[4]
Asano, T.; Ogihara, T.; Katagiri, H.; Sakoda, H.; Ono, H.; Fujishiro, M. Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs. Curr. Med. Chem., 2004, 11, 2717-2724.
[5]
Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001, 414, 821-827.
[6]
Garber, A.J. Long-acting glucagon-like peptide 1 receptor agonists. Diabetes Care, 2011, 34.
[8]
Narayanaswamy, R.; Isha, A.; Wai, L.K.; Ismail, I.S. Molecular docking analysis of selected clinacanthus nutans constituents as xanthine oxidase, nitric oxide synthase, human neutrophil elastase, matrix metalloproteinase 2, matrix metalloproteinase 9 and squalene synthase inhibitors. Pharmacogn. Mag., 2016, 12, S21-S26.
[9]
Perveen, S.; Khan, S.B.; Malik, A.; Tareen, R.B.; Nawaz, S.A.; Choudhary, M.I. Phenolic constituents from Perovskia atriplicifolia. Nat. Prod. Res., 2006, 20, 347-353.
[10]
Tarawneh, A. León., F.; Pettaway, S.; Elokely, KM.; Klein, M.L.; Lambert, J. Mansoor, A.; Cutler, S.J. Flavonoids from Perovskia atriplicifolia and their in vitro displacement of the respective radioligands for human opioid and cannabinoid receptors. J. Nat. Prod., 2015, 78, 1461-1465.
[11]
Erdemgil, F.Z.; Ilhan, S.; Korkmaz, F.; Kaplan, C.; Mercangöz, A.; Arfan, M.; Ahmed, S. Chemical composition and biological activity of the essential oil of Perovskia atriplicifolia from Pakistan. Pharm. Biol., 2007, 45, 324-331.
[12]
Jiang, Z.Y.; Zhou, J.; Huang, C.G.; Hu, Q.F.; Huang, X.Z.; Wang, W.; Zhang, L-Z.; Li, G-P.; Xia, F-T. Two novel antiviral terpenoids from the cultured Perovskia atriplicifolia. Tetrahedron, 2015, 71, 3844-3849.
[14]
Khaliq, S.; Volk, F.J.; Frahm, A. Phytochemical investigation of Perovskia abrotanoides. Planta Med., 2007, 73, 77-83.
[15]
Liu, X.; Ouyang, S.; Yu, B. Liu. Y.; Huang, K.; Gong, J. Pharm Mapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38, 5-7.
[16]
Liang, J.; Edelsbrunner, H.; Woodward, C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci., 1998, 7, 1884-1897.
[17]
Liang, J. Geometry of protein shape and its evolutionary pattern for function prediction and characterization. Conf. Proc. Annu. Int. Conf. IEEE. NIH Public Access, 2009, pp. 2324-2327.
[18]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[19]
Srimai, V.; Ramesh, M. Satya, Parameshwar, K.; Parthasarathy, T. Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Med. Chem. Res. Springer U.S., 2013, 22, 5314-5323.
[20]
Chang, L.C.W.; Spanjersberg, R.F. von, Frijtag, Drabbe.; Künzel, J.K.; Mulder-Krieger, T.; van den Hout, G.; Beukers, M.W.; Brussee, J.; Ijzerman, A.P.2, 4, 6-trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists. J. Med. Chem., 2004, 47, 6529-6540.
[21]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43, 3714-3717.
[22]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19, 1446-1457.
[23]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1 Prediction of intestinal absorption. J. Pharm. Sci., 1999, 88, 807-814.
[24]
Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev., 2003, 23, 302-321.
[25]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52, 3099-3105.
[26]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[27]
Liao, X.; Zhou, X.; Mak, N.; Leung, K. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway. PLoS One, 2013, 8e82294
[28]
Brahmkshatriya, P.P.; Brahmkshatriya, P.S. Terpenes: Chemistry,
biological role, and therapeutic applications. Nat. Prod., 2013, 2665-2691.
[29]
Rao, D. Phytochemicals - A global perspective of their role in nutrition and health; In. Tech, 2012.
[30]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45, 2615-2623.
[31]
Chung, T.D.Y.; Terry, D.B.; Smith, L.H. In vitroand in vivo assessment of ADME and PK properties during lead selection and
lead optimization - guidelines, benchmarks and rules of thumb. assay
guid. man. eli lilly & company and the national center for advancing
translational sciences, 2004..