
Hu, L.L.; Feng, K.Y.; Cai, Y.D.; Chou, K.C. Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast. Protein Pept. Lett., 2012, 19(6), 644-651.
[http://dx.doi.org/10.2174/092986612800494066] [PMID: 22519536]
[19]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017, 110(4), 231-239.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.002] [PMID: 28989035]
[20]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13(9), 1722-1727.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[21]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[22]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[23]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[24]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[25]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics, 2018. S0888-7543(18)30276-3
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007] [PMID: 30179658]
[26]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2019, 35(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/bty628] [PMID: 30010789]
[27]
Chou, K.C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[28]
Zhou, G.P.; Deng, M.H. An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem. J., 1984, 222(1), 169-176.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[29]
Chou, K.C.; Kézdy, F.J.; Reusser, F. Kinetics of processive nucleic acid polymerases and nucleases. Anal. Biochem., 1994, 221(2), 217-230.
[http://dx.doi.org/10.1006/abio.1994.1405] [PMID: 7529005]
[30]
Chou, K.C. Graphic rules in steady and non-steady state enzyme kinetics. J. Biol. Chem., 1989, 264(20), 12074-12079.
[PMID: 2745429]
[31]
Chou, K.C. Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys. Chem., 1990, 35(1), 1-24.
[http://dx.doi.org/10.1016/0301-4622(90)80056-D] [PMID: 2183882]
[32]
Chen, L.; Huang, T.; Zhang, J.; Zheng, M.Y.; Feng, K.Y.; Cai, Y.D.; Chou, K.C. Predicting drugs side effects based on chemical-chemical interactions and protein-chemical interactions. BioMed Res. Int., 2013, 2013485034
[http://dx.doi.org/10.1155/2013/485034] [PMID: 24078917]
[33]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J. Biol. Chem., 1993, 268(9), 6119-6124.
[PMID: 7681060]
[34]
Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G.; Downey, K.M.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[PMID: 7686907]
[35]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. Biochem. Pharmacol., 1994, 47(11), 2017-2028.
[http://dx.doi.org/10.1016/0006-2952(94)90077-9] [PMID: 7516658]
[36]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Palmer, J.R.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry, 1993, 32(26), 6548-6554.
[http://dx.doi.org/10.1021/bi00077a008] [PMID: 7687145]
[37]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[38]
Brown, F.K. Chemoinformatics: What is it and how does it impact drug discovery. Annu. Rep. Med. Chem; Robertson, D.; Plattner, J.J.; Hagmann, W.K.; Wong, W.W; Trainor, G.L., Ed.; Academic Press, 1998, Vol. 33, pp. 375-384.
[http://dx.doi.org/10.1016/S0065-7743(08)61100-8]
[39]
Du, Q.S.; Wang, S.Q.; Xie, N.Z.; Wang, Q.Y.; Huang, R.B.; Chou, K.C. 2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications. Oncotarget, 2017, 8(41), 70564-70578.
[http://dx.doi.org/10.18632/oncotarget.19757] [PMID: 29050302]
[40]
Ahn, W.S.; Antoniewicz, M.R. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab. Eng., 2011, 13(5), 598-609.
[http://dx.doi.org/10.1016/j.ymben.2011.07.002] [PMID: 21821143]
[41]
Du, G.; Fang, Q.; den Toonder, J.M.J. Microfluidics for cell-based high throughput screening platforms - A review. Anal. Chim. Acta, 2016, 903, 36-50.
[http://dx.doi.org/10.1016/j.aca.2015.11.023] [PMID: 26709297]
[42]
Weltin, A.; Slotwinski, K.; Kieninger, J.; Moser, I.; Jobst, G.; Wego, M.; Ehret, R.; Urban, G.A. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip, 2014, 14(1), 138-146.
[http://dx.doi.org/10.1039/C3LC50759A] [PMID: 24217869]
[43]
Castiello, F.R.; Heileman, K.; Tabrizian, M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. Lab Chip, 2016, 16(3), 409-431.
[http://dx.doi.org/10.1039/C5LC01046B] [PMID: 26732665]
[44]
Gerdle, B.; Ghafouri, B.; Ernberg, M.; Larsson, B. Chronic musculoskeletal pain: review of mechanisms and biochemical biomarkers as assessed by the microdialysis technique. J. Pain Res., 2014, 7, 313-326.
[http://dx.doi.org/10.2147/JPR.S59144] [PMID: 24966693]
[45]
Nandi, P.; Lunte, S.M. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal. Chim. Acta, 2009, 651(1), 1-14.
[http://dx.doi.org/10.1016/j.aca.2009.07.064] [PMID: 19733728]
[46]
Martínez-Valverde, T.; Vidal-Jorge, M.; Montoya, N.; Sánchez-Guerrero, A.; Manrique, S.; Munar, F.; Pellegri, M.D.; Poca, M.A.; Sahuquillo, J. Brain microdialysis as a tool to explore the ionic profile of the brain extracellular space in neurocritical patients: a methodological approach and feasibility study. J. Neurotrauma, 2015, 32(1), 7-16.
[http://dx.doi.org/10.1089/neu.2014.3473] [PMID: 25019674]
[47]
Zheng, W.; Spencer, R.H.; Kiss, L. High throughput assay technologies for ion channel drug discovery. Assay Drug Dev. Technol., 2004, 2(5), 543-552.
[http://dx.doi.org/10.1089/adt.2004.2.543] [PMID: 15671652]
[48]
Smith, P.J.S.; Sanger, R.H.; Messerli, M.A. Principles, development and applications of self-referencing electrochemical microelectrodes to the determination of fluxes at cell membranes.Electrochemical Methods for Neuroscience; Michael, A.C; Borland, L.M., Ed.; CRC Press: Boca Raton, FL, 2007, pp. 373-405.
[49]
Messerli, M.A.; Smith, P.J.S. Construction, theory and practical considerations for using self-referencing of Ca2+-selective microelectrodes for monitoring extracellular Ca2+ gradients.Methods in Cell Biology: Calcium in living cells; Whitaker, M., Ed.; Academic Press: Oxford, 2010, Vol. 99, pp. 91-111.
[http://dx.doi.org/10.1016/B978-0-12-374841-6.00004-9]
[50]
Bakker, E.; Meruva, R.K.; Pretsch, E.; Meyerhoff, M.E. Selectivity of polymer membrane-based ion-selective electrodes: self-consistent model describing the potentiometric response in mixed ion solutions of different charge. Anal. Chem., 1994, 66(19), 3021-3030.
[http://dx.doi.org/10.1021/ac00091a600] [PMID: 7978299]
[51]
Messerli, M.A.; Kurtz, I.; Smith, P.J.S. Characterization of optimized Na+ and Cl- liquid membranes for use with extracellular, self-referencing microelectrodes. Anal. Bioanal. Chem., 2008, 390(5), 1355-1359.
[http://dx.doi.org/10.1007/s00216-007-1804-z] [PMID: 18193410]
[52]
Messerli, M.A.; Danuser, G.; Robinson, K.R. Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J. Cell Sci., 1999, 112(Pt 10), 1497-1509.
[PMID: 10212144]
[53]
Garber, S.S.; Messerli, M.A.; Hubert, M.; Lewis, R.; Hammar, K.; Indyk, E.; Smith, P.J.S. Monitoring Cl- movement in single cells exposed to hypotonic solution. J. Membr. Biol., 2005, 203(2), 101-110.
[http://dx.doi.org/10.1007/s00232-005-0735-x] [PMID: 15981714]
[54]
Messerli, M.A.; Smith, P.J.S.; Lewis, R.C.; Robinson, K.R. Chloride fluxes in lily pollen tubes: a critical reevaluation. Plant J., 2004, 40(5), 799-812.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02252.x] [PMID: 15546362]
[55]
Breton, S.; Smith, P.J.S.; Lui, B.; Brown, D. Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat. Med., 1996, 2(4), 470-472.
[http://dx.doi.org/10.1038/nm0496-470] [PMID: 8597961]
[56]
Breton, S.; Hammar, K.; Smith, P.J.S.; Brown, D. Proton secretion in the male reproductive tract: involvement of Cl--independent HCO-3 transport. Am. J. Physiol., 1998, 275(4), C1134-C1142.
[http://dx.doi.org/10.1152/ajpcell.1998.275.4.C1134] [PMID: 9755067]
[57]
Miyazaki, H.; Wangemann, P.; Marcus, D.C. The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC Physiol., 2016, 17(1), 1.
[http://dx.doi.org/10.1186/s12899-016-0024-1] [PMID: 27515813]
[58]
Vieira, A.C.; Reid, B.; Cao, L.; Mannis, M.J.; Schwab, I.R.; Zhao, M. Ionic components of electric current at rat corneal wounds. PLoS One, 2011, 6(2)e17411
[http://dx.doi.org/10.1371/journal.pone.0017411] [PMID: 21364900]
[59]
Kreitzer, M.A.; Swygart, D.; Osborn, M.; Skinner, B.; Heer, C.; Kaufman, R.; Williams, B.; Shepherd, L.; Caringal, H.; Gongwer, M.; Tchernookova, B.K.; Malchow, R.P.; Extracellular, H. Extracellular H+ fluxes from tiger salamander Müller (glial) cells measured using self-referencing H+-selective microelectrodes. J. Neurophysiol., 2017, 118(6), 3132-3143.
[http://dx.doi.org/10.1152/jn.00409.2017] [PMID: 28855292]
[60]
Tchernookova, B.K.; Heer, C.; Young, M.; Swygart, D.; Kaufman, R.; Gongwer, M.; Shepherd, L.; Caringal, H.; Jacoby, J.; Kreitzer, M.A.; Malchow, R.P. Activation of retinal glial (Müller) cells by extracellular ATP induces pronounced increases in extracellular H+ flux. PLoS One, 2018, 13(2)e0190893
[http://dx.doi.org/10.1371/journal.pone.0190893] [PMID: 29466379]
[61]
Fuster, D.; Moe, O.W.; Hilgemann, D.W. Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc. Natl. Acad. Sci. USA, 2004, 101(28), 10482-10487.
[http://dx.doi.org/10.1073/pnas.0403930101] [PMID: 15240890]
[62]
Fuster, D.; Moe, O.W.; Hilgemann, D.W. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J. Gen. Physiol., 2008, 132(4), 465-480.
[http://dx.doi.org/10.1085/jgp.200810016] [PMID: 18824592]
[63]
Fine, M.; Lu, F-M.; Lin, M-J.; Moe, O.; Wang, H-R.; Hilgemann, D.W. Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters. Am. J. Physiol. Cell Physiol., 2013, 305(5), C481-C491.
[http://dx.doi.org/10.1152/ajpcell.00143.2013] [PMID: 23804202]
[64]
Smith, P.J.S.; Collis, L.P.; Messerli, M.A. Windows to cell function and dysfunction: signatures written in the boundary layers. BioEssays, 2010, 32(6), 514-523.
[http://dx.doi.org/10.1002/bies.200900173] [PMID: 20486138]
[65]
Kang, T.M.; Hilgemann, D.W. Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature, 2004, 427(6974), 544-548.
[http://dx.doi.org/10.1038/nature02271] [PMID: 14765196]
[66]
Thomas, R.C. The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J. Physiol., 2009, 587(2), 315-327.
[http://dx.doi.org/10.1113/jphysiol.2008.162453] [PMID: 19064619]
[67]
Thomas, R.C. The Ca(2+): H(+) coupling ratio of the plasma membrane calcium ATPase in neurones is little sensitive to changes in external or internal pH. Cell Calcium, 2011, 49(6), 357-364.
[http://dx.doi.org/10.1016/j.ceca.2011.03.004] [PMID: 21466891]
[68]
Toczyłowska-Mamińska, R.; Lewenstam, A.; Dołowy, K. Multielectrode bisensor system for time-resolved monitoring of ion transport across an epithelial cell layer. Anal. Chem., 2014, 86(1), 390-394.
[http://dx.doi.org/10.1021/ac403808f] [PMID: 24283934]
[69]
Zając, M.; Lewenstam, A.; Dolowy, K. Multi-electrode system for measurement of transmembrane ion-fluxes through living epithelial cells. Bioelectrochemistry, 2017, 117, 65-73.
[http://dx.doi.org/10.1016/j.bioelechem.2017.06.007] [PMID: 28633068]
[70]
Nair, S.; Kashyap, R.; Laboisse, C.; Hopfer, U.; Gratzl, M. Time-resolved release of calcium from an epithelial cell monolayer during mucin secretion. Eur. Biophys. J., 2011, 40(2), 165-174.
[http://dx.doi.org/10.1007/s00249-010-0636-5] [PMID: 20976596]
[71]
Nair, S.; Kashyap, R.; Laboisse, C.L.; Hopfer, U.; Gratzl, M. Time resolved secretion of chloride from a monolayer of mucin-secreting epithelial cells. Eur. Biophys. J., 2008, 37(4), 411-419.
[http://dx.doi.org/10.1007/s00249-007-0226-3] [PMID: 17968537]
[72]
Shim, J.H.; Kim, J.; Cha, G.S.; Nam, H.; White, R.J.; White, H.S.; Brown, R.B. Glass nanopore-based ion-selective electrodes. Anal. Chem., 2007, 79(10), 3568-3574.
[http://dx.doi.org/10.1021/ac061984z] [PMID: 17411008]
[73]
Lanyon, Y.H.; De Marzi, G.; Watson, Y.E.; Quinn, A.J.; Gleeson, J.P.; Redmond, G.; Arrigan, D.W.M. Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem., 2007, 79(8), 3048-3055.
[http://dx.doi.org/10.1021/ac061878x] [PMID: 17370998]
[74]
Messerli, M.A.; Corson, E.D.; Smith, P.J.S. Measuring extracellular ion gradients from single channels with ion-selective microelectrodes. Biophys. J., 2007, 92(7), L52-L54.
[http://dx.doi.org/10.1529/biophysj.106.102947] [PMID: 17259274]
[75]
Messerli, M.A.; Collis, L.P.; Smith, P.J.S. Ion trapping with fast-response ion-selective microelectrodes enhances detection of extracellular ion channel gradients. Biophys. J., 2009, 96(4), 1597-1605.
[http://dx.doi.org/10.1016/j.bpj.2008.11.025] [PMID: 19217875]
[76]
Messerli, M.A.; Collis, L.P.; Smith, P.J.S. Fast response, noninvasive, potentiometric microelectrodes resolve single potassium channel activity in the diffusive boundary layer of a single cell. Electroanalysis, 2009, 21, 1906-1913.
[http://dx.doi.org/10.1002/elan.200904618]
[77]
Chou, K.C. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem. Biophys. Res. Commun., 2004, 316(3), 636-642.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.098] [PMID: 15033447]
[78]
Gu, R.X.; Gu, H.; Xie, Z.Y.; Wang, J.F.; Arias, H.R.; Wei, D.Q.; Chou, K.C. Possible drug candidates for Alzheimer’s disease deduced from studying their binding interactions with alpha7 nicotinic acetylcholine receptor. Med. Chem., 2009, 5(3), 250-262.
[http://dx.doi.org/10.2174/157340609788185909] [PMID: 19442215]
[79]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337, 71-79.
[http://dx.doi.org/10.1016/j.jtbi.2013.08.013] [PMID: 23988798]
[80]
Ding, H.; Deng, E.Z.; Yuan, L-F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.C. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014286419
[http://dx.doi.org/10.1155/2014/286419] [PMID: 24991545]
[81]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[82]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178), 591-595.
[http://dx.doi.org/10.1038/nature06531] [PMID: 18235503]
[83]
Wang, J.; Pielak, R.M.; McClintock, M.A.; Chou, J.J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol., 2009, 16(12), 1267-1271.
[http://dx.doi.org/10.1038/nsmb.1707] [PMID: 19898475]
[84]
Pielak, R.M.; Schnell, J.R.; Chou, J.J. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7379-7384.
[http://dx.doi.org/10.1073/pnas.0902548106] [PMID: 19383794]
[85]
Pielak, R.M.; Chou, J.J. Flu channel drug resistance: A tale of two sites. Protein Cell, 2010, 1(3), 246-258.
[http://dx.doi.org/10.1007/s13238-010-0025-y] [PMID: 21203971]
[86]
Du, Q-S.; Huang, R-B.; Wang, C.H.; Li, X-M.; Chou, K.C. Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus. J. Theor. Biol., 2009, 259(1), 159-164.
[http://dx.doi.org/10.1016/j.jtbi.2009.03.003] [PMID: 19285514]
[87]
Loef, M.; Walach, H. Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br. J. Nutr., 2012, 107(1), 7-19.
[http://dx.doi.org/10.1017/S000711451100376X] [PMID: 21767446]
[88]
Chowanadisai, W.; Graham, D.M.; Keen, C.L.; Rucker, R.B.; Messerli, M.A. Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9903-9908.
[http://dx.doi.org/10.1073/pnas.1222142110] [PMID: 23716681]
[89]
Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, 19(2), 164-174.
[PMID: 24778671]
[90]
Chowanadisai, W.; Messerli, S.M.; Miller, D.H.; Medina, J.E.; Hamilton, J.W.; Messerli, M.A.; Brodsky, A.S. Cisplatin resistant spheroids model clinically relevant survival mechanisms in ovarian tumors. PLoS One, 2016, 11(3)e0151089
[http://dx.doi.org/10.1371/journal.pone.0151089] [PMID: 26986722]
[91]
Frederickson, C.J.; Koh, J-Y.; Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci., 2005, 6(6), 449-462.
[http://dx.doi.org/10.1038/nrn1671] [PMID: 15891778]
[92]
Bleackley, M.R.; Macgillivray, R.T.A. Transition metal homeostasis: from yeast to human disease. Biometals, 2011, 24(5), 785-809.
[http://dx.doi.org/10.1007/s10534-011-9451-4] [PMID: 21479832]
[93]
Festa, R.A.; Thiele, D.J. Copper: an essential metal in biology. Curr. Biol., 2011, 21(21), R877-R883.
[http://dx.doi.org/10.1016/j.cub.2011.09.040] [PMID: 22075424]
[94]
Gupta, V.K.; Agarwal, S.; Jakob, A.; Lang, H. A zinc-selective electrode based on N,N′-bis(acetylacetone)ethylenediimine. Sens. Actuators B Chem., 2006, 114, 812-818.
[http://dx.doi.org/10.1016/j.snb.2005.07.039]
[95]
Gupta, V.K.; Jain, A.K.; Maheshwari, G. A new Zn2+-selective potentiometric sensor based on dithizone - PVC membrane. Chem. Anal. (Pol.), 2006, 51(6), 889-897.
[96]
Isa, I.M.; Noor, S.M.; Juahir, Y.; Hashim, N.; Ahmad, M.; Kamari, A.; Mohamed, A.; Ghani, S.A.; Wardani, N.I. Zinc(II) selective electrode based on polymeric membrane of 2,6-diacetylpyridinebis(benezenesulfonylhydrazide) ligand. Int. J. Electrochem. Sci., 2014, 9, 4512-4522.
[97]
Wardak, C. Solid contact Zn2+-selective electrode with low detection limit and stable and reversible potential. Cent. Eur. J. Chem., 2014, 12(3), 354-364.
[http://dx.doi.org/10.2478/s11532-013-0390-5]
[98]
Lindner, E.; Horváth, M.; Toth, K.; Pungor, E. Zinc selective ionophores for poteniometric and optical sensors. Anal. Lett., 1992, 25(3), 453-470.
[http://dx.doi.org/10.1080/00032719208016108]
[99]
Ansari, R.; Delavar, A.F.A. M.-k., Solid-state ion selective electrode based on polypyrrole conducting polymer nanofilm as a new potentiometric sensor for Zn2+ ion. J. Solid State Electrochem., 2012, 16(10), 3315-3322.
[http://dx.doi.org/10.1007/s10008-012-1759-7]
[100]
Gee, K.R.; Zhou, Z-L.; Qian, W-J.; Kennedy, R. Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc., 2002, 124(5), 776-778.
[http://dx.doi.org/10.1021/ja011774y] [PMID: 11817952]
[101]
Mi, Y.; Mathison, S.; Goines, R.; Logue, A.; Bakker, E. Detection limit of polymeric membrane potentiometric ion sensors: how can we go down to trace levels? Anal. Chim. Acta, 1999, 397, 103-111.
[http://dx.doi.org/10.1016/S0003-2670(99)00396-7]
[102]
Pergel, E.; Gyurcsányi, R.E.; Tóth, K.; Lindner, E. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes. Anal. Chem., 2001, 73(17), 4249-4253.
[http://dx.doi.org/10.1021/ac010094a] [PMID: 11569816]
[103]
Michalska, A.; Dumanska, J.; Maksymiuk, K. Lowering the detection limit of ion-selective plastic membrane electrodes with conducting polymer solid contact and conducting polymer potentiometric sensors. Anal. Chem., 2003, 75, 4964-4974.
[http://dx.doi.org/10.1021/ac034335l]
[104]
Pioda, L.A.R.; Stankova, V.; Simon, W. Highly selective potassium ion responsive liquid-membrane electrode. Anal. Lett., 1969, 2(12), 665-674.
[http://dx.doi.org/10.1080/00032716908051343]
[105]
Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-based ion-selective electrodes and bulk optodes. 2 Ionophores for potentiometric and optical sensors. Chem. Rev., 1998, 98(4), 1593-1688.
[http://dx.doi.org/10.1021/cr970113+] [PMID: 11848943]
[106]
van de Velde, L.; d’Angremont, E.; Olthuis, W. Solid contact potassium selective electrodes for biomedical applications - a review. Talanta, 2016, 160, 56-65.
[http://dx.doi.org/10.1016/j.talanta.2016.06.050] [PMID: 27591587]
[107]
Suzuki, K.; Tohda, K.; Aruga, H.; Matsuzoe, M.; Inoue, H.; Shirai, T. Ion-selective electrodes based on natural carboxylic polyether antibiotics. Anal. Chem., 1988, 60(17), 1714-1721.
[http://dx.doi.org/10.1021/ac00168a016] [PMID: 3232811]
[108]
Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev., 2014, 114(8), 4564-4601.
[http://dx.doi.org/10.1021/cr400546e] [PMID: 24588137]
[109]
Bischof, H.; Rehberg, M.; Stryeck, S.; Artinger, K.; Eroglu, E.; Waldeck-Weiermair, M.; Gottschalk, B.; Rost, R.; Deak, A.T.; Niedrist, T.; Vujic, N.; Lindermuth, H.; Prassl, R.; Pelzmann, B.; Groschner, K.; Kratky, D.; Eller, K.; Rosenkranz, A.R.; Madl, T.; Plesnila, N.; Graier, W.F.; Malli, R. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun., 2017, 8(1), 1422.
[http://dx.doi.org/10.1038/s41467-017-01615-z] [PMID: 29127288]
[110]
Zhou, G.P. Editorial: current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11(3), 216-217.
[http://dx.doi.org/10.2174/1573406411666141229162618] [PMID: 25548926]
[111]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17(21), 2337-2358.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]
[112]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(3), 218-234.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[113]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[114]
Wang, P.; Hu, L.; Liu, G.; Jiang, N.; Chen, X.; Xu, J.; Zheng, W.; Li, L.; Tan, M.; Chen, Z.; Song, H.; Cai, Y.D.; Chou, K.C. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One, 2011, 6(4)e18476
[http://dx.doi.org/10.1371/journal.pone.0018476] [PMID: 21533231]
[115]
Xiao, X.; Wang, P.; Lin, W.Z.; Jia, J.H.; Chou, K.C. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem., 2013, 436(2), 168-177.
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[116]
Huang, T.; He, Z.S.; Cui, W.R.; Cai, Y-D.; Shi, X.H.; Hu, L.L.; Chou, K.C. A sequence-based approach for predicting protein disordered regions. Protein Pept. Lett., 2013, 20(3), 243-248.
[PMID: 22591473]
[117]
Xiao, X.; Lin, W.Z.; Chou, K.C. Recent advances in predicting G-protein coupled receptor classification. Curr. Bioinform., 2012, 7(2), 132-142.
[http://dx.doi.org/10.2174/157489312800604426]
[118]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9(8)e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[119]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7(28), 44310-44321.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[120]
Niu, S.; Hu, L.L.; Zheng, L.L.; Huang, T.; Feng, K.Y.; Cai, Y.D.; Li, H.P.; Li, Y.X.; Chou, K.C. Predicting protein oxidation sites with feature selection and analysis approach. J. Biomol. Struct. Dyn., 2012, 29(6), 650-658.
[http://dx.doi.org/10.1080/07391102.2011.672629] [PMID: 22545996]
[121]
Xu, Y.; Chou, K.C. Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 2016, 16(6), 591-603.
[http://dx.doi.org/10.2174/1568026615666150819110421] [PMID: 26286211]
[122]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32(20), 3133-3141.
[http://dx.doi.org/10.1093/bioinformatics/btw387] [PMID: 27354696]
[123]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8(8)e72234
[http://dx.doi.org/10.1371/journal.pone.0072234] [PMID: 24015221]
[124]
Shen, H.; Chou, K.C. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Biochem. Biophys. Res. Commun., 2005, 334(1), 288-292.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.087] [PMID: 16002049]
[125]
Liu, H.; Yang, J.; Wang, M.; Xue, L.; Chou, K.C. Using fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J., 2005, 24(6), 385-389.
[http://dx.doi.org/10.1007/s10930-005-7592-4] [PMID: 16323044]
[126]
Wang, T.; Yang, J.; Shen, H.B.; Chou, K.C. Predicting membrane protein types by the LLDA algorithm. Protein Pept. Lett., 2008, 15(9), 915-921.
[http://dx.doi.org/10.2174/092986608785849308] [PMID: 18991767]
[127]
Shen, H.B.; Yang, J.; Chou, K.C. Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. J. Theor. Biol., 2006, 240(1), 9-13.
[http://dx.doi.org/10.1016/j.jtbi.2005.08.016] [PMID: 16197963]
[128]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[129]
Shen, H.B.; Chou, K.C. Using ensemble classifier to identify membrane protein types. Amino Acids, 2007, 32(4), 483-488.
[http://dx.doi.org/10.1007/s00726-006-0439-2] [PMID: 17031474]
[130]
Chou, K.C.; Cai, Y.D. Using GO-PseAA predictor to identify membrane proteins and their types. Biochem. Biophys. Res. Commun., 2005, 327(3), 845-847.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.069] [PMID: 15649422]
[131]
Chou, K.C.; Shen, H.B. REVIEW: Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1(2), 63-92.
[http://dx.doi.org/10.4236/ns.2009.12011]
[132]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D.; Chou, K.C. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36(5-6)1600010
[http://dx.doi.org/10.1002/minf.201600010] [PMID: 28488814]
[133]
Xu, Y.; Wang, Z.; Li, C.; Chou, K.C. iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem., 2017, 13(6), 544-551.
[http://dx.doi.org/10.2174/1573406413666170419150052] [PMID: 28425870]
[134]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset. Med. Chem., 2019, 15(5), 472-485.
[http://dx.doi.org/10.2174/1573406415666181218102517] [PMID: 30569871]
[135]
Chou, K.C.; Lin, W.Z.; Xiao, X. Wenxiang: a web-server for drawing wenxiang diagrams. Nat. Sci., 2011, 3(10), 862-865.
[http://dx.doi.org/10.4236/ns.2011.310111]
[136]
Liu, T.; Yin, J.; Wang, Y.; Miao, P. Construction of a specific binding peptide based electrochemical approach for sensitive detection of Zn2+. J. Electroanal. Chem. (Lausanne Switz.), 2016, 783, 304-307.
[http://dx.doi.org/10.1016/j.jelechem.2016.11.006]
[137]
Bi, X.; Agarwal, A.; Balasubramanian, N.; Yang, K-L. Tripeptide-modified silicon nanowire based field-effect transistors as real-time copper ion sensors. Electrochem. Commun., 2008, 10(12), 1868-1871.
[http://dx.doi.org/10.1016/j.elecom.2008.09.027]
[138]
Lin, M.; Cho, M.; Choe, W-S.; Yoo, J-B.; Lee, Y. Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion. Biosens. Bioelectron., 2010, 26(2), 940-945.
[http://dx.doi.org/10.1016/j.bios.2010.06.030] [PMID: 20630738]
[139]
Papp, S.; Jágerszki, G.; Gyurcsányi, R.E. Ion-selective electrodes based on hydrophilic ionophore-modified nanopores. Angew. Chem. Int. Ed. Engl., 2018, 57(17), 4752-4755.
[http://dx.doi.org/10.1002/anie.201800954] [PMID: 29431913]
[140]
Szigeti, Z.; Bitter, I.; Toth, K.; Latkoczy, C.; Fliegel, D.J.; Gunther, D.; Pretsch, E. A novel polymeric membrane electrode for the potentiometric analysis of Cu2+ in drinking water. Anal. Chim. Acta, 2005, 532, 129-136.
[http://dx.doi.org/10.1016/j.aca.2004.10.061]
[141]
Gerlache, M.; Senturk, Z.; Quarin, G.; Kauffmann, J-M. Electrochemical behavior of H2O2 on Gold. Electroanalysis, 1997, 9, 1088-1092.
[http://dx.doi.org/10.1002/elan.1140091411]
[142]
Shiku, H.; Shiraishi, T.; Ohya, H.; Matsue, T.; Abe, H.; Hoshi, H.; Kobayashi, M. Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal. Chem., 2001, 73(15), 3751-3758.
[http://dx.doi.org/10.1021/ac010339j] [PMID: 11510844]
[143]
Yamanaka, M.; Hashimoto, S.; Amo, A.; Ito-Sasaki, T.; Abe, H.; Morimoto, Y. Developmental assessment of human vitrified-warmed blastocysts based on oxygen consumption. Hum. Reprod., 2011, 26(12), 3366-3371.
[http://dx.doi.org/10.1093/humrep/der324] [PMID: 21972254]
[144]
Trimarchi, J.R.; Liu, L.; Porterfield, D.M.; Smith, P.J.S.; Keefe, D.L. A non-invasive method for measuring preimplantation embryo physiology. Zygote, 2000, 8(1), 15-24.
[http://dx.doi.org/10.1017/S0967199400000782] [PMID: 10840870]
[145]
Xu, Y.; Zhang, B.; Messerli, M.; Randers-Pehrson, G.; Hei, T.K.; Brenner, D.J. Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation. Radiat. Environ. Biophys., 2015, 54(1), 137-144.
[http://dx.doi.org/10.1007/s00411-014-0574-1] [PMID: 25335641]
[146]
Alavian, K.N.; Li, H.; Collis, L.; Bonanni, L.; Zeng, L.; Sacchetti, S.; Lazrove, E.; Nabili, P.; Flaherty, B.; Graham, M.; Chen, Y.; Messerli, S.M.; Mariggio, M.A.; Rahner, C.; McNay, E.; Shore, G.C.; Smith, P.J.S.; Hardwick, J.M.; Jonas, E.A. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol., 2011, 13(10), 1224-1233.
[http://dx.doi.org/10.1038/ncb2330] [PMID: 21926988]
[147]
Zhang, Y.; Wilson, G.S. Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors. J. Electroanal. Chem. (Lausanne Switz.), 1993, 345(1-2), 253-271.
[http://dx.doi.org/10.1016/0022-0728(93)80483-X]
[148]
Twig, G.; Jung, S-K.; Messerli, M.A.; Smith, P.J.S.; Shirihai, O.S. Real-time detection of reactive oxygen intermediates from single microglial cells. Biol. Bull., 2001, 201(2), 261-262.
[http://dx.doi.org/10.2307/1543355] [PMID: 11687412]
[149]
Twig, G.; Graf, S.A.; Messerli, M.A.; Smith, P.J.S.; Yoo, S.H.; Shirihai, O.S. Synergistic amplification of β-amyloid- and interferon-γ-induced microglial neurotoxic response by the senile plaque component chromogranin A. Am. J. Physiol. Cell Physiol., 2005, 288(1), C169-C175.
[http://dx.doi.org/10.1152/ajpcell.00308.2004] [PMID: 15342341]
[150]
Shi, J.; McLamore, E.S.; Jaroch, D.; Claussen, J.C.; Mirmira, R.G.; Rickus, J.L.; Porterfield, D.M. Oscillatory glucose flux in INS 1 pancreatic β cells: a self-referencing microbiosensor study. Anal. Biochem., 2011, 411(2), 185-193.
[http://dx.doi.org/10.1016/j.ab.2010.12.019] [PMID: 21167120]
[151]
Zheng, W.; Tayyari, F.; Gowda, G.A.N.; Raftery, D.; McLamore, E.S.; Porterfield, D.M.; Donkin, S.S.; Bequette, B.; Teegarden, D. Altered glucose metabolism in Harvey-ras transformed MCF10A cells. Mol. Carcinog., 2015, 54(2), 111-120.
[http://dx.doi.org/10.1002/mc.22079] [PMID: 24000146]
[152]
Zheng, W.; Tayyari, F.; Gowda, G.A.N.; Raftery, D.; McLamore, E.S.; Shi, J.; Porterfield, D.M.; Donkin, S.S.; Bequette, B.; Teegarden, D. 1,25-dihydroxyvitamin D regulation of glucose metabolism in Harvey-ras transformed MCF10A human breast epithelial cells. J. Steroid Biochem. Mol. Biol., 2013, 138, 81-89.
[http://dx.doi.org/10.1016/j.jsbmb.2013.03.012] [PMID: 23619337]
[153]
McLamore, E.S.; Mohanty, S.; Shi, J.; Claussen, J.; Jedlicka, S.S.; Rickus, J.L.; Porterfield, D.M. A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J. Neurosci. Methods, 2010, 189(1), 14-22.
[http://dx.doi.org/10.1016/j.jneumeth.2010.03.001] [PMID: 20298719]
[154]
Hiramoto, K.; Yasumi, M.; Ushio, H.; Shunori, A.; Ino, K.; Shiku, H.; Matsue, T. Development of oxygen consumption analysis with an on-chip electrochemical device and simulation. Anal. Chem., 2017, 89(19), 10303-10310.
[http://dx.doi.org/10.1021/acs.analchem.7b02074] [PMID: 28876053]
[155]
Cheng, W.; Klauke, N.; Sedgwick, H.; Smith, G.L.; Cooper, J.M. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip, 2006, 6(11), 1424-1431.
[http://dx.doi.org/10.1039/b608202e] [PMID: 17066165]
[156]
Bucher, E.S.; Wightman, R.M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2015, 8, 239-261.
[http://dx.doi.org/10.1146/annurev-anchem-071114-040426] [PMID: 25939038]
[157]
Uslu, B.; Ozkan, S.A. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Anal. Lett., 2011, 44, 2644-2702.
[http://dx.doi.org/10.1080/00032719.2011.553010]
[158]
Kivlehan, F.; Garay, F.; Guo, J.; Chaum, E.; Lindner, E. Toward feedback-controlled anesthesia: voltammetric measurement of propofol (2,6-diisopropylphenol) in serum-like electrolyte solutions. Anal. Chem., 2012, 84(18), 7670-7676.
[http://dx.doi.org/10.1021/ac3006878] [PMID: 22900668]
[159]
Yi, C.; Gratzl, M. Continuous in situ electrochemical monitoring of doxorubicin efflux from sensitive and drug-resistant cancer cells. Biophys. J., 1998, 75(5), 2255-2261.
[http://dx.doi.org/10.1016/S0006-3495(98)77670-2] [PMID: 9788921]
[160]
Lu, H.; Gratzl, M. Monitoring drug efflux from sensitive and multidrug-resistant single cancer cells with microvoltammetry. Anal. Chem., 1999, 71(14), 2821-2830.
[http://dx.doi.org/10.1021/ac9811773] [PMID: 10424170]
[161]
Horio, M.; Chin, K-V.; Currier, S.J.; Goldenberg, S.; Williams, C.; Pastan, I.; Gottesman, M.M.; Handler, J. Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby canine kidney cell epithelia. J. Biol. Chem., 1989, 264(25), 14880-14884.
[PMID: 2570070]
[162]
Pavan, S.; Berti, F. Short peptides as biosensor transducers. Anal. Bioanal. Chem., 2012, 402(10), 3055-3070.
[http://dx.doi.org/10.1007/s00216-011-5589-8] [PMID: 22169951]
[163]
Liu, Q.; Wang, J.; Boyd, B.J. Peptide-based biosensors. Talanta, 2015, 136, 114-127.
[http://dx.doi.org/10.1016/j.talanta.2014.12.020] [PMID: 25702993]
[164]
Raposo, G.; Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 2013, 200(4), 373-383.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[165]
Lebègue, E.; Anderson, C.M.; Dick, J.E.; Webb, L.J.; Bard, A.J. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir, 2015, 31(42), 11734-11739.
[http://dx.doi.org/10.1021/acs.langmuir.5b03123] [PMID: 26474107]
[166]
Li, X.; Dunevall, J.; Ewing, A.G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res., 2016, 49(10), 2347-2354.
[http://dx.doi.org/10.1021/acs.accounts.6b00331] [PMID: 27622924]
[167]
Dick, J.E.; Hilterbrand, A.T.; Strawsine, L.M.; Upton, J.W.; Bard, A.J. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. Proc. Natl. Acad. Sci. USA, 2016, 113(23), 6403-6408.
[http://dx.doi.org/10.1073/pnas.1605002113] [PMID: 27217569]
[168]
Herst, P.M.; Berridge, M.V. Plasma membrane electron transport: a new target for cancer drug development. Curr. Mol. Med., 2006, 6(8), 895-904.
[http://dx.doi.org/10.2174/156652406779010777] [PMID: 17168740]
[169]
Liu, B.; Rotenberg, S.A.; Mirkin, M.V. Scanning electrochemical microscopy of living cells: different redox activities of nonmetastatic and metastatic human breast cells. Proc. Natl. Acad. Sci. USA, 2000, 97(18), 9855-9860.
[http://dx.doi.org/10.1073/pnas.97.18.9855] [PMID: 10963658]
[170]
Rotenberg, S.A.; Mirkin, M.V. Scanning electrochemical microscopy: detection of human breast cancer cells by redox environment. J. Mammary Gland Biol. Neoplasia, 2004, 9(4), 375-382.
[http://dx.doi.org/10.1007/s10911-004-1407-7] [PMID: 15838606]
[171]
Rawson, F.J.; Downard, A.J.; Baronian, K.H. Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae. Sci. Rep., 2014, 4, 5216.
[http://dx.doi.org/10.1038/srep05216] [PMID: 24910017]
[172]
Mauzeroll, J.; Bard, A.J.; Owhadian, O.; Monks, T.J. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17582-17587.
[http://dx.doi.org/10.1073/pnas.0407613101] [PMID: 15601769]
[173]
Mauzeroll, J.; Bard, A.J. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells. Proc. Natl. Acad. Sci. USA, 2004, 101(21), 7862-7867.
[http://dx.doi.org/10.1073/pnas.0402556101] [PMID: 15148374]
[174]
Dittami, G.M.; Rabbitt, R.D. Electrically evoking and electrochemically resolving quantal release on a microchip. Lab Chip, 2010, 10(1), 30-35.
[http://dx.doi.org/10.1039/B911763F] [PMID: 20024047]
[175]
Hu, J.; Stein, A.; Buhlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Analyt. Chem., 2016, 76, 102-114.
[http://dx.doi.org/10.1016/j.trac.2015.11.004]
[176]
Lindner, E.; Gyurcsányi, R.E. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J. Solid State Electrochem., 2009, 13, 51-68.
[http://dx.doi.org/10.1007/s10008-008-0608-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy