[1]
Alam MS, Garg A, Pottoo FH, et al. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 2017; 104(Pt A): 758-67.
[2]
Sharma S, Sahni J, Ali J, Baboota S. Patent perspective for potential antioxidant compounds-rutin and quercetin. Recent Pat Nanomed 2013; 3(1): 62-8.
[3]
Pottoo FH, Tabassum N. Triple drug combination for treatment of status epilepticus and/or partial seizures and/or partial seizures with associated neurological disorders. WO2017130208A1, 2017.
[4]
Pottoo FH, Tabassum N, Javed MN, et al. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol Neurobiol 2019; 56(2): 1233-47.
[5]
Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin : therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 2013; 22(8): 1063-79.
[6]
Barkat A, Harshita H, Beg S, et al. Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent Pat Antiinfect Drug Discov 2018; 13(1): 53-69.
[7]
Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev 2013; 27(22): 2397-408.
[8]
Whitesides GM. The “right” size in nanobiotechnology. Nat Biotechnol 2003; 21(10): 1161-5.
[9]
Barkat MA, Harshita H, Ahmad I, et al. Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 2017; 18(8): 3274-85.
[10]
Sharma S, Narang JK, Ali J, Baboota S. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model. Nanotechnology 2016; 27(37)375101
[11]
Sharma S, Sahni JK, Ali J, Baboota S. Effect of high-pressure homogenization on formulation of TPGS loaded nanoemulsion of rutin - pharmacodynamic and antioxidant studies. Drug Deliv 2015; 22(4): 541-51.
[12]
Galaev IY, Mattiasson B. ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol 1999; 17(8): 335-40.
[13]
Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 2007; 32(10): 1205-37.
[14]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[15]
Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 2008; 3(2): 83-94.
[16]
Sharma S, Kumar A, Sahni JK, Ali J, Baboota S. Nanoemulsion based hydrogel containing omega 3 fatty acids as a surrogate of betamethasone dipropionate for topical delivery. Adv Sci Lett 2012; 6(1): 221-31.
[17]
Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN. Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharma Sci 2016; 10(1): 1-9.
[18]
Pottoo FH, Tabassum N, Darzi MM. Bromocriptine mesylate protects against status epilepticus and temporal lobe epilepsy: neurobehavioral, histopathological and neurochemical evidences. Int Neuropsychiatr Dis Treat 2016; 6(4): 1-13.
[19]
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58(15): 1655-70.
[20]
Chen S, Singh J. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int J Pharm 2005; 295(1-2): 183-90.
[21]
Amit K, Sonam R. Pulsatile drug delivery system: method and technology review. Int J Drug Dev Res 2012; 4(4): 95-107.
[22]
Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009; 4(2)022001
[23]
Lalwani1 A, Santani DD. Pulsatile drug delivery systems. Int J Pharma Sci 2007; 69(4): 489.
[24]
Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul 2007; 1(1): 65-71.
[25]
Kopeček J. Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 2003; 20(1): 1-16.
[26]
Roy I, Gupta MN. Smart Polymeric materials: emerging biochemical applications. Chem Biol 2003; 10(12): 1161-71.
[27]
Mulens V, Morales MD, Barber DF. Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. ISRN Nanomater 2013; 2013: 1-14.
[28]
Hosseinkhani H, Chen Y-R, He W, Hong P-D, Yu D-S, Domb AJ. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy. J Nanopart Res 2013; 15(1): 1345.
[29]
Pisanic TR, Blackwell JD, Shubayev VI, Fiñones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007; 28(16): 2572-81.
[30]
Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008; 5(2): 316-27.
[31]
Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2009; 42(22)224003
[32]
Giri J, Ray A, Dasgupta S, Datta D, Bahadur D. Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. Biomed Mater Eng 2003; 13(4): 387-99.
[33]
Shinkai M. Functional magnetic particles for medical application. J Biosci Bioeng 2002; 94(6): 606-13.
[34]
Jin H, Kang KA. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Adv Exp Med Biol 2007; 599: 45-52.
[35]
Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 2007; 52(6): 1653-61.
[36]
van Landeghem FKH, Maier-Hauff K, Jordan A, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009; 30(1): 52-7.
[37]
Walther W, Stein U, Schlag PM. Use of the human MDR1 promoter for heat-inducible expression of therapeutic genes. Int J Cancer 2002; 98(2): 291-6.
[38]
Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 2001; 8(9): 649-54.
[39]
Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia 2008; 24(6): 451-66.
[40]
Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002; 7(10): 569-79.
[41]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[42]
Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2005; 2(5): 357-66.
[43]
Chawla JS, Amiji MM. Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 2002; 249(1-2): 127-38.
[44]
Harrison SC. Viral membrane fusion. Nat Struct Mol Biol 2008; 15(7): 690-8.
[45]
Procko E, Berguig GY, Shen BW, et al. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 2014; 157(7): 1644-56.
[46]
López-Otín C, Hunter T. The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 2010; 10(4): 278-92.
[47]
Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006; 5(9): 785-99.
[48]
Yu I-M, Zhang W, Holdaway HA, et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 2008; 319(5871): 1834-7.
[49]
Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999; 17(4): 375-8.
[50]
Law B, Curino A, Bugge TH, Weissleder R, Tung C-H. Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem Biol 2004; 11(1): 99-106.
[51]
Chen J, Tung C-H, Allport JR, Chen S, Weissleder R, Huang PL. Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 2005; 111(14): 1800-5.
[52]
Jaffer FA, Libby P, Weissleder R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29(7): 1017-24.
[53]
Chaterji S, Kwon IK, Park K. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 2007; 32(8-9): 1083-122.
[54]
Aronoff DM, Neilson EG. Antipyretics: mechanisms of action and clinical use in fever suppression. Am J Med 2001; 111(4): 304-15.
[55]
Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 2004; 29(12): 1173-222.
[56]
Bae YH, Okano T, Kim SW. A new thermo-sensitive hydrogel: Interpenetrating polymer networks from N-acryloylpyrrolidine and poly(oxyethylene). Die Makromolekulare Chemie, Rapid Communications 1988; 9(3): 185-9.
[57]
Okuyama Y, Yoshida R, Sakai K, Okano T, Sakurai Y. Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropyl-acrylamide-co-butyl methacrylate) hydrogel. J Biomater Sci Polym Ed 1993; 4(5): 545-56.
[58]
Issels R. Hyperthermia Combined with chemotherapy - biological rationale, clinical application, and treatment results. ORT 1999; 22(5): 374-81.
[59]
Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly (butylmethacrylate). J Control Release 1999; 62(1): 115-27.
[60]
Kohori F, Sakai K, Aoyagi T, et al. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropyl-acrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf B 1999; 16(1): 195-205.
[61]
Shiga T. Deformation and viscoelastic behavior of polymer gels in electric fields. In: neutron spin echospectroscopy viscoelasticity rheology [Internet]. Springer, Berlin, Heidelberg; 1997.
[62]
Gong JP, Nitta T, Osada Y. Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. one-dimensional capillary model. J Phys Chem 1994; 98(38): 9583-7.
[63]
Kwon EJ, Lo JH, Bhatia SN. Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proc Natl Acad Sci USA 2015; 112(47): 14460-6.
[64]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[65]
Gu Z, Dang TT, Ma M, et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013; 7(8): 6758-66.
[66]
Lin KY, Lo JH, Consul N, Kwong GA, Bhatia SN. Self-titrating anticoagulant nanocomplexes that restore homeostatic regulation of the coagulation cascade. ACS Nano 2014; 8(9): 8776-85.
[67]
Zhao MD, Yang JJ, Cheng JL, et al. Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation. Int J Nanomedicine 2016; 11: 1323.
[68]
Das D, Patra P, Ghosh P, Rameshbabu AP, Dhara S, Pal S. Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem 2016; 7(17): 2965-75.
[69]
Kommareddy S, Amiji M. Poly(Ethylene Glycol)-Modified Thiolated gelatin nanoparticles for glutathione-responsive intracellular dna delivery. Nanomedicine 2007; 3(1): 32-42.
[70]
Van S, Das SK, Wang X, et al. Synthesis, characterization, and biological evaluation of poly(L-γ-glutamyl-glutamine)- paclitaxel nanoconjugate. Int J Nanomedicine 2010; 5: 825-37.
[71]
Bai RG, Muthoosamy K, Shipton FN, et al. The biogenic synthesis of a reduced graphene oxide-silver (RGO-Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Advances 2016; 6(43): 36576-87.
[72]
Ma N, Zhang B, Liu J, Zhang P, Li Z, Luan Y. Green fabricated reduced graphene oxide: evaluation of its application as nano-carrier for pH-sensitive drug delivery. Int J Pharm 2015; 496(2): 984-92.
[73]
Li Z, Xu W, Wang Y, et al. Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr Polym 2015; 121: 477-85.
[74]
Bwatanglang IB, Mohammad F, Yusof NA, et al. Folic acid targeted Mn: ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int J Nanomedicine 2016; 11: 413.
[75]
Jeyamohan P, Hasumura T, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int J Nanomedicine 2013; 8: 2653-67.
[76]
Javed MN, Kohli K, Amin S. Risk assessment integrated qbd approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech 2018; 19(3): 1377-91.