Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Enhanced Biocatalytic Activity of Recombinant Lipase Immobilized on Gold Nanoparticles

Author(s): Abeer M. Abd El-Aziz, Mohamed A. Shaker* and Mona I. Shaaban

Volume 20, Issue 6, 2019

Page: [497 - 505] Pages: 9

DOI: 10.2174/1389201020666190416144650

Price: $65

Abstract

Background: Bacterial lipases especially Pseudomonas lipases are extensively used for different biotechnological applications.

Objectives: With the better understanding and progressive needs for improving its activity in accordance with the growing market demand, we aimed in this study to improve the recombinant production and biocatalytic activity of lipases via surface conjugation on gold nanoparticles.

Methods: The full length coding sequences of lipase gene (lipA), lipase specific foldase gene (lipf) and dual cassette (lipAf) gene were amplified from the genomic DNA of Pseudomonas aeruginosa PA14 and cloned into the bacterial expression vector pRSET-B. Recombinant lipases were expressed in E. coli BL-21 (DE3) pLysS then purified using nickel affinity chromatography and the protein identity was confirmed using SDS-PAGE and Western blot analysis. The purified recombinant lipases were immobilized through surface conjugation with gold nanoparticles and enzymatic activity was colorimetrically quantified.

Results: Here, two single expression plasmid systems pRSET-B-lipA and pRSET-B-lipf and one dual cassette expression plasmid system pRSET-B-lipAf were successfully constructed. The lipolytic activities of recombinant lipases LipA, Lipf and LipAf were 4870, 426 and 6740 IUmg-1, respectively. However, upon immobilization of these recombinant lipases on prepared gold nanoparticles (GNPs), the activities were 7417, 822 and 13035 IUmg-1, for LipA-GNPs, Lipf-GNPs and LipAf-GNPs, respectively. The activities after immobilization have been increased 1.52 and 1.93 -fold for LipA and LipAf, respectively.

Conclusion: The lipolytic activity of recombinant lipases in the bioconjugate was significantly increased relative to the free recombinant enzyme where immobilization had made the enzyme attain its optimum performance.

Keywords: Recombinant lipase, Pseudomonas aeruginosa, chaperone immobilization, gold nanoparticles, enhanced biocatalytic activity.

Graphical Abstract

[1]
Andualema, B.; Gessesse, A. Microbial lipases and their industrial applications. Biotechnology., 2012, 11(3), 100-118.
[2]
Aguieiras, E.C.; Cavalcanti-Oliveira, E.D.; Cammarota, M.C.; Freire, D.M. Solid State Fermentation for the Production of Lipases for Environmental and Biodiesel Applications. In:Current Developments in Biotechnology and Bioengineering; Elsevier Science B.V: Amsterdam, 2018, pp. 123-168.
[3]
Zheng, C. In: Screening and Identification of Lipase Producing Bacterium, ,IOP Conference Series: Earth and Environmental Science,IOP Publishing:. 2018, p. p.042088.
[4]
Jaeger, K-E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol., 2002, 13(4), 390-397.
[5]
Jaeger, K-E.; Schneidinger, B.; Rosenau, F.; Werner, M.; Lang, D.; Dijkstra, B.W.; Schimossek, K.; Zonta, A.; Reetz, M.T. Bacterial lipases for biotechnological applications. J. Mol. Catal., B Enzym., 1997, 3(1-4), 3-12.
[6]
Liebeton, K.; Zacharias, A.; Jaeger, K.E. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase. J. Bacteriol., 2001, 183(2), 597-603.
[7]
Nardini, M.; Lang, D.A.; Liebeton, K.; Jaeger, K-E.; Dijkstra, B.W. Crystal structure of Pseudomonas aeruginosa lipase in the open conformation: The prototype for family I. 1 of bacterial lipases. J. Biol. Chem., 2000, 275(40), 31219-31225.
[8]
Dey, A.; Chattopadhyay, A.; Mukhopadhyay, S.K.; Saha, P.; Chatterjee, S.; Maiti, T.K.; Roy, P. Production,partial purification and characterization of an extracellular psychrotrophic lipase from Pseudomonas. Sp. ADT3. J. Bioremediat. Biodegrad., 2014, 5(242), 2.
[9]
Bornscheuer, U.T. Enzymes in lipid modification: From classical biocatalysis with commercial enzymes to advanced protein engineering tools. Ol. Corps Gras Lipides, 2013, 20(1), 45-49.
[10]
Nagarajan, S. New tools for exploring “old friends-microbial lipases”. Appl. Biochem. Biotechnol., 2012, 168(5), 1163-1196.
[11]
Madan, B.; Mishra, P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(3), 597-604.
[12]
Akbari, N.; Khajeh, K.; Rezaie, S.; Mirdamadi, S.; Shavandi, M.; Ghaemi, N. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr. Purif., 2010, 70(1), 75-80.
[13]
Wu, X.; You, P.; Su, E.; Xu, J.; Gao, B.; Wei, D. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnol., 2012, 12(1), 58.
[14]
Shikha, S.; Thakur, K.G.; Bhattacharyya, M.S. Facile fabrication of lipase to amine functionalized gold nanoparticles to enhance stability and activity. RSC Advances, 2017, 7(68), 42845-42855.
[15]
Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev., 2013, 42(15), 6406-6436.
[16]
Gustafsson, H.; Thörn, C.; Holmberg, K. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Colloids Surf. B Biointerfaces, 2011, 87(2), 464-471.
[17]
Dech, S.; Wruk, V.; Fik, C.P.; Tiller, J.C. Amphiphilic polymer conetworks derived from aqueous solutions for biocatalysis in organic solvents. Polymer., 2012, 53(3), 701-707.
[18]
Dreaden, E.C.; Mwakwari, S.C.; Sodji, Q.H.; Oyelere, A.K.; El-Sayed, M.A. Tamoxifen-poly (ethylene glycol)-thiol gold nanoparticle conjugates: Enhanced potency and selective delivery for breast cancer treatment. Bioconjug. Chem., 2009, 20(12), 2247-2253.
[19]
Shaker, M.A.; Shaaban, M.I. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study. Int. J. Pharm., 2017, 525(1), 71-84.
[20]
Chi, Q.; Ford, M.J.; Halder, A.; Hush, N.S.; Reimers, J.R.; Ulstrup, J. Sulfur ligand mediated electrochemistry of gold surfaces and nanoparticles: What, how, and why. Curr. Opin. Electrochem., 2017, 1(1), 7-15.
[21]
Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.F.; Urbanska, A.M.; Seifalian, A. Targeted drug delivery based on gold nanoparticle derivatives. Curr. Pharm. Des., 2017, 23(20), 2918-2929.
[22]
Wang, A.; Vangala, K.; Vo, T.; Zhang, D.; Fitzkee, N.C. A three-step model for protein-gold nanoparticle adsorption. J. Phys. Chem. C, 2014, 118(15), 8134-8142.
[23]
Kumar, A.; Zhang, X.; Liang, X-J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv., 2013, 31(5), 593-606.
[24]
Green, M.R.; Sambrook, J. Molecular Cloning: a Laboratory Manual:Three-Volume Set; Cold Spring Harbor Laboratory Press: New York, 2012.
[25]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J.; Clustal, W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22(22), 4673-4680.
[26]
Kingston, R.E.; Moore, D.D.; Seidman, J.; Smith, J.A.; Struhl, K.; Cutler, G.; Packer, L.; Bertram, J.; Mori, A. Short Protocols in Molecular Biology.In: Advances in Cell and Molecular Biology of Membranes and Organelles; Fred, Ausubel; Roger, Brent, Eds.; , 1995, p. 4.
[27]
Janson, J.; Ryden, J. Protein Purification; Wiley & Sons: New York, 1998.
[28]
Mellick, A.S.; Rodgers, L. Lab Ref: A Handbook of Recipes, Reagents, and OtherReference Tools for Use at the Bench; Cold Spring Harbor Laboratory Press: New York, 2007.
[29]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[30]
Stuer, W.; Jaeger, K.; Winkler, U. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol., 1986, 168(3), 1070-1074.
[31]
Kanwar, S.S.; Kaushal, R.K.; Jawed, A.; Gupta, R.; Chimni, S.S. Methods for inhibition of residual lipase activity in colorimetric assay: A comparative study. IJBB, 2005, 42, 233-237.
[32]
Minovska, V.; Winkelhausen, E.; Kuzmanova, S. Lipase immobilized by different techniques on various support materials applied in oil hydrolysis. J. Serb. Chem. Soc., 2005, 70(4), 609.
[33]
Mohamed, S.A.; Al-Harbi, M.H.; Almulaiky, Y.Q.; Ibrahim, I.H.; El-Shishtawy, R.M. Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron. J. Biotechnol., 2017, 27, 84-90.
[34]
Agobo, K.; Arazu, V.; Uzo, K.; Igwe, C. Microbial lipases: A prospect for biotechnological industrial catalysis for green products: A Review. Ferment. Technol., 2017, 6(144), 2.
[35]
Jaeger, K.; Randac, S.; Dijkstra, B.; Colson, C.; van Heuvel, M.; Misset, O. Bacterial lipases. FEMS Microbiol. Lett., 1994, 15, 29-63.
[36]
Rosenau, F.; Jaeger, K-E. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie, 2000, 82(11), 1023-1032.
[37]
Glogauer, A.; Martini, V.P.; Faoro, H.; Couto, G.H.; Müller-Santos, M.; Monteiro, R.A.; Mitchell, D.A.; de Souza, E.M.; Pedrosa, F.O.; Krieger, N. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb. Cell Fact., 2011, 10(1), 54.
[38]
Quyen, T.; Vu, C.; Le, G.T. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid. Microb. Cell Fact., 2012, 11(1), 29.
[39]
Rana, S.; Yeh, Y.C.; Rotello, V.M. Engineering the nanoparticle-protein interface: applications and possibilities. Curr. Opin. Chem. Biol., 2010, 14(6), 828-834.
[40]
Gannimani, R.; Ramesh, M.; Mtambo, S.; Pillay, K.; Soliman, M.E.; Govender, P. γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol. J. Inorg. Biochem., 2016, 157, 15-24.
[41]
Nini, L.; Sarda, L.; Comeau, L-C.; Boitard, E.; Dubès, J-P.; Chahinian, H. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: A kinetic study. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2001, 1534(1), 34-44.
[42]
Bailes, J.; Gazi, S.; Ivanova, R.; Soloviev, M. Effect of Gold Nanoparticle Conjugation on theActivity and Stability of Functional Proteins.In: Nanoparticles in Biology and Medicine, Methods and Protocols; Soloviev, M., Ed.; Humana Press: Totowa, New Jersey, 2012, pp. 89-99.
[43]
Lee, D-G.; Ponvel, K.M.; Kim, M.; Hwang, S.; Ahn, I-S.; Lee, C-H. Immobilization of lipase on hydrophobic nano-sized magnetite particles. J. Mol. Catal., B Enzym., 2009, 57(1-4), 62-66.
[44]
Lv, M.; Zhu, E.; Su, Y.; Li, Q.; Li, W.; Zhao, Y.; Huang, Q. Trypsin-gold nanoparticle conjugates: Binding, enzymatic activity, and stability. Prep. Biochem. Biotechnol., 2009, 39, 429-438.
[45]
Cortez, J.; Vorobieva, E.; Gralheira, D.; Osório, I.; Soares, L.; Vale, N.; Pereira, E.; Gomes, P.; Franco, R. Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds. . J. Nanopart. Res., 2011, 13(3), 1101-1113.
[46]
Li, D.; He, Q.; Cui, Y.; Duan, L.; Li, J. Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem. Biophys. Res. Commun., 2007, 355(2), 488-493.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy