[1]
Banipal, P.K.; Chakal, A.K.; Banipal, T.S. Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15-318.15K). J. Chem. Thermodynamic., 2009, 41, 452-483.
[2]
Savaroglu, G.; Ozdemir, M. Apparent molar volume and apparent molar isentropic compressibility of glycerol in fructose water at different temperature. J. Mol. Liquids., 2008, 137, 51-57.
[3]
Punitha, S.; Uvarani, R. Physico-chemical studies on some saccharides in aqueous cellulose solutions at different temperatures- acoustical and FTIR analysis. J. Saudi Chem. Soc., 2014, 18, 657-665.
[4]
Dash, A.K.; Paikaray, R. Acoustical study on ternary mixture of dimethyl acetamide (DMAC) in diethyl ether and isobutyl methyl ketone at different frequencies. Phys. Chem. Liq., 2013, 51(6), 749-763.
[5]
Bhutra, R.; Sharma, R.; Sharma, A.K. Viscometric and CMC studies of Cu(II) surfactants derived from untreated and treated groundnut and mustard oils in non-aqueous solvent at 298.15K. J. Inst. Chemists (India), 2017, 90, 29-47.
[6]
Tank, P.; Sharma, R.; Sharma, A.K. Viscometric Studies of Cu(II) surfactants derived from mustard oil in benzene at 303.15K. Tenside Surf. Det., 2019, 56(2), 158-163.
[7]
Khan, S.; Sharma, R.; Sharma, A.K. Acoustic studies and other acoustic parameters of Cu(II) soap derived from non-edible Neem oil (Azadirecta indica), in non-aqueous media at 298.15. Acta Ac United Ac, 2018, 104, 277-283.
[8]
Joram, A.; Sharma, R.; Sharma, A.K. Thermal degradation of complexes derived from Cu(II) groundnut soap (Arachis hypogaea) and Cu(II) sesame soap (Sesamumindicum). Z. Phys. Chem., 2018, 232(4), 459-470.
[9]
Mehrotra, K.N.; Varma, R.P. Studies on surface tension of the system: Barium soap-water and propanol-1. J. Am. Chem. Soc., 1969, 46(3), 152-154.
[10]
Mehrotra, K.N.; Chauhan, M.; Shukla, R.K. Surfactants & detergents: Influence of alkanols on the micellar behavior of samarium soaps. J. Am. Oil Chem. soc., 1990, 67(7), 446-450.
[11]
Mehrotra, K.N.; Jain, M. Viscometric and spectrophotometric studies of chromium soaps in a benzene-dimethylformamidemixture. Coll. Surf. A Physicochem. Eng. Asp., 1994, 85, 75-80.
[12]
Mehrotra, K.N.; Varma, R.P. Studies on the physical properties of the system: Barium caproate*-water and propanol-1. J. Am. Oil Chem. Soc., 1969, 46, 568-592.
[13]
Mehrotra, K.N.; Tonton, K.; Rawat, M.K. Conductivity, viscosity and spectral studies on manganese caprylate in alkanols. Coll. Surf., 1991, 57(1), 125-138.
[14]
Mehrotra, K.N.; Mehta, V.P.; Nagar, T.N. Studies on colorimetry, solubility and thermodynamic properties of copper soap solutions. J. Prakt. Chem., 1971, 313, 607-613.
[15]
Mathur, N.; Bargotya, S.; Mathur, R. Viscometric behaviour and miceller studies of some biodegradable organometallic complexes in binary solvent system. Res. J. Pharm. Biol. Chem. Sci., 2014, 5(2), 989-997.
[16]
Mehta, V.P.; Talesera, P.R.; Sharma, R. Micellar characteristic of copper soap+benzene+methanol at
various temperatures. Indian J. Chem., 2001, 40(A), 399-402.
[17]
Oswal, S.L.; Dave, J.P. Viscosity of nonelectrolyte liquid mixtures binary mixtures of n-hexane with alkanoates and bromoalkanoates. Znt. J. Thermophys, 1992, 13, 943-955.
[18]
Srinivasu, J.V.; Narendra, K. Study of volumetric and thermodynamic properties of binary mixtures 1, 4-butanediol with methylpyridine isomers at different temperatures. J. Mol. Liq., 2015, 216, 455-465.
[19]
Pal, A.; Chauhan, N.; Kumar, S. Interaction of tripeptide with glucose in aqueous solution at various temperatures: A volumetric and ultrasonic study. Thermochim. Acta, 2010, 509, 24-32.
[20]
Bhutra, R.; Sharma, R.; Sharma, A.K. Viscometric behaviour and micellization of copper surfactants derived from Sesame (Sesamum indicum) and Soyabean (Glycine max) oils in non-aqueous solvent. Malaysian J. Chem., 2018, 20(2), 163-173.
[21]
Singh, S.; Bahadur, I. Density and speed of sound of 1-ethyl-3-methylimidazolium ethylsulphate with acetic or propionic acid at different temperatures. J. Mol. Liq., 2014, 199, 518-523.
[22]
Babak, M.; Ali, S.; Hamid, R.; Mortaheb, M.; Mirzaei, M.M.; Fatemeh, S. Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Thermodyn., 2009, 41, 323-329.
[23]
Khan, S.; Sharma, R.; Sharma, A.K. Viscometric evaluation and micellar properties of Cu(II) Soap derived from neem oil in non-aqueous media. Curr. Phys. Chem., 2018, 8(3), 164-174.
[24]
Einstein, A. A new determination of molecular dimensions. Ann. Phys., 1906, 19, 289-306.
[25]
Thomson, D.J. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Sci., 1965, 20, 267-277.
[26]
Vand, V. Viscosity of solutions and suspensions. I. Theory. J. Phys. Chem., 1948, 52(2), 277-299.
[27]
Moulik, S.P. Surface potential of aqueous electrolyte solutions. J. Phys. Chem., 1968, 72, 74-78.
[28]
Gray, V.R.; Alexander, A.E. Viscosity and streaming birefrigence of aluminum soap solutions. J. Phys. Coll. Chem., 1949, 53, 9-23.
[29]
Jones, G.; Dole, M. The viscosity of aqueous solutions of strong electrolytes with special reference to Barium chloride. J. Am. Chem. Soc., 1929, 51, 2950-2964.
[30]
Pandey, J.D.; Misra, K.; Shukla, A.; Mushran, V.; Rai, R.D. Apparent molal volume, apparent molal compressibility, verification of Jones-Dole equation and thermodynamic studies of aqueous urea and its derivatives at 25, 30, 35 and 40oC. Thermochim. Acta, 1987, 117, 245-259.
[31]
Fort, R.J.; Moore, W.R. Viscosity of binary liquid mixtures. Trans. Faraday Soc., 1966, 6(2), 1112-1119.
[32]
Sharma, A.K.; Saxena, M.; Sharma, R. Surface active properties and micellar features of copper soaps derived from various edible oils. Open Chem. J., 2018, 5, 119-133.