Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Pyridinyl-benzo[d]imidazole/Pyridinyl-benzo[d]thiazole Derivatives and their Yeast Glucose Uptake Activity In Vitro

Author(s): Momin Khan*, Riaz Ahmad, Gauhar Rehman, Naeem Gul, Sana Shah, Uzma Salar, Shahnaz Perveen and Khalid Mohammed Khan

Volume 16, Issue 9, 2019

Page: [984 - 993] Pages: 10

DOI: 10.2174/1570180815666181004102209

Price: $65

Abstract

Background: Diabetes is the primary cause of fatality and disability all over the world, in recent past, we have reported various classes of compounds as anti-glycating agents and we have also reported benzimidazole and benzothiazole derivatives as a potential class of anti-glycating agents. This encouraged us to evaluate the pyridinyl benzimidazole/pyridinyl benzothiazole derivatives 1-27 for yeast glucose uptake activity.

Methods: In the present study, an equimolar mixture of pyridine carboxaldehyde derivatives (1 mmol) and sodium metabisulphite (1 mmol) in DMF (10 mL) was stirred for 10 to 15 min, followed by addition of o-phenylene diamine/2-aminothiophenol (1 mmol) into it and refluxed for 3 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was poured into crushed ice. Precipitates were formed which were collected by filtration to produce compounds 1-27 in good yields. Recrystallization from methanol yielded pure crystals.

Results: Our present study showed that all compounds showed a varying degree of yeast glucose uptake activity in the range IC50 = 36.43-272.20 µM, compared to standard metronidazole (IC50 = 41.86 ± 0.09 µM). Compounds 5 (IC50 = 38.14 ± 0.17 µM), 6 (IC50 = 40.23 ± 0.20 µM), and 7 (IC50 = 36.43 ± 0.02 µM) showed an excellent yeast glucose uptake activity better than the standard.

Conclusion: Pyridinyl benzimidazole/pyridinyl benzothiazole derivatives 1-27 were synthesized, structurally characterized, and evaluated for in vitro yeast glucose uptake activity. Compounds 5 (IC50 = 38.14 ± 0.17 µM), 6 (IC50 = 40.23 ± 0.20 µM), and 7 (IC50 = 36.43 ± 0.02 µM) demonstrated potent yeast glucose uptake activity as compared to standard metronidazole (IC50 = 41.86 ± 0.09 µM). This study identified a number of potential lead molecules which can be helpful in lowering the blood glucose level in hyperglycemia.

Keywords: Pyridinyl benzimidazole, benzothiazole, yeast glucose uptake, in vitro, structure-activity relationship, hyperglycemia.

« Previous
Graphical Abstract

[1]
Oktayoglu, G.S.; Basaraner, H.; Yanardag, R.; Bolkent, S. The effects of combined treatment of antioxidants on the liver injury in STZ diabetic rats. Dig. Dis. Sci., 2009, 54, 538.
[2]
Kavishankar, G.B.; Lakshmidevi, N.; Murthy, M.; Prakash, S.R. Diabetes and medicinal plants-A Review. Int. J. Pharm Biomed. Sci., 2011, 2, 65.
[3]
Akanksha, S.A.K.; Maurya, R. Antihyperglycemic activity of compounds isolated from Indian medicinal plants. Indian J. Exp. Biol., 2010, 48, 294.
[4]
Bandawane, D.; Juvekar, A.; Juvekar, M. Antidiabetic and antihyperlipidemic effect of Alstonia scholaris Linn bark in Streptozotocin induced diabetic rats. Indian J. Pharm. Educ. Res, 2011, 45, 114.
[5]
Salar, U.; Khan, K.M.; Chigurupati, S.; Taha, M.; Wadood, A.; Vijayabalan, S.; Ghufran, M.; Perveen, S. New hybrid hydrazinyl thiazole substituted chromones: As potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Sci. Rep., 2017, 7, 16980.
[6]
Reddy, D.N.K.; Chandrasekhar, K.B.; Ganesh, Y.S.S.; Kumar, B.S.; Adepu, R.; Pal, M. SnCl2 2H2O as a precatalyst in MCR: Synthesis of pyridine derivatives via a 4-component reaction in water. Tetrahedron Lett., 2015, 56, 4586.
[7]
Ali, F.; Khan, K.M.; Salar, U.; Taha, M.; Ismail, N.H.; Wadood, A.; Riaz, M.; Perveen, S. Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, in vitro α-glucosidase inhibitory activity, and in silico studies. Eur. J. Med. Chem., 2017, 138, 255-272.
[8]
Khan, B.T.; Shamsuddin, S.; Khan, S.R.A.; Annapoorna, K.; Satyanarayana, T. Studies of mixed ligand complexes of chloroglycyl-D, L-methioninatoplatinum (II) and chloroglycyl-D, L-methioninatopalladium (II) with purines and nucleosides. J. Coord. Chem., 1995, 36, 81-93.
[9]
Wank, S.A. I. CCK receptors: An exemplary family. Am. J. Physiol. Gast. Liv. Phys, 1998, 274, G607-G613.
[10]
Kumara, D.; Jacobb, M.R.; Reynoldsa, M.B.; Sean, M.; Kerwin, S.M. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg. Med. Chem., 2002, 10, 3997.
[11]
Tiwaria, A.K.; Mishrab, A.K.; Bajpai, A.; Mishra, P.; Singh, S.; Sinha, D.; Singh, V.K. Synthesis and evaluation of novel benzimidazole derivative [Bz-Im] and its radio/biological studies. Bioorg. Med. Chem. Lett., 2007, 17, 2749.
[12]
Arjmand, F.; Mohani, B.; Ahmad, S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu (II) complex. Eur. J. Med. Chem., 2005, 40, 1103.
[13]
Budow, S.; Kozlowska, M.; Gorska, A.; Kazimierczuk, Z.; Eickmeier, H.; Colla, P.L.; Gosselin, G.; Seela, F. Substituted benzimidazoles: Antiviral activity and synthesis of nucleosides. ARKIVOC, 2009, 3, 225.
[14]
Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.; Adachi, T.; Hashimoto, H. Benzimidazole inhibitors of hepatitis C virus NS5B polymerase: Identification of 2-[(4-diarylmethoxy)phenyl]-benzimidazole. Bioorg. Med. Chem. Lett., 2006, 16, 1859.
[15]
Garuti, L.; Roberti, M.; Gentilomi, G. Synthesis and antiviral assays of some benzimidazole nucleosides and acyclonucleosides. II Farmaco, 2001, 56, 815.
[16]
Biron, K.K.; Harvey, R.J.; Chamberlain, S.J.; Godd, S.S.; Smith, III A.A.; Davis, M.G.; Talarico, C.L.; Miller, W.H.; Rerris, R.; Dornsife, R.E.; Stanat, S.C.; Drach, J.C.; Townsend, L.B.; Koszalka, G.W. Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole L-riboside with a unique mode of action. Antimicrob. Agents Chemother., 2002, 46, 2365.
[17]
Kazimierczuk, Z.; Upcroft, J.A.; Upcroft, P.; Górska, A.; Starooeciak, B.; Laudy, A. Synthesis, antiprotozoal and antibacterial activity of nitro and halogeno-substituted benzimidazole derivatives. Acta Biochem. Polon, 2002, 49, 185.
[18]
Elnima, E.I.; Zubair, M.U.; Al-Badr, A.A. Antibacterial and antifungal activities of benzimidazole and benzoxazole derivatives. Antimicrob. Agents Chemother., 1981, 19, 29.
[19]
Goker, H.; Tunçbilek, M.; Ayhan, G.; Altanlar, N. Synthesis of some new benzimidazolecarboxamides and evaluation of their antimicrobial activity. Il Farmaco, 1998, 53, 415.
[20]
Nguyen, P.T.M.; Baldeck, J.D.; Olsson, J.; Marquis, R.E. Antimicrobial actions of benzimidazoles against oral Streptococci. Oral Microbiol. Immunol., 2005, 20, 93.
[21]
Boiani, M.; Gonzalez, M. Imidaozle and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem., 2005, 5, 409.
[22]
Özden, S.; Atabey, D.; Yildiz, S.; Göker, H. Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups. Bioorg. Med. Chem., 2005, 13, 1587.
[23]
Göker, H.; Ozden, S.; Yıldız, S.; Boykin, D.W. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1Hbenzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem., 2005, 40, 1062.
[24]
Veerakumari, L.; Munuswamy, N. In vitro effect of some anthelmintics on lactate dehydrogenase activity of Cotylophoron Cotylophorum (Digenea: Paramphistomidae). Vet. Parasitol., 2000, 91, 129.
[25]
Merino, G.; Jonker, J.W.; Wagenaar, E.; Pulido, M.M.; Molina, A.J.; Alvarez, A.I.; Schinkel, A.H. Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Meta. Dis, 2005, 33, 614.
[26]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Euro. J. Med. Chem., 2010, 45, 2048.
[27]
Iemura, R.; Kawashima, T.; Fukuda, T.; Ito, K.; Tsukamoto, G. Synthesis of 2-(4-substituted-l piperazinyl) benzimidazoles as H1-antihistaminic agents. J. Med. Chem., 1986, 29, 1178.
[28]
Kuhler, T.C.; Swanson, M.; Shcherbuchin, V.; Larsson, H.; Mellgard, B.; Sjostrom, J.E. Structure-activity relationship of 2-[[(2-pyridyl) methyl] thio]-1H- benzimidazoles as anti-Helicobacter Pylori agents in-vitro and evaluation of their in-vivo efficacy. J. Med. Chem., 1998, 41, 1777.
[29]
Horn, J. The proton-pump inhibitors: Similarities and differences. Clin. Ther., 2000, 22, 266.
[30]
Cole, E.R.; Crank, G.; Salam-Sheikh, A. Antioxidant properties of benzimidazoles. J. Agric. Food Chem., 1974, 22, 918.
[31]
Kus, C.; Ayhan-KIlcIgil, G.; Eke, B.C.; Iscan, M. Synthesis and antioxidant properties of some novel benzimidazole derivatives on lipid peroxidation in the rat liver. Arch. Pharm. Res. 27, 2004, 156-163.
[32]
Temiz-Arpact, O.; Coban, T.; Tekiner-Gulbas, B.; Can-Eke, B.; Yildiz, I.; Aki-Sener, E.; Yalcin, I.; Iscan, M. A study on the antioxidant activities of some new benzmidazole derivatives. Acta Biolog Hungar, 2006, 57, 201.
[33]
Ates-Alagoz, Z.; Kus, C.; Coban, T. Synthesis and antioxidant properties of novel benzimidazoles containing substituted indole or 1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-naphthalene fragments. J. Enz Inhib. Med. Chem., 2005, 20, 325.
[34]
Kumar, J.R.; Jat, J.L.; Pathak, D.P. Synthesis of benzimidazole derivatives: As antihypertensive agents. E-Jour. Chem., 2006, 3, 278.
[35]
Zhao, Z.; Arnaiz, D.O.; Griedel, B.; Sakata, S.; Dallas, J.L.; Whitlow, M.; Trinh, L.; Post, J.; Liang, A.; Morrissey, M.M.; Shaw, K.J. Design, synthesis, and in vitro biological activity of benzimidazole based factor Xa inhibitors. Bioorg. Med. Chem. Lett., 2000, 10, 963.
[36]
(a)Kamal, A.; Kumar, P.P.; Sreekanth, K.; Seshadri, B.N.; Ramulu, P. Synthesis of new benzimidazole linked pyrrolo[2,1-c][1,4]ben-zodiazepine conjugates with efficient DNA-binding affinity and potent cytotoxicity. Bioorg. Med. Chem. Lett., 2008, 18, 2594.
(b)Garuti, L.; Roberti, M.; Malagoli, M.; Rossi, T.; Castelli, M. Synthesis and anti-proliferative activity of some benzimidazole-4 7-dione derivatives. Bioorg. Med. Chem. Lett., 2000, 10, 2193.
[37]
Mason, J.S.; Morize, I.; Menard, P.R.; Cheney, D.L.; Hume, C.; Labaudiniere, R.F. New 4-point pharmacophore method for molecular similarity and diversity applications: Overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J. Med. Chem., 1999, 42, 3251.
[38]
Orjales, A.; Mosquera, R.; Labeaga, L.; Rodes, R. New 2-piperazinylbenzimidazole derivatives as 5-HT3 antagonists. Synthesis and pharmacological evaluation. J. Med. Chem., 1997, 40, 586.
[39]
Grimmett, M. Comprehensive heterocyclic chemistry: The structure, reactions, synthesis and uses of heterocyclic compounds Pergamon Oxford; , 1996, 3, 77, .
[40]
(a)Bano, B.; Abbasi, S.; Khan, J.A.J.; Hussain, S.; Rasheed, S.; Perveen, S.; Khan, K.M.; Choudhary, M.I. Antiglycation activity of quinoline derivatives-a new therapeutic class for the management of type 2 diabetes complications. Med. Chem., 2015, 11, 60.
(b)Abbasi, S.; Mirza, S.; Rasheed, S.; Hussain, S.; Khan, J.A.J.; Khan, K.M.; Perveen, S.; Choudhary, M.I. Benzothiazole derivatives: Novel inhibitors of methylglyoxal mediated glycation of protein in vitro. Med. Chem., 2014, 10, 824.
(c)Khan, K.M.; Irfan, M.; Ashraf, M.; Taha, M.; Saad, S.M.; Perveen, S.; Choudhary, M.I. Synthesis of phenyl thiazole hydrazones and their activity against glycation of proteins. Med. Chem. Res., 2015, 24, 3077.
(d)Khan, K.M.; Karim, A.; Ambreen, N.; Saied, S.; Rasheed, S.; Perveen, S.; Choudhary, M.I. Synthesis of benzoxazole derivatives: Antiglycation activity. J. Pharm. Res., 2012, 5, 664.
(e)Khan, K.M.; Badshah, Z.; Ahmad, V.U.; Khan, M.; Taha, M.; Rahim, F.; Jahan, H.; Perveen, S.; Choudhary, M.I. Synthesis of 2,4,6-trichlorophenyl hydrazone and their inhibitory potential against glycation of protein. Med. Chem., 2011, 7, 572.
(f)Khan, K.M.; Rahim, F.; Ambreen, N.; Taha, M.; Khan, M.; Jahan, H. Najeebullah, Shaikh, A.; Iqbal, S.; Perveen, S.; Choudhary, M.I. Synthesis of benzophenone hydrazone Schiff bases and their in vitro antiglycating activities. Med. Chem., 2013, 9, 588.
(g)Khan, K.M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M.I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg. Med. Chem., 2009, 17, 7795.
(h)Khan, K.M.; Mughal, U.R.; Khan, A.; Naz, F.; Perveen, S.; Choudhary, M.I. N-Aroylated isatins: Antiglycation activity. Lett. Drug Des. Discov., 2010, 7, 188.
(i)Khan, K.M.; Mughal, U.R.; Ambreen, N.; Khan, A.; Perveen, S.; Choudhary, M.I. Schiff bases of istain: Antiglycation activity. Lett. Drug Des. Discov., 2009, 6, 358.
(j)Khan, K.M.; Khan, M.; Ambreen, N.; Taha, M.; Rahim, F.; Rasheed, S.; Saied, S.; Safi, H.; Perveen, S.; Choudhary, M.I. Oxindole derivatives: Synthesis and antiglycation activity. Med. Chem., 2013, 9, 681.
(k)Perveen, S.; Mustafa, S.; Khan, K.M.; Choudhary, M.I. 1,3-Disubstituted ureas as antiglycating agents. J. Chem. Soc. Pak., 2013, 35, 1603.
(l)Khan, K.M.; Saeed, S.; Ali, M.; Gohar, M.; Zahid, J.; Khan, A.; Perveen, S.; Choudhary, M.I. Unsymmetrically disubstituted urea derivatives: A potent class of antiglycating agents. Bioorg. Med. Chem., 2009, 17, 2447.
(m)Taha, M.; Ismail, N.H.; Jamil, W.; Rashwan, H.; Kashif, S.M.; Sain, A.A.; Adenan, M.I.; Anouar, E.H.; Rahim, F.; Khan, K.M. Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities. Eur. J. Med. Chem., 2014, 84, 731.
[41]
Cirillo, V.P. Mechanism of glucose transport across the yeast cell membrane. J. Bacteriol., 1962, 84, 485.
[42]
Khan, K.M.; Khan, M.; Ambreen, N.; Rahim, F.; Naureen, S.; Perveen, S.; Choudhary, M.I.; Voelter, W. Synthesis and ß-glucuronidase inhibitory potential of benzimidazole derivatives. Med. Chem., 2012, 8, 421.

© 2025 Bentham Science Publishers | Privacy Policy