[1]
Pottoo FH, Bhowmik M, Vohora D. Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur J Pharm Sci 2014; 65: 167-73.
[2]
Pottoo FH, Tabassum N, Darzi MM. Bromocriptine mesylate protects against status epilepticus and temporal lobe epilepsy: neurobehavioral, histopathological and neurochemical evidences. Int Neuropsychiatr Dis J 2016; 6(4): 1-13.
[3]
Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN. Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharma Sci 2016; 10(1): 1-9.
[4]
Sharma S, Sahni JK, Baboota JA. Patent perspective for potential antioxidant compounds-rutin and quercetin. Recent Pat Nanomed 2013; 3(1): 62-8.
[5]
Faheem HP, Nahida T. Triple drug combination for treatment of status epilepticus and/or partial seizures and/or partial seizures with associated neurological disorders. 2017WO2017130208A1, 2018 Sep 15.
[6]
Novel drug combination for treatment of generalised seizures and/or generalised seizures with associated neurological disorders. Google Patents WO2017130209A1, 2019 March 15.
[7]
Yin N, Ma W, Pei J, Ouyang Q, Tang C, Lai L. Synergistic and antagonistic drug combinations depend on network topology. PLoS One 2014; 9(4): 93960.
[8]
Javed MN, Kohli K, Amin S. Risk Assessment integrated QBD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech 2018; 19(3): 1377-91.
[9]
Alam MS, Garg A, Pottoo FH, et al. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 2017; 104(Pt A): 758-67.
[10]
Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 2013; 22(8): 1063-79.
[11]
Barkat MA. Harshita, Ahmad I, et al. Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 2017; 18(8): 3274-85.
[12]
Pottoo FH, Tabassum N, Javed MN, et al. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol Neurobiol 2019; 56(2): 1233-47.
[13]
Noushad MJ, Alam MS, Potto FH. Metallic nanoparticle alone and/or in combination as novel agent for the treatment of uncontrolled electric conductance related disorders and/or seizure, epilepsy & convulsions. WO2017060916A1 (2016).
[14]
Okpala CC. Nanocomposites-an overview. Int J Eng Sci Invention Res 2013; 8: 17-23.
[15]
Zhou H, Fan T, Zhang D. Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem 2011; 4(10): 1344-87.
[16]
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014; 111(3): 441-53.
[17]
Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 2005; 26(13): 1595-603.
[18]
Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 2004; 52: 1963-90.
[19]
Zaman MH. The role of engineering approaches in analysing cancer invasion and metastasis. Nat Rev Cancer 2013; 13(8): 596-603.
[20]
Huang Z, Chen H, Yip A, et al. Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. J Nanopart Res 2003; 5(3-4): 333-63.
[21]
Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. Microfibrillated cellulose: morphology and accessibility. InJ. Appl. Polym. Sci.: Appl. Polym. Symp ;(United States) 1983 Jan 1 (Vol. 37, No. CONF-8205234-Vol. 2). ITT Rayonier Inc., Shelton, WA. [cited 2018 Apr 29]
[22]
Chen M, Chen B, Evans JRG. Novel thermoplastic starch-clay nanocomposite foams. Nanotechnology 2005; 16(10): 2334-7.
[23]
Oksman K, Aitomäki Y, Mathew AP, et al. Review of the recent developments in cellulose nanocomposite processing. Compos, Part A Appl Sci Manuf 2016; 83: 2-18.
[24]
Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol 2008; 42(16): 5843-59.
[25]
Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 2012; 134(38): 15607-20.
[26]
Fisher OZ, Khademhosseini A, Langer R, Peppas NA. Bioinspired materials for controlling stem cell fate. Acc Chem Res 2010; 43(3): 419-28.
[27]
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 2009; 21(32-33): 3307-29.
[28]
Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 2010; 22(31): 3484-94.
[29]
Xia Y. Nanomaterials at work in biomedical research. Nat Mater 2008; 7(10): 758-60.
[30]
Cingolani R. The road ahead. Nat Nanotechnol 2013; 8(11): 792-3.
[31]
Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002; 62(2): 175-84.
[32]
Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 2011; 12(5): 1641-50.
[33]
Childs A, Hemraz UD, Castro NJ, Fenniri H, Zhang LG. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomed Mater 2013; 8(6)065003
[34]
You M-H, Kwak MK, Kim D-H, et al. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 2010; 11(7): 1856-62.
[35]
Xu X-Y, Li X-T, Peng S-W, et al. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 2010; 31(14): 3967-75.
[36]
Tamerler C, Sarikaya M. Molecular biomimetics: utilizing nature’s molecular ways in practical engineering. Acta Biomater 2007; 3(3): 289-99.
[37]
Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61(12): 1033-42.
[38]
Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stabil 2010; 95(11): 2126-46.
[39]
Hou X, Siow KS. Novel interpenetrating polymer network electrolytes. Polymer (Guildf) 2001; 42(9): 4181-8.
[40]
Patel RG, Purwada A, Cerchietti L, et al. Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell Mol Bioeng 2014; 7(3): 394-408.
[41]
Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A. Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 2010; 88(6): 899-911.
[42]
Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A 2014; 20(15-16): 2052-76.
[43]
Hancock MJ, He J, Mano JF, Khademhosseini A. Surface-tension-driven gradient generation in a fluid stripe for bench-top and microwell applications. Small 2011; 7(7): 892-901.
[44]
Losi P, Briganti E, Magera A, et al. Tissue response to poly(ether)urethane-polydimethylsiloxane-fibrin composite scaffolds for controlled delivery of pro-angiogenic growth factors. Biomaterials 2010; 31(20): 5336-44.
[45]
Sharma S, Narang JK, Ali J, Baboota S. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model. Nanotechnology 2016; 27(37)375101
[46]
Lu ZS, Li CM. Quantum dot-based nanocomposites for biomedical applications. Curr Med Chem 2011; 18(23): 3516-28.
[47]
Liang H, Zhang X-B, Lv Y, et al. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res 2014; 47(6): 1891-901.
[48]
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 31(4): 295-302.
[49]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[50]
Fan Z, Fu PP, Yu H, Ray PC. Theranostic nanomedicine for cancer detection and treatment. Yao Wu Shi Pin Fen Xi 2014; 22(1): 3-17.
[51]
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjug Chem 2017; 28(1): 212-21.
[52]
Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev 2017; 62(2): 57-77.
[53]
Rodrigues CVM, Serricella P, Linhares ABR, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 2003; 24(27): 4987-97.
[54]
Shchipunov Y. Bionanocomposites: green sustainable materials for the near future. Pure and Applied Chemistry 2012; 84(12): 2579-607.
[55]
Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K. Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res A 2003; 67(3): 844-55.
[56]
Nelson M, Balasundaram G, Webster TJ. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J Nanomedicine 2006; 1(3): 339-49.
[57]
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 2009; 12(1): 1-39.
[58]
Yi H, Ur Rehman F, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Res 2016; 4: 16050.
[59]
Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res 2013; 1(3): 216-48.
[60]
Gao C, Deng Y, Feng P, et al. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci 2014; 15(3): 4714-32.
[61]
Matsuno T, Uchimura E, Ohno T, et al. Hydroxyapatite containing immobilized collagen and fibronectin promotes bone regeneration. Int Congr Ser 2005; 1284: 330-1.
[62]
Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE. Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 2010; 100(3): 480-9.
[63]
Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 2014; 35(33): 9087-99.
[64]
Fisher JP, Vehof JWM, Dean D, et al. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 2002; 59(3): 547-56.
[65]
Cherian BM, Leão AL, de Souza SF, et al. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 2011; 86(4): 1790-8.
[66]
Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 2011; 12(7): 4250-70.
[67]
Richmond NA, Vivas AC, Kirsner RS. Topical and biologic therapies for diabetic foot ulcers. Med Clin North Am 2013; 97(5): 883-98.
[68]
Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater 2010; 6(5): 1693-7.
[69]
Batmani Y, Khaloozadeh H. Optimal drug regimens in cancer chemotherapy: a multi-objective approach. Comput Biol Med 2013; 43(12): 2089-95.
[70]
Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 2016; 4: 51.
[71]
Prasanna A, Ahmed MM, Mohiuddin M, Coleman CN. Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J Thorac Dis 2014; 6(4): 287-302.
[72]
Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009; 35(5): 431-6.
[73]
Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm 2011; 8(6): 2101-41.
[74]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[75]
Li R, Jiang S, Liu D, et al. A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. J Microencapsul 2011; 28(2): 134-41.
[76]
Tamilvanan S, Kumar BA. Influence of acetazolamide loading on the (in vitro) performances of nonphospholipid- based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral- charged nanosized emulsions. Drug Dev Ind Pharm 2011; 37(9): 1003-15.
[77]
Vega E, Egea MA, Calpena AC, Espina M, García ML. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomedicine 2012; 7: 1357-71.
[78]
Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005; 6(1): 17-33.
[79]
Shetty NJ, Swati P, David K. Nanorobots: future in dentistry. Saudi Dent J 2013; 25(2): 49-52.
[80]
Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 2003; 3(2): 153-61.
[81]
Saravana KR, Vijayalakshmi R. Nanotechnology in dentistry. Indian J Dent Res 2006; 17(2): 62-5.
[82]
Dasilva N, Díez P, Matarraz S, et al. Biomarker discovery by novel sensors based on nanoproteomics approaches. Sensors (Basel) 2012; 12(2): 2284-308.
[83]
Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol 2008; 12(2): 34-40.
[84]
Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am 2009; 300(5): 64-71.
[85]
Nakanishi J, Takarada T, Yamaguchi K, Maeda M. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal Sci 2008; 24(1): 67-72.
[86]
Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007; 18(3): 241-68.
[87]
Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contraction of a collagen-GAG matrix. Biomaterials 2001; 22(21): 2883-91.
[88]
Wang Y, Kim U-J, Blasioli DJ, Kim H-J, Kaplan DL. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005; 26(34): 7082-94.
[89]
Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 2005; 92(2): 129-36.
[90]
Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed 1998; 9(8): 863-78.
[91]
Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 2006; 14(2): 179-89.
[92]
Marijnissen WJCM, van Osch GJVM, Aigner J, et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 2002; 23(6): 1511-7.
[93]
Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci 2006; 6(1): 13-26.
[94]
Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002; 20(6): 602-6.
[95]
Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002; 296(5573): 1673-6.
[96]
Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA. Cell-Responsive Synthetic Hydrogels. Adv Mater 2003; 15(11): 888-92.
[97]
Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J Am Chem Soc 1993; 115(23): 11010-1.
[98]
Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide-modified poly (lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 1997; 35(4): 513-23.
[99]
Parrish B, Emrick T. Aliphatic Polyesters with pendant cyclopentene groups: controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules 2004; 37(16): 5863-5.
[100]
Ma PX. Scaffolds for tissue fabrication. Mater Today 2004; 7(5): 30-40.
[101]
Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36(6): 1031-7.
[102]
Barkat A, Harshita null, Beg S, et al. Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent Pat Anti infect Drug Discov 2018; 13(1):53-69.
[103]
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest 2007; 117(5): 1219-22.
[104]
Brem H, Golinko MS, Stojadinovic O, et al. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. J Transl Med 2008; 6: 75.
[105]
Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014; 20(10): 2515-32.
[106]
Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 2014; 20(23): 7242-51.
[107]
Ismail MH, Pinzani M. Reversal of liver fibrosis. Saudi J Gastroenterol 2009; 15(1): 72-9.
[108]
Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 2004; 43(46): 6323-7.
[109]
Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006; 121(2): 159-76.
[110]
Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 2005; 26(29): 5898-906.
[111]
Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010; 6(4): 537-44.
[112]
Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang X-M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed Engl 2011; 50(49): 11644-8.
[113]
Yang X, Wang Y, Huang X, et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 2011; 21(10): 3448-54.
[114]
Kim H, Namgung R, Singha K, Oh I-K, Kim WJ. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 2011; 22(12): 2558-67.
[115]
Liu J, Guo S, Han L, et al. Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. J Mater Chem 2012; 22(38): 20634-40.
[116]
Jing Y, Zhu Y, Yang X, Shen J, Li C. Ultrasound-triggered smart drug release from multifunctional core-shell capsules one-step fabricated by coaxial electrospray method. Langmuir 2011; 27(3): 1175-80.
[117]
Zhou K, Zhu Y, Yang X, Li C. One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 2010; 34(12): 2950-5.
[118]
Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel. Chem Commun 2010; 46(14): 2376-8.
[119]
Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N. A graphene platform for sensing biomolecules. Angew Chem Int Ed Engl 2009; 48(26): 4785-7.
[120]
Liu J, Tao L, Yang W, et al. Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 2010; 26(12): 10068-75.
[121]
Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP. Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci A Polym Chem 2010; 48(2): 425-33.