Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals

Author(s): Weigang Fan, Charlie Verrier*, Yves Queneau and Florence Popowycz*

Volume 16, Issue 4, 2019

Page: [583 - 614] Pages: 32

DOI: 10.2174/1570179416666190412164738

Abstract

Background: 5-Hydroxymethylfurfural (5-HMF) is a biomass-derived platform chemical, which can be produced from carbohydrates. In the past decades, 5- HMF has received tremendous attention because of its wide applications in the production of various value-added chemicals, materials and biofuels. The manufacture and the catalytic conversion of 5-HMF to simple industrially-important bulk chemicals have been well reviewed. However, employing 5-HMF as a building block in organic synthesis has never been summarized exclusively, despite the rapid development in this area.

Objective: The aim of this review is to bring a fresh perspective on the use of 5-HMF in organic synthesis, to the exclusion of already well documented conversion of 5-HMF towards relatively simple molecules such as 2,5-furandicarboxylic acid, 2,5-dimethylfuran and so on notably used as monomers or biofuels.

Conclusion: As it has been shown throughout this review, 5-HMF has been the object of numerous studies on its use in fine chemical synthesis. Thanks to the presence of different functional groups on this platform chemical, it proved to be an excellent starting material for the preparation of various fine chemicals. The use of this C-6 synthon in novel synthetic routes is appealing, as it allows the incorporation of renewable carbonsources into the final targets.

Keywords: 5-Hydroxymethylfurfural, synthetic platform, biomass-derived chemical, organic synthesis, value-added chemicals, multi-step synthesis, methodology.

Graphical Abstract

[1]
Galkin, K.I.; Krivodaeva, E.A.; Romashov, L.V.; Zalesskiy, S.S.; Kachala, V.V.; Burykina, J.V.; Ananikov, V.P. Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis. Angew. Chem. Int. Ed., 2016, 55(29), 8338-8342.
[2]
Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem., 2006, 8(8), 701-709.
[3]
Nikolov, P.Y.; Yaylayan, V.A. Thermal decomposition of 5-(hydroxymethyl)-2-furaldehyde (HMF) and its further transformations in the presence of glycine. J. Agric. Food Chem., 2011, 59(18), 10104-10113.
[4]
Gomes, R.F.A.; Mitrev, Y.N.; Simeonov, S.P.; Afonso, C.A.M. Going beyond the limits of the biorenewable platform: Sodium dithionite-promoted stabilization of 5-hydroxymethylfurfural. ChemSusChem, 2018, 11(10), 1612-1616.
[5]
Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem., 2011, 13(4), 754-793.
[6]
de Vries, J.G. Green Syntheses of Heterocycles of Industrial Importance. 5-Hydroxymethylfurfural as a Platform Chemical. In: Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A., Eds.; Academic Press, 2017; Vol. 121, pp. 247-293.
[7]
van Putten, R-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113(3), 1499-1597.
[8]
Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical transformations of biomass-derived c6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustainable. Chem. Eng., 2018, 6(7), 8064-8092.
[9]
Liu, D.; Zhang, Y.; Chen, E.Y.X. Organocatalytic upgrading of the key biorefining building block by a catalytic ionic liquid and N-heterocyclic carbenes. Green Chem., 2012, 14(10), 2738-2746.
[10]
Liu, D.; Chen, E.Y.X. Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis. ChemSusChem, 2013, 6(12), 2236-2239.
[11]
Liu, D.; Chen, E.Y.X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel. ACS Catal., 2014, 4(5), 1302-1310.
[12]
Wang, L.; Chen, E.Y.X. Recyclable supported carbene catalysts for high-yielding self-condensation of furaldehydes into C10 and C12 furoins. ACS Catal., 2015, 5(11), 6907-6917.
[13]
Zang, H.; Chen, E.Y.X. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int. J. Mol. Sci., 2015, 16(4), 7143-7158.
[14]
Yan, B.; Zang, H.; Jiang, Y.; Yu, S.; Chen, E.Y.X. Recyclable montmorillonite-supported thiazolium ionic liquids for high-yielding and solvent-free upgrading of furfural and 5-hydroxymethylfurfural to C10 and C12 furoins. RSC Adv, 2016, 6(80), 76707-76715.
[15]
Donnelly, J.; Muller, C.R.; Wiermans, L.; Chuck, C.J.; Dominguez de Maria, P. Upgrading biogenic furans: Blended C10-C12 platform chemicals via lyase-catalyzed carboligations and formation of novel C12 - choline chloride-based deep-eutectic-solvents. Green Chem., 2015, 17(5), 2714-2718.
[16]
Coelho, J.A.S.; Trindade, A.F.; Andre, V.; Teresa Duarte, M.; Veiros, L.F.; Afonso, C.A.M. Trienamines derived from 5-substituted furfurals: remote ε-functionalization of 2,4-dienals. Org. Biomol. Chem., 2014, 12(46), 9324-9328.
[17]
Gomes, R.F.A.; Coelho, J.A.S.; Frade, R.F.M.; Trindade, A.F.; Afonso, C.A.M. Synthesis of symmetric bis(N-alkylaniline)triarylmethanes via friedel–crafts-catalyzed reaction between secondary anilines and aldehydes. J. Org. Chem., 2015, 80(20), 10404-10411.
[18]
Yu, C.; Liu, B.; Hu, L. Efficient baylis−hillman reaction using stoichiometric base catalyst and an aqueous medium. J. Org. Chem., 2001, 66(16), 5413-5418.
[19]
Yu, C.; Hu, L. Successful baylis−hillman reaction of acrylamide with aromatic aldehydes. J. Org. Chem., 2002, 67(1), 219-223.
[20]
Tan, J-N.; Ahmar, M.; Queneau, Y. HMF derivatives as platform molecules: aqueous baylis-hillman reaction of glucosyloxymethyl-furfural towards new biobased acrylates. RSC Adv, 2013, 3(39), 17649-17653.
[21]
Tan, J-N.; Ahmar, M.; Queneau, Y. Bio-based solvents for the Baylis-Hillman reaction of HMF. RSC Adv, 2015, 5(85), 69238-69242.
[22]
Quiroz-Florentino, H.; Aguilar, R.; Santoyo, B.M.; Díaz, F.; Tamariz, J. Total Syntheses of Natural Furan Derivatives Rehmanones A, B, and C. Synthesis, 2008, 2008(7), 1023-1028.
[23]
Pupovac, K.; Palkovits, R. Cu/MgAl2O4 as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation. ChemSusChem, 2013, 6(11), 2103-2110.
[24]
Lewis, J.D.; Van de Vyver, S.; Román-Leshkov, Y. Acid–base pairs in lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew. Chem. Int. Ed., 2015, 54(34), 9835-9838.
[25]
Lee, R.; Vanderveen, J.R.; Champagne, P.; Jessop, P.G. CO2-catalysed aldol condensation of 5-hydroxymethylfurfural and acetone to a jet fuel precursor. Green Chem., 2016, 18(19), 5118-5121.
[26]
Yutthalekha, T.; Suttipat, D.; Salakhum, S.; Thivasasith, A.; Nokbin, S.; Limtrakul, J.; Wattanakit, C. Aldol condensation of biomass-derived platform molecules over amine-grafted hierarchical FAU-type zeolite nanosheets(Zeolean) featuring basic sites. Chem. Commun. , 2017, 53(90), 12185-12188.
[27]
Bohre, A.; Saha, B.; Abu-Omar, M.M. Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal-acid catalysts. ChemSusChem, 2015, 8(23), 4022-4029.
[28]
Skowronski, R.; Grabowski, G.; Lewkowski, J.; Descotes, G.; Cottier, L.; Neyret, C. New chemical conversions of 5-hydroxymethylfurfural and the electrochemical oxidation of its derivatives. Org. Prep. Proced. Int., 1993, 25(3), 353-355.
[29]
Arias, K.S.; Climent, M.J.; Corma, A.; Iborra, S. Chemicals from biomass: Synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top. Catal., 2016, 59(13), 1257-1265.
[30]
Zhao, F.; Zhao, Q-J.; Zhao, J-X.; Zhang, D-Z.; Wu, Q-Y.; Jin, Y-S. Synthesis and cdc25B inhibitory activity evaluation of chalcones. Chem. Nat. Compd., 2013, 49(2), 206-214.
[31]
Wang, Y-H.; Dong, H-H.; Zhao, F.; Wang, J.; Yan, F.; Jiang, Y-Y.; Jin, Y-S. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorg. Med. Chem. Lett., 2016, 26(13), 3098-3102.
[32]
Suryawanshi, S.N.; Chandra, N.; Kumar, P.; Porwal, J.; Gupta, S. Chemotherapy of leishmaniasis part-VIII: Synthesis and bioevaluation of novel chalcones. Eur. J. Med. Chem., 2008, 43(11), 2473-2478.
[33]
Mugunthan, G.; Ramakrishna, K.; Sriram, D.; Yogeeswari, P.; Ravindranathan Kartha, K.P. Synthesis and screening of (E)-1-(β-d-galactopyranosyl)-4-(aryl)but-3-ene-2-one against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2011, 21(13), 3947-3950.
[34]
Muthusamy, K.; Lalitha, K.; Prasad, Y.S.; Thamizhanban, A.; Sridharan, V.; Maheswari, C.U.; Nagarajan, S. Lipase-catalyzed synthesis of furan-based oligoesters and their self-assembly-assisted polymerization. ChemSusChem, 2018, 11(14), 2453-2463.
[35]
Lockman, J.W.; Reeder, M.D.; Suzuki, K.; Ostanin, K.; Hoff, R.; Bhoite, L.; Austin, H.; Baichwal, V.; Adam Willardsen, J. Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues. Bioorg. Med. Chem. Lett., 2010, 20(7), 2283-2286.
[36]
Meguellati, A.; Ahmed-Belkacem, A.; Yi, W.; Haudecoeur, R.; Crouillère, M.; Brillet, R.; Pawlotsky, J-M.; Boumendjel, A.; Peuchmaur, M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2014, 80, 579-592.
[37]
Taylor, K.M.; Taylor, Z.E.; Handy, S.T. Rapid synthesis of aurones under mild conditions using a combination of microwaves and deep eutectic solvents. Tetrahedron Lett., 2017, 58(3), 240-241.
[38]
Witczak, Z.J.; Bielski, R.; Mencer, D.E. Concise and efficient synthesis of E-stereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1. Tetrahedron Lett., 2017, 58(43), 4069-4072.
[39]
Zhao, F.; Dong, H-H.; Wang, Y-H.; Wang, T-Y.; Yan, Z-H.; Yan, F.; Zhang, D-Z.; Cao, Y-Y.; Jin, Y-S. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. MedChemComm, 2017, 8(5), 1093-1102.
[40]
Liu, Q.; Zhang, C.; Shi, N.; Zhang, X.; Wang, C.; Ma, L. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones. RSC Adv, 2018, 8(25), 13686-13696.
[41]
Amarasekara, A.S.; Singh, T.B.; Larkin, E.; Hasan, M.A.; Fan, H-J. NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water. Ind. Crops Prod., 2015, 65, 546-549.
[42]
Keskiväli, J.; Wrigstedt, P.; Lagerblom, K.; Repo, T. One-step Pd/C and Eu(OTf)3 catalyzed hydrodeoxygenation of branched C11 and C12 biomass-based furans to the corresponding alkanes. Appl. Catal. A Gen., 2017, 534, 40-45.
[43]
Lin, L.; Shi, Q.; Nyarko, A.K.; Bastow, K.F.; Wu, C-C.; Su, C-Y.; Shih, C.C.Y.; Lee, K-H. Antitumor agents. 250. design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J. Med. Chem., 2006, 49(13), 3963-3972.
[44]
Martichonok, V.V.; Chiang, P.K.; Dornbush, P.J.; Land, K.M. On regioselectivity of aldol condensation of aromatic aldehydes with borate complex of acetylacetone. Synth. Commun., 2014, 44(9), 1245-1250.
[45]
Shao, W-Y.; Cao, Y-N.; Yu, Z-W.; Pan, W-J.; Qiu, X.; Bu, X-Z.; An, L-K.; Huang, Z-S.; Gu, L-Q.; Chan, A.S.C. Facile preparation of new unsymmetrical curcumin derivatives by solid-phase synthesis strategy. Tetrahedron Lett., 2006, 47(24), 4085-4089.
[46]
Tarleton, M.; Dyson, L.; Gilbert, J.; Sakoff, J.A.; McCluskey, A. Focused library development of 2-phenylacrylamides as broad spectrum cytotoxic agents. Bioorg. Med. Chem., 2013, 21(1), 333-347.
[47]
Tarleton, M.; Gilbert, J.; Sakoff, J.A.; McCluskey, A. Cytotoxic 2-phenyacrylnitriles, the importance of the cyanide moiety and discovery of potent broad spectrum cytotoxic agents. Eur. J. Med. Chem., 2012, 57, 65-73.
[48]
Feng, Z.; Jia, J.; Liu, Y.; Wang, Z.; Zhao, X. 3-Furyl-2-cyano-2-acrylamide derivative, preparation method therefor, pharmaceutical composition and use thereof. US20160272604A1, 2016.
[49]
Hanefeld, W.; Schlitzer, M.; Debski, N.; Euler, H. 3-(2,5-Dioxopyrrolidin-1-yl), 3-(2,6-dioxopiperidin-1-yl), and 3-(1,3-dioxoisoindolin-2-yl)rhodanines. a novel type of rhodanine derivatives. J. Heterocycl. Chem., 1996, 33(4), 1143-1146.
[50]
Gregg, B.T.; Golden, K.C.; Quinn, J.F.; Tymoshenko, D.O.; Earley, W.G.; Maynard, D.A.; Razzano, D.A.; Rennells, W.M.; Butcher, J. Expedient lewis acid catalyzed synthesis of a 3-substituted 5-arylidene-1-methyl-2-thiohydantoin library. J. Comb. Chem., 2007, 9(6), 1036-1040.
[51]
Lukevics, E.; Ignatovich, L.; Shestakova, I. Synthesis, psychotropic and anticancer activity of 2,2-dimethyl-5-[5′-trialkylgermyl(silyl)-2′-hetarylidene]-1,3-dioxane-4,6-diones and their analogues. Appl. Organomet. Chem., 2003, 17(12), 898-905.
[52]
Gomes, R.F.A.; Coelho, J.A.S.; Afonso, C.A.M. Direct conversion of activated 5-hydroxymethylfurfural into delta-lactone-fused cyclopentenones. ChemSusChem, 2019, 12(2), 420-425.
[53]
Nikolov, M.N.; Poneva, M.V. Spectral determination of the structure of 5-hydroxymethylfurfurylidene barbituric acid. Spectrosc. Lett., 1987, 20(10), 821-834.
[54]
Mercep, M.; Malnar, I.; Filipovic Sucic, A.; Mesic, M. Preparation of antiinflammatory conjugates of erythromycin macrolides and coumarins. WO2006092739A1 2006.
[55]
van Schijndel, J.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. Exploration of the role of double schiff bases as catalytic intermediates in the knoevenagel reaction of furanic aldehydes: mechanistic considerations. Synlett, 2018, 29(15), 1983-1988.
[56]
Cummings, R.T.; DiZio, J.P.; Krafft, G.A. Photoactivable fluorophores. 2. Synthesis and photoactivation of functionalized 3-aroyl-2-(2-furyl)-chromones. Tetrahedron Lett., 1988, 29(1), 69-72.
[57]
Miller, R. Synthesis and stereochemistry of (E)-5-(3,4,5,6-tetrahydropyrid-3-ylidenemethyl)-2-furanmethanol, a Product of the reaction between D-glucose and L-lysine. Acta Chem. Scand. B, 1987, 41, 208-209.
[58]
Shao, X.; Li, Z.; Qian, X.; Xu, X. Design, synthesis, and insecticidal activities of novel analogues of neonicotinoids: Replacement of nitromethylene with nitroconjugated system. J. Agric. Food Chem., 2009, 57(3), 951-957.
[59]
Lee, J-S.; Kang, N-Y.; Kim, Y.K.; Samanta, A.; Feng, S.; Kim, H.K.; Vendrell, M.; Park, J.H.; Chang, Y-T. Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J. Am. Chem. Soc., 2009, 131(29), 10077-10082.
[60]
Karaguni, I-M.; Glüsenkamp, K-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Möröy, T.; Müller, O. New indene-derivatives with anti-proliferative properties. Bioorg. Med. Chem. Lett., 2002, 12(4), 709-713.
[61]
Mouloungui, Z.; Delmas, M.; Gaset, A. Synthesis of α,β unsaturated esters using a solid-liquid phase transfer in a slightly hydrated aprotic medium. Synth. Commun., 1984, 14(8), 701-706.
[62]
Mouloungui, Z.; Delmas, M.; Gaset, A. Synthesis of α, β-Ethylenic Esters in a Heterogenous Solid-Liquid Medium. II - A transesterification reaction linked to a wittig-horner reaction in a protic medium. Synth. Commun., 1985, 15(6), 491-494.
[63]
Goodman, S.N.; Jacobsen, E.N. A practical synthesis of α,β-unsaturated imides, useful substrates for asymmetric conjugate addition reactions. Adv. Synth. Catal., 2002, 344(9), 953-956.
[64]
Almirante, N.; Cerri, A.; Fedrizzi, G.; Marazzi, G.; Santagostino, M. A general, [1+4] approach to the synthesis of 3(5)-substituted pyrazoles from aldehydes. Tetrahedron Lett., 1998, 39(20), 3287-3290.
[65]
Fumagalli, T.; Sello, G.; Orsini, F. One-pot, fluoride-promoted wittig reaction. Synth. Commun., 2009, 39(12), 2178-2195.
[66]
Yoshida, N.; Kasuya, N.; Haga, N.; Fukuda, K. Brand-new biomass-based vinyl polymers from 5-hydroxymethylfurfural. Polym. J., 2008, 40, 1164-1169.
[67]
Han, M.; Liu, X.; Zhang, X.; Pang, Y.; Xu, P.; Guo, J.; Liu, Y.; Zhang, S.; Ji, S. 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive. Green Chem., 2017, 19(3), 722-728.
[68]
Romashov, L.V.; Ananikov, V.P. Alkynylation of bio-based 5-hydroxymethylfurfural to connect biomass processing with conjugated polymers and furanic pharmaceuticals. Chem. Asian J., 2017, 12(20), 2652-2655.
[69]
Sharma, U.K.; Gemoets, H.P.L.; Schröder, F.; Noël, T.; Van der Eycken, E.V. Merger of visible-light photoredox catalysis and C–H activation for the room-temperature C-2 acylation of indoles in batch and flow. ACS Catal., 2017, 7(6), 3818-3823.
[70]
Ramonczai, J.; Vargha, L. Studies on furan compounds. III. A new synthesis of furyl ketones. J. Am. Chem. Soc., 1950, 72(6), 2737-2737.
[71]
Nicklaus, C.M.; Minnaard, A.J.; Feringa, B.L.; de Vries, J.G. Synthesis of renewable fine-chemical building blocks by reductive coupling between furfural derivatives and terpenes. ChemSusChem, 2013, 6(9), 1631-1635.
[72]
Hirapara, P.; Riemer, D.; Hazra, N.; Gajera, J.; Finger, M.; Das, S. CO2-assisted synthesis of non-symmetric α-diketones directly from aldehydes via C–C bond formation. Green Chem., 2017, 19(22), 5356-5360.
[73]
Cooper, W.F.; Nuttall, W.H. CXII.—Furan-2: 5-Dialdehyde. J. Chem. Soc. Trans., 1912, 101, 1074-1081.
[74]
Middendorp, J.A. Sur l’oxyméthylfurfurol. Recl. Trav. Chim. Pays Bas, 1919, 38(1), 1-71.
[75]
Cottier, L.; Descotes, G.; Lewkowski, J.; Skowroński, R. Synthesis and its stereochemistry of aminophosphonic acids derived from 5-hydroxymethylfurfural. Phosphorus Sulfur Silicon Relat. Elem., 1996, 116(1), 93-100.
[76]
Fan, W.; Queneau, Y.; Popowycz, F. The synthesis of HMF-based α-amino phosphonates via one-pot Kabachnik–Fields reaction. RSC Adv, 2018, 8(55), 31496-31501.
[77]
Amarasekara, A.S.; Edigin, O.; Hernandez, W. Cycloaddition reactions of 5-hydroxymethyl-furan-2-nitrileoxide. Lett. Org. Chem., 2007, 4(5), 306-308.
[78]
Wang, E.; Zhou, Y.; Huang, Q.; Pang, L.; Qiao, H.; Yu, F.; Gao, B.; Zhang, J.; Min, Y.; Ma, T. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+. Spectrochim. Acta A, 2016, 152, 327-335.
[79]
Alsaeedi, H.S.; Aljaber, N.A.; Ara, I. Synthesis and investigation of antimicrobial activity of some nifuroxazide analogues. Asian J. Chem., 2015, 27(10), 3639-3646.
[80]
Brown, M.L.; Cheung, M.; Dickerson, S.H.; Drewry, D.H.; Lackey, K.E.; Peat, A.J.; Thomson, S.A.; Veal, J.M.; Wilson, J.L.R. reparation of pyrazolopyrimidines as kinase inhibitors for the treatment of type 2 diabetes. WO2004009596A2 2004.
[81]
Alturiqi, A.S.; Alaghaz, A-N.M.A.; Ammar, R.A.; Zayed, M.E. Synthesis, Spectral Characterization, and Thermal and Cytotoxicity Studies of Cr(III), Ru(III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes of schiff base derived from 5-hydroxymethylfuran-2-carbaldehyde. J. Chem., 2018, 2018, 1-17.
[82]
Mohamed, O.G.; Khalil, Z.G.; Capon, R.J. Prolinimines: N-amino-l-pro-methyl ester (Hydrazine) schiff bases from a fish gastrointestinal tract-derived fungus, trichoderma sp. CMB-F563. Org. Lett., 2018, 20(2), 377-380.
[83]
Cisneros, L.; Serna, P.; Corma, A. Selective reductive coupling of nitro compounds with aldehydes to nitrones in H2 using carbon-supported and -decorated platinum nanoparticles. Angew. Chem. Int. Ed., 2014, 53(35), 9306-9310.
[84]
Pezzetta, C.; Veiros, L.F.; Oble, J.; Poli, G. Murai reaction on furfural derivatives enabled by removable N,N′-bidentate directing groups. Chem. Eur. J., 2017, 23(35), 8385-8389.
[85]
Siopa, F.; Ramis Cladera, V-A.; Afonso, C.A.M.; Oble, J.; Poli, G. Ruthenium-catalyzed C-H arylation and alkenylation of furfural imines with boronates. Eur. J. Org. Chem., 2018, 2018(44), 6101-6106.
[86]
Cukalovic, A.; Stevens, C.V. Production of biobased HMF derivatives by reductive amination. Green Chem., 2010, 12(7), 1201-1206.
[87]
Elming, N.; Clauson-Kaas, N. Transformation of 2-(hydroxymethyl)-5-(aminomethyl)-furan into 6-methyl-3-pyridinol. Acta Chem. Scand., 1956, 10, 1603-1605.
[88]
Xu, Z.; Yan, P.; Xu, W.; Jia, S.; Xia, Z.; Chung, B.; Zhang, Z.C. Direct reductive amination of 5-hydroxymethylfurfural with primary/secondary amines via Ru-complex catalyzed hydrogenation. RSC Adv, 2014, 4(103), 59083-59087.
[89]
Chatterjee, M.; Ishizaka, T.; Kawanami, H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem., 2016, 18(2), 487-496.
[90]
Komanoya, T.; Kinemura, T.; Kita, Y.; Kamata, K.; Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc., 2017, 139(33), 11493-11499.
[91]
Chandra, D.; Inoue, Y.; Sasase, M.; Kitano, M.; Bhaumik, A.; Kamata, K.; Hosono, H.; Hara, M. A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds. Chem. Sci., 2018, 9(27), 5949-5956.
[92]
Jagadeesh, R.V.; Murugesan, K.; Alshammari, A.S.; Neumann, H.; Pohl, M-M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358(6361), 326-332.
[93]
Zhu, M-M.; Tao, L.; Zhang, Q.; Dong, J.; Liu, Y-M.; He, H-Y.; Cao, Y. Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst. Green Chem., 2017, 19(16), 3880-3887.
[94]
Carrillo, A.I.; Llanes, P.; Pericàs, M.A. A versatile, immobilized gold catalyst for the reductive amination of aldehydes in batch and flow. React. Chem. Eng., 2018, 3(5), 714-721.
[95]
Niphakis, M.J.; Gay, B.C.; Hong, K.H.; Bleeker, N.P.; Georg, G.I. Synthesis and evaluation of the anti-proliferative and NF-κB activities of a library of simplified tylophorine analogs. Bioorg. Med. Chem., 2012, 20(19), 5893-5900.
[96]
Kojiri, K.; Kondo, H.; Arakawa, H.; Ohkubo, M.; Suda, H. Preparation of indolopyrrolocarbazole derivatives having glucopyranosyl group and antitumor agents containing them. US6703373B1 2004.
[97]
Plitta, B.; Adamska, E.; Giel-Pietraszuk, M.; Fedoruk-Wyszomirska, A.; Naskręt-Barciszewska, M.; Markiewicz, W.T.; Barciszewski, J. New cytosine derivatives as inhibitors of DNA methylation. Eur. J. Med. Chem., 2012, 55, 243-254.
[98]
Xu, Z.; Yan, P.; Liu, K.; Wan, L.; Xu, W.; Li, H.; Liu, X.; Zhang, Z.C. Synthesis of bis(hydroxylmethylfurfuryl)amine monomers from 5-hydroxymethylfurfural. ChemSusChem, 2016, 9(11), 1255-1258.
[99]
Sattler, L.; Zerban, F.W.; Clark, G.L.; Chu, C-C. The reaction of 2-aminobenzenethiol with Al-doses and with hydroxymethylfurfural. J. Am. Chem. Soc., 1951, 73(12), 5908-5910.
[100]
Koehler, A.N.; Stefan, E.; Caballero, F. Preparation of fused 1,3-azole derivatives useful for the treatment of proliferative diseases. WO2016094688A1 2016.
[101]
Takezawa, H.; Hayashi, M.; Iwasawa, Y.; Hosoi, M.; Iida, Y.; Tsuchiya, Y.; Horie, M.; Kamei, T. Substituted alkylamine derivatives. US5234946A 1993.
[102]
Forster, Forster. M.; Chaikuad, A.; Bauer, S.M.; Holstein, J.; Robers, M.B.; Corona, C.R.; Gehringer, M.; Pfaffenrot, E.; Ghoreschi, K.; Knapp, S.; Laufer, S.A. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol., 2016, 23(11), 1335-1340.
[103]
Forster, M.; Chaikuad, A.; Dimitrov, T.; Döring, E.; Holstein, J.; Berger, B-T.; Gehringer, M.; Ghoreschi, K.; Müller, S.; Knapp, S.; Laufer, S.A. Development, optimization, and structure–activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic imidazo[5,4-d]pyrrolo[2,3-b]pyridine scaffold. J. Med. Chem., 2018, 61(12), 5350-5366.
[104]
Hrast, M.; Rožman, K.; Jukič, M.; Patin, D.; Gobec, S.; Sova, M. Synthesis and structure–activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorg. Med. Chem. Lett., 2017, 27(15), 3529-3533.
[105]
Snyder, D.S.; Tradtrantip, L.; Yao, C.; Kurth, M.J.; Verkman, A.S. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J. Med. Chem., 2011, 54(15), 5468-5477.
[106]
Sachdeva, N.; Dolzhenko, A.V.; Lim, S.J.; Ong, W.L.; Chui, W.K. An efficient synthesis of 2,4,7-trisubstituted pyrimido[1,2-a][1,3,5]triazin-6-ones. New J. Chem., 2015, 39(6), 4796-4804.
[107]
Matasi, J.J.; Caldwell, J.P.; Hao, J.; Neustadt, B.; Arik, L.; Foster, C.J.; Lachowicz, J.; Tulshian, D.B. The discovery and synthesis of novel adenosine receptor (A2A) antagonists. Bioorg. Med. Chem. Lett., 2005, 15(5), 1333-1336.
[108]
Bode, M.L.; Rousseau, A.L.; Gravestock, D.; Moleele, S.S.; Van der Westhuyzen, C.W. Imidazopyridines and imidazopyrimidines as HIV-1 reverse transcriptase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of HIV infection. WO2010032195A1 2010.
[109]
Fan, W.; Queneau, Y.; Popowycz, F. HMF in multicomponent reactions: utilization of 5-hydroxymethylfurfural (HMF) in the Biginelli reaction. Green Chem., 2018, 20(2), 485-492.
[110]
Wu, Q.; Chen, J.; Guo, X.; Xu, Y. Copper(I)-catalyzed four-component coupling using renewable building blocks of CO2 and biomass-based aldehydes. Eur. J. Org. Chem., 2018, 2018(24), 3105-3113.
[111]
Antonio, J.P.M.; Frade, R.F.M.; Santos, F.M.F.; Coelho, J.A.S.; Afonso, C.A.M.; Gois, P.M.P.; Trindade, A.F. NHC catalysed direct addition of HMF to diazo compounds: synthesis of acyl hydrazones with antitumor activity. RSC Adv, 2014, 4(55), 29352-29356.
[112]
Baliani, A.; Bueno, G.J.; Stewart, M.L.; Yardley, V.; Brun, R.; Barrett, M.P.; Gilbert, I.H. Design and synthesis of a series of melamine-based nitroheterocycles with activity against trypanosomatid parasites. J. Med. Chem., 2005, 48(17), 5570-5579.
[113]
Kashiwagi, M.; Fuhshuku, K-I.; Sugai, T. Control of the nitrile-hydrolyzing enzyme activity in Rhodococcus rhodochrous IFO 15564: preferential action of nitrile hydratase and amidase depending on the reaction condition factors and its application to the one-pot preparation of amides from aldehydes. J. Mol. Catal., B Enzym., 2004, 29(1), 249-258.
[114]
Ambreen, N.; Wirth, T. High-temperature synthesis of amides from alcohols or aldehydes by using flow chemistry. Eur. J. Org. Chem., 2014, 2014(34), 7590-7593.
[115]
Jia, X.; Ma, J.; Wang, M.; Ma, H.; Chen, C.; Xu, J. Catalytic conversion of 5-hydroxymethylfurfural into 2,5-furandiamidine dihydrochloride. Green Chem., 2016, 18(4), 974-978.
[116]
Cottier, L.; Descotes, G.; Soro, Y. Synthesis of acetylated ranunculin diastereoisomers and δ–glucosyloxy–γ–oxo esters from α or β glucosylmethylfurfural. J. Carbohydr. Chem., 2005, 24(1), 55-71.
[117]
Casanova, O.; Iborra, S.; Corma, A. Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J. Catal., 2009, 265(1), 109-116.
[118]
Kanai, S.; Nagahara, I.; Kita, Y.; Kamata, K.; Hara, M. A bifunctional cerium phosphate catalyst for chemoselective acetalization. Chem. Sci., 2017, 8(4), 3146-3153.
[119]
Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E.J.M.; Nakajima, K. Aerobic oxidation of 5-(hydroxymethyl)furfural cyclic acetal enables selective furan-2,5-dicarboxylic acid formation with CeO2-supported gold catalyst. Angew. Chem. Int. Ed., 2018, 57(27), 8235-8239.
[120]
Arias, K.S.; Garcia-Ortiz, A.; Climent, M.J.; Corma, A.; Iborra, S. Mutual valorization of 5-hydroxymethylfurfural and glycerol into valuable diol monomers with solid acid catalysts. ACS Sustainable. Chem.& Eng., 2018, 6(3), 4239-4245.
[121]
Mallesham, B.; Sudarsanam, P.; Raju, G.; Reddy, B.M. Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: Acetalization of bio-glycerol. Green Chem., 2013, 15(2), 478-489.
[122]
Garcia-Ortiz, A.; Arias, K.S.; Climent, M.J.; Corma, A.; Iborra, S. One-pot synthesis of biomass-derived surfactants by reacting hydroxymethylfurfural, glycerol, and fatty alcohols on solid acid catalysts. ChemSusChem, 2018, 11(17), 2870-2880.
[123]
Li, H.; Yang, T.; Riisager, A.; Saravanamurugan, S.; Yang, S. Chemoselective synthesis of dithioacetals from bio-aldehydes with zeolites under ambient and solvent-free conditions. ChemCatChem, 2017, 9(6), 1097-1104.
[124]
Zhao, Q.; Zou, Y.; Huang, C.; Lan, P.; Zheng, J.; Ou, S. Formation of a hydroxymethylfurfural–cysteine adduct and its absorption and cytotoxicity in caco-2 cells. J. Agric. Food Chem., 2017, 65(45), 9902-9908.
[125]
Mascal, M. 5-(chloromethyl)furfural is the new HMF: Functionally equivalent but more practical in terms of its production from biomass. ChemSusChem, 2015, 8(20), 3391-3395.
[126]
Sanda, K.; Rigal, L.; Gaset, A. Synthèse du 5-bromométhyl- et du 5-chlorométhyl-2-furannecarboxaldéhyde. Carbohydr. Res., 1989, 187(1), 15-23.
[127]
Bredihhin, A.; Mäeorg, U.; Vares, L. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr. Res., 2013, 375, 63-67.
[128]
Romashov, L.V.; Ananikov, V.P. Synthesis of HIV-1 capsid protein assembly inhibitor(CAP-1) and its analogues based on a biomass approach. Org. Biomol. Chem., 2016, 14(45), 10593-10598.
[129]
Sanda, K.; Rigal, L.; Delmas, M.; Gaset, A. The vilsmeier reaction: A new synthetic method for 5-(chloromethyl)-2-furaldehyde. Synthesis, 1992, 1992(06), 541-542.
[130]
Newth, F.H.; Wiggins, L.F. The conversion of sucrose into furan compounds. Part III. Some amidino-furans. J. Chem. Soc., 1947, 396-398.
[131]
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Roquet, F.; Martinez, J.; Amblard, M.; Pugniere, M.; Leonetti, J-P. Structure−activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J. Med. Chem., 2007, 50(17), 4195-4204.
[132]
Bedjeguelal, K.; Rabot, R.; Kaloun, E.B.; Mayer, P.; Marchand, A.; Rahier, N.; Schambel, P.; Bienayme, H. Preparation of pyrazolopyridine derivatives as ALK kinase inhibitors for treating cancer. WO2011045344A1 2011.
[133]
Chundury, D.; Szmant, H.H. Preparation of polymeric building blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind. Eng. Chem. Prod. Res. Dev., 1981, 20(1), 158-163.
[134]
Larousse, C.; Rigal, L.; Gaset, A. Synthesis of 5,5′-oxydimethylenebis(2-furfural) by thermal dehydration of 5-hydroxymethyl-2-furfural in the presence of dimethylsulfoxide. J. Chem. Technol. Biotechnol., 1992, 53(1), 111-116.
[135]
Cottier, L.; Descotes, G.; Eymard, L.; Rapp, K. Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis, 1995, 1995(03), 303-306.
[136]
Páez, A.; Rojas, H.A.; Portilla, O.; Sathicq, G.; Afonso, C.A.M.; Romanelli, G.P.; Martínez, J.J. Preyssler heteropolyacids in the self-etherification of 5-hydroxymethylfurfural to 5,5′-[oxybis(methylene)]bis-2-furfural under mild reaction conditions. ChemCatChem, 2017, 9(17), 3322-3329.
[137]
Casanova, O.; Iborra, S.; Corma, A. Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. J. Catal., 2010, 275(2), 236-242.
[138]
Wang, H.; Wang, Y.; Deng, T.; Chen, C.; Zhu, Y.; Hou, X. Carbocatalyst in biorefinery: Selective etherification of 5-hydroxymethylfurfural to 5,5′(oxy-bis(methylene)bis-2-furfural over graphene oxide. Catal. Commun., 2015, 59, 127-130.
[139]
Shinde, S.; Rode, C. Selective self-etherification of 5-(hydroxymethyl)furfural over Sn-Mont catalyst. Catal. Commun., 2017, 88, 77-80.
[140]
Mliki, K.; Trabelsi, M. Chemicals from biomass: Efficient and facile synthesis of 5,5′(oxy-bis(methylene))bis-2-furfural from 5-hydroxymethylfurfural. Ind. Crops Prod., 2015, 78, 91-94.
[141]
Wen, R.; Yu, F.; Dong, X.; Miao, Y.; Zhou, P.; Lin, Z.; Zheng, J.; Wang, H.; Huang, L.; Qing, D. Preparation of furfuryl compounds as antiviral agents. CN1456556A 2003.
[142]
Wang, H.; Deng, T.; Wang, Y.; Cui, X.; Qi, Y.; Mu, X.; Hou, X.; Zhu, Y. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem., 2013, 15(9), 2379.
[143]
Thombal, R.S.; Jadhav, V.H. Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Lett., 2016, 57(39), 4398-4400.
[144]
Quiroz-Florentino, H.; Hernández-Benitez, R.I.; Aviña, J.A.; Burgueño-Tapia, E.; Tamariz, J. Total synthesis of naturally occurring furan compounds 5-[(4-hydroxybenzyl)oxy]methyl-2-furaldehyde and pichiafuran C. Synthesis, 2011, 2011(07), 1106-1112.
[145]
Ilkei, V.; Faragó, K.; Sánta, Z.; Dékány, M.; Hazai, L. Jr., C.S.; Szántay, C.; Kalaus, G. The first synthesis of sessiline. Int. J. Org. Chem, 2014, 4, 309-313.
[146]
Berton, J.K.E.T.; Heugebaert, T.S.A.; Debrouwer, W.; Stevens, C.V. 3-Imidoallenylphosphonates: In situ formation and β-alkoxylation. Org. Lett., 2016, 18(2), 208-211.
[147]
El-Hajj, T.; Martin, J-C.; Descotes, G. Dérivés de l’hydroxyméthyl-5 furfural. I. Synthése de dérivés du di- et terfuranne. J. Heterocycl. Chem., 1983, 20(1), 233-235.
[148]
de Freitas Filho, J.R.; Srivastava, R.M.; Soro, Y.; Cottier, L.; Descotes, G. Synthesis of new 2,3-unsaturated O-glycosides through Ferrier rearrangement. J. Carbohydr. Chem., 2001, 20(7-8), 561-568.
[149]
Ding, Z.; Luo, X.; Ma, Y.; Chen, H.; Qiu, S.; Sun, G.; Zhang, W.; Yu, C.; Wu, Z.; Zhang, J. Eco-friendly synthesis of 5-hydroxymethylfurfural (HMF) and its application to the Ferrier-rearrangement reaction. J. Carbohydr. Chem., 2018, 37(2), 81-93.
[150]
Jogia, M.; Vakamoce, V.; Weavers, R. Synthesis of some furfural and syringic acid derivatives. Aust. J. Chem., 1985, 38(7), 1009-1016.
[151]
Bognár, R.; Herczegh, P.; Zsély, M.; Batta, G. Synthesis of 3,4-dideoxy-dl-hex-3-enopyranosides from 5-hydroxymethyl-2-furaldehyde. Carbohydr. Res., 1987, 164, 465-469.
[152]
Bakholdina, L.A.; Khlebnikov, A.I.; Sevodin, V.P. Mild reaction of primary alcohols with ferulic acid. Russ. J. Org. Chem., 2016, 52(3), 441-443.
[153]
Zhou, H.; Liu, W.; Sun, C.; Peng, C.; Wang, J.; Wang, Q.; Yang, C. Synthesis of novel coumarin derivatives and in vitro biological evaluation as potential PTP 1B inhibitors. Heterocycles, 2013, 87(8), 1711.
[154]
Quiroz-Florentino, H.; García, A.; Burgueño-Tapia, E.; Tamariz, J. Total synthesis of the natural succinate derivative of 5-(hydroxymethyl)furfural isolated from the Noni fruit (Morinda citrifolia). Nat. Prod. Res., 2009, 23(14), 1355-1362.
[155]
Sugimura, H.; Kikuchi, M.; Kato, S.; Sekita, W.; Sasaki, I. Practical synthesis of mumefural, a component of Japanese apricot juice concentrate. Tetrahedron, 2016, 72(47), 7638-7641.
[156]
Krystof, M.; Pérez-Sánchez, M.; Domínguez de María, P. Lipase-catalyzed (Trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents. ChemSusChem, 2013, 6(4), 630-634.
[157]
Qin, Y-Z.; Zong, M-H.; Lou, W-Y.; Li, N. Biocatalytic upgrading of 5-hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain. Chem.& Eng., 2016, 4(7), 4050-4054.
[158]
Dow, R.L.; Kelly, R.C.; Schletter, I.; Wierenga, W. A direct alcohol for hydrazine interchange: Scope and stereochemistry. Synth. Commun., 1981, 11(1), 43-53.
[159]
Lewis, T.A.; Bayless, L.; Eckman, J.B.; Ellis, J.L.; Grewal, G.; Libertine, L.; Marie Nicolas, J.; Scannell, R.T.; Wels, B.F.; Wenberg, K.; Wypij, D.M. 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity. Bioorg. Med. Chem. Lett., 2004, 14(9), 2265-2268.
[160]
Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. An efficient and general iron-catalyzed arylation of benzyl alcohols and benzyl carboxylates. Angew. Chem. Int. Ed., 2005, 44(25), 3913-3917.
[161]
Zhou, X.; Rauchfuss, T.B. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem, 2013, 6(2), 383-388.
[162]
Bering, L.; Jeyakumar, K.; Antonchick, A.P. Metal-free C–O bond functionalization: Catalytic intramolecular and intermolecular benzylation of arenes. Org. Lett., 2018, 20(13), 3911-3914.
[163]
Onorato, A.; Pavlik, C.; Invernale, M.A.; Berghorn, I.D.; Sotzing, G.A.; Morton, M.D.; Smith, M.B. Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydr. Res., 2011, 346(13), 1662-1670.
[164]
Nale, S.D.; Jadhav, V.H. Synthesis of fuel intermediates from HMF/fructose. Catal. Lett., 2016, 146(10), 1984-1990.
[165]
Ryabukhin, D.S.; Zakusilo, D.N.; Kompanets, M.O.; Tarakanov, A. A.; Boyarskaya, I.A.; Artamonova, T.O.; Khohodorkovskiy, M.A.; Opeida, I.O.; Vasilyev, A.V. Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products. Beilstein J. Org. Chem., 2016, 12, 2125-2135.
[166]
Teunissen, H.P. Velocity measurements on the opening of the furane ring in hydroxy-methylfurfuraldehyde. Recl. Trav. Chim. Pays Bas, 1930, 49(9), 784-826.
[167]
Luijkx, G.C.A.; van Rantwijk, F.; van Bekkum, H. Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose. Carbohydr. Res., 1993, 242, 131-139.
[168]
Tšupova, S.; Rominger, F.; Rudolph, M.; Hashmi, A.S.K. Synthesis of phenols from hydroxymethylfurfural (HMF). Green Chem., 2016, 18(21), 5800-5805.
[169]
Roylance, J.J.; Choi, K-S. Electrochemical reductive biomass conversion: direct conversion of 5-hydroxymethylfurfural (HMF) to 2,5-hexanedione (HD) via reductive ring-opening. Green Chem., 2016, 18(10), 2956-2960.
[170]
Ren, D.; Song, Z.; Li, L.; Liu, Y.; Jin, F.; Huo, Z. Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural. Green Chem., 2016, 18(10), 3075-3081.
[171]
Wu, W-P.; Xu, Y-J.; Zhu, R.; Cui, M-S.; Li, X-L.; Deng, J.; Fu, Y. Selective conversion of 5-hydroxymethylfuraldehyde using Cp*Ir catalysts in aqueous formate buffer solution. ChemSusChem, 2016, 9(10), 1209-1215.
[172]
Xu, Z.; Yan, P.; Li, H.; Liu, K.; Liu, X.; Jia, S.; Zhang, Z.C. Active Cp*Iridium(III) complex with ortho-hydroxyl group functionalized bipyridine ligand containing an electron-donating group for the production of diketone from 5-HMF. ACS Catal., 2016, 6(6), 3784-3788.
[173]
Wozniak, B.; Li, Y.H.; Hinze, S.; Tin, S.; de Vries, J.G. Efficient synthesis of biomass-derived N-substituted 2-hydroxymethyl-5-methyl-pyrroles in two steps from 5-hydroxymethylfurfural. Eur. J. Org. Chem., 2018, 2018(17), 2009-2012.
[174]
Sacia, E.R.; Deaner, M.H.; Louie, Y.L.; Bell, A.T. Synthesis of biomass-derived methylcyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2,5-hexanedione. Green Chem., 2015, 17(4), 2393-2397.
[175]
Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Ma, L-F.; Yang, Y. Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca–Al catalysts via a two-step procedure. Green Chem., 2017, 19(21), 5103-5113.
[176]
Wozniak, B.; Spannenberg, A.; Li, Y.; Hinze, S.; de Vries, J.G. Cyclopentanone derivatives from 5-hydroxymethylfurfural via 1-hydroxyhexane-2,5-dione as intermediate. ChemSusChem, 2018, 11(2), 356-359.
[177]
Ohyama, J.; Kanao, R.; Ohira, Y.; Satsuma, A. The effect of heterogeneous acid-base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative. Green Chem., 2016, 18(3), 676-680.
[178]
Ohyama, J.; Kanao, R.; Esaki, A.; Satsuma, A. Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles. Chem. Commun. , 2014, 50(42), 5633-5636.
[179]
Verrier, C.; Moebs-Sanchez, S.; Queneau, Y.; Popowycz, F. The Piancatelli reaction and its variants: Recent applications to high added-value chemicals and biomass valorization. Org. Biomol. Chem., 2018, 16(5), 676-687.
[180]
Lichtenthaler, F.W.; Brust, A.; Cuny, E. Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from -fructose and isomaltulose. Green Chem., 2001, 3(5), 201-209.
[181]
Heugebaert, T.S.A.; Stevens, C.V.; Kappe, C.O. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow. ChemSusChem, 2015, 8(10), 1648-1651.
[182]
Kucherov, F.A.; Galkin, K.I.; Gordeev, E.G.; Ananikov, V.P. Efficient route for the construction of polycyclic systems from bioderived HMF. Green Chem., 2017, 19(20), 4858-4864.
[183]
Galkin, K.I.; Kucherov, F.A.; Markov, O.N.; Egorova, K.S.; Posvyatenko, A.V.; Ananikov, V.P. Facile chemical access to biologically active norcantharidin derivatives from biomass. Molecules, 2017, 22(12), 2210.
[184]
Higson, S.; Subrizi, F.; Sheppard, T.D.; Hailes, H.C. Chemical cascades in water for the synthesis of functionalized aromatics from furfurals. Green Chem., 2016, 18(7), 1855-1858.
[185]
Lin, Z.; Ierapetritou, M.; Nikolakis, V. Aromatics from lignocellulosic biomass: Economic analysis of the production of p-xylene from 5-hydroxymethylfurfural. AlChE J., 2013, 59(6), 2079-2087.
[186]
Ni, L.; Xin, J.; Dong, H.; Lu, X.; Liu, X.; Zhang, S. A simple and mild approach for the synthesis of p-xylene from bio-based 2,5-dimethyfuran by using metal triflates. ChemSusChem, 2017, 10(11), 2394-2401.
[187]
Shiramizu, M.; Toste, F.D. On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): Conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chemistry . Eur. J., , 2011, 17(44), 12452-12457.
[188]
Serum, E.M.; Sermadurai, S.; Zimmermann, N.; Sibi, M.P. Valorization of 2,5-furandicarboxylic acid. Diels-Alder reactions with benzyne. Green Chem., 2018, 20(7), 1448-1454.
[189]
Pacheco, J.J.; Labinger, J.A.; Sessions, A.L.; Davis, M.E. Route to renewable PET: Reaction pathways and energetics of Diels–Alder and dehydrative aromatization reactions between ethylene and biomass-derived furans catalyzed by lewis acid molecular sieves. ACS Catal., 2015, 5(10), 5904-5913.
[190]
Chang, C-C.; Je Cho, H.; Yu, J.; Gorte, R.J.; Gulbinski, J.; Dauenhauer, P.; Fan, W. Lewis acid zeolites for tandem Diels-Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene. Green Chem., 2016, 18(5), 1368-1376.
[191]
Song, S.; Wu, G.; Dai, W.; Guan, N.; Li, L. Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids. J. Mol. Catal. Chem., 2016, 420, 134-141.
[192]
Do, P.T.M.; McAtee, J.R.; Watson, D.A.; Lobo, R.F. Elucidation of Diels–Alder reaction network of 2,5-dimethylfuran and ethylene on HY zeolite catalyst. ACS Catal., 2013, 3(1), 41-46.
[193]
Pacheco, J.J.; Davis, M.E. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8363-8367.
[194]
McNelis, B.J.; Sternbach, D.D.; MacPhail, A.T. Synthetic and kinetic studies of substituent effects in the furan intramolecular Diels-Alder reaction. Tetrahedron, 1994, 50(23), 6767-6782.
[195]
Sun, S.; Murray, W.V. Solid phase Diels−Alder reactions of amino acid derived trienes. J. Org. Chem., 1999, 64(16), 5941-5945.
[196]
Schinzer, D.; Bourguet, E.; Ducki, S. Synthesis of furano-epothilone D. Chem. Eur. J., 2004, 10(13), 3217-3224.
[197]
Koh, P.F.; Loh, T.P. Synthesis of biologically active natural products, aspergillides A and B, entirely from biomass derived platform chemicals. Green Chem., 2015, 17(7), 3746-3750.
[198]
Connolly, T.J.; Considine, J.L.; Ding, Z.; Forsatz, B.; Jennings, M.N.; MacEwan, M.F.; McCoy, K.M.; Place, D.W.; Sharma, A.; Sutherland, K. Efficient synthesis of 8-oxa-3-aza-bicyclo[3.2.1]octane hydrochloride. Org. Proc Res. Dev., 2010, 14(2), 459-465.
[199]
Oikawa, M.; Ikoma, M.; Sasaki, M. Parallel synthesis of tandem Ugi/Diels–Alder reaction products on a soluble polymer support directed toward split-pool realization of a small molecule library. Tetrahedron Lett., 2005, 46(3), 415-418.
[200]
Gupta, P.; Singh, S.K.; Pathak, A.; Kundu, B. Template-directed approach to solid-phase combinatorial synthesis of furan-based libraries. Tetrahedron, 2002, 58(52), 10469-10474.
[201]
Müller, C.; Diehl, V.; Lichtenthaler, F.W. Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose. Tetrahedron, 1998, 54(36), 10703-10712.
[202]
Villard, R.; Robert, F.; Blank, I.; Bernardinelli, G.; Soldo, T.; Hofmann, T. Racemic and enantiopure synthesis and physicochemical characterization of the novel taste enhancer N-(1-carboxyethyl)-6-(hydroxymethyl)pyri-dinium-3-ol inner salt. J. Agric. Food Chem., 2003, 51(14), 4040-4045.
[203]
Koch, J.; Pischetsrieder, M.; Polborn, K.; Severin, T. Formation of pyridinium betaines by reaction of hexoses with primary amines. Carbohydr. Res., 1998, 313(2), 117-123.
[204]
Frank, O.; Ottinger, H.; Hofmann, T. Characterization of an intense bitter-tasting 1H,4H-quinolizinium-7-olate by application of the taste dilution analysis, a novel bioassay for the screening and identification of taste-active compounds in foods. J. Agric. Food Chem., 2001, 49(1), 231-238.
[205]
Soldo, T.; Hofmann, T. Application of hydrophilic interaction liquid chromatography/comparative taste dilution analysis for identification of a bitter inhibitor by a combinatorial approach based on maillard reaction chemistry. J. Agric. Food Chem., 2005, 53(23), 9165-9171.
[206]
Sowmiah, S.; Veiros, L.F.; Esperanca, J.M.; Rebelo, L.P.; Afonso, C.A. Organocatalyzed one-step synthesis of functionalized n-alkyl-pyridinium salts from biomass derived 5-hydroxymethylfurfural. Org. Lett., 2015, 17(21), 5244-5247.
[207]
Rajmohan, R.; Gayathri, S.; Vairaprakash, P. Facile synthesis of 5-hydroxymethylfurfural: a sustainable raw material for the synthesis of key intermediates toward 21,23-dioxaporphyrins. RSC Adv, 2015, 5(121), 100401-100407.
[208]
McDermott, P.J.; Stockman, R.A. Combining two-directional synthesis and tandem reactions: Synthesis of trioxadispiroketals. Org. Lett., 2005, 7(1), 27-29.

© 2024 Bentham Science Publishers | Privacy Policy