[1]
Galkin, K.I.; Krivodaeva, E.A.; Romashov, L.V.; Zalesskiy, S.S.; Kachala, V.V.; Burykina, J.V.; Ananikov, V.P. Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis. Angew. Chem. Int. Ed., 2016, 55(29), 8338-8342.
[2]
Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem., 2006, 8(8), 701-709.
[3]
Nikolov, P.Y.; Yaylayan, V.A. Thermal decomposition of 5-(hydroxymethyl)-2-furaldehyde (HMF) and its further transformations in the presence of glycine. J. Agric. Food Chem., 2011, 59(18), 10104-10113.
[4]
Gomes, R.F.A.; Mitrev, Y.N.; Simeonov, S.P.; Afonso, C.A.M. Going beyond the limits of the biorenewable platform: Sodium dithionite-promoted stabilization of 5-hydroxymethylfurfural. ChemSusChem, 2018, 11(10), 1612-1616.
[5]
Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem., 2011, 13(4), 754-793.
[6]
de Vries, J.G. Green Syntheses of Heterocycles of Industrial Importance. 5-Hydroxymethylfurfural as a Platform Chemical. In: Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, C.A., Eds.; Academic Press, 2017; Vol. 121, pp. 247-293.
[7]
van Putten, R-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113(3), 1499-1597.
[8]
Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical transformations of biomass-derived c6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustainable. Chem. Eng., 2018, 6(7), 8064-8092.
[9]
Liu, D.; Zhang, Y.; Chen, E.Y.X. Organocatalytic upgrading of the key biorefining building block by a catalytic ionic liquid and N-heterocyclic carbenes. Green Chem., 2012, 14(10), 2738-2746.
[10]
Liu, D.; Chen, E.Y.X. Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis. ChemSusChem, 2013, 6(12), 2236-2239.
[11]
Liu, D.; Chen, E.Y.X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel. ACS Catal., 2014, 4(5), 1302-1310.
[12]
Wang, L.; Chen, E.Y.X. Recyclable supported carbene catalysts for high-yielding self-condensation of furaldehydes into C10 and C12 furoins. ACS Catal., 2015, 5(11), 6907-6917.
[13]
Zang, H.; Chen, E.Y.X. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int. J. Mol. Sci., 2015, 16(4), 7143-7158.
[14]
Yan, B.; Zang, H.; Jiang, Y.; Yu, S.; Chen, E.Y.X. Recyclable montmorillonite-supported thiazolium ionic liquids for high-yielding and solvent-free upgrading of furfural and 5-hydroxymethylfurfural to C10 and C12 furoins. RSC Adv, 2016, 6(80), 76707-76715.
[15]
Donnelly, J.; Muller, C.R.; Wiermans, L.; Chuck, C.J.; Dominguez de Maria, P. Upgrading biogenic furans: Blended C10-C12 platform chemicals via lyase-catalyzed carboligations and formation of novel C12 - choline chloride-based deep-eutectic-solvents. Green Chem., 2015, 17(5), 2714-2718.
[16]
Coelho, J.A.S.; Trindade, A.F.; Andre, V.; Teresa Duarte, M.; Veiros, L.F.; Afonso, C.A.M. Trienamines derived from 5-substituted furfurals: remote ε-functionalization of 2,4-dienals. Org. Biomol. Chem., 2014, 12(46), 9324-9328.
[17]
Gomes, R.F.A.; Coelho, J.A.S.; Frade, R.F.M.; Trindade, A.F.; Afonso, C.A.M. Synthesis of symmetric bis(N-alkylaniline)triarylmethanes via friedel–crafts-catalyzed reaction between secondary anilines and aldehydes. J. Org. Chem., 2015, 80(20), 10404-10411.
[18]
Yu, C.; Liu, B.; Hu, L. Efficient baylis−hillman reaction using stoichiometric base catalyst and an aqueous medium. J. Org. Chem., 2001, 66(16), 5413-5418.
[19]
Yu, C.; Hu, L. Successful baylis−hillman reaction of acrylamide with aromatic aldehydes. J. Org. Chem., 2002, 67(1), 219-223.
[20]
Tan, J-N.; Ahmar, M.; Queneau, Y. HMF derivatives as platform molecules: aqueous baylis-hillman reaction of glucosyloxymethyl-furfural towards new biobased acrylates. RSC Adv, 2013, 3(39), 17649-17653.
[21]
Tan, J-N.; Ahmar, M.; Queneau, Y. Bio-based solvents for the Baylis-Hillman reaction of HMF. RSC Adv, 2015, 5(85), 69238-69242.
[22]
Quiroz-Florentino, H.; Aguilar, R.; Santoyo, B.M.; Díaz, F.; Tamariz, J. Total Syntheses of Natural Furan Derivatives Rehmanones A, B, and C. Synthesis, 2008, 2008(7), 1023-1028.
[23]
Pupovac, K.; Palkovits, R. Cu/MgAl2O4 as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation. ChemSusChem, 2013, 6(11), 2103-2110.
[24]
Lewis, J.D.; Van de Vyver, S.; Román-Leshkov, Y. Acid–base pairs in lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew. Chem. Int. Ed., 2015, 54(34), 9835-9838.
[25]
Lee, R.; Vanderveen, J.R.; Champagne, P.; Jessop, P.G. CO2-catalysed aldol condensation of 5-hydroxymethylfurfural and acetone to a jet fuel precursor. Green Chem., 2016, 18(19), 5118-5121.
[26]
Yutthalekha, T.; Suttipat, D.; Salakhum, S.; Thivasasith, A.; Nokbin, S.; Limtrakul, J.; Wattanakit, C. Aldol condensation of biomass-derived platform molecules over amine-grafted hierarchical FAU-type zeolite nanosheets(Zeolean) featuring basic sites. Chem. Commun. , 2017, 53(90), 12185-12188.
[27]
Bohre, A.; Saha, B.; Abu-Omar, M.M. Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal-acid catalysts. ChemSusChem, 2015, 8(23), 4022-4029.
[28]
Skowronski, R.; Grabowski, G.; Lewkowski, J.; Descotes, G.; Cottier, L.; Neyret, C. New chemical conversions of 5-hydroxymethylfurfural and the electrochemical oxidation of its derivatives. Org. Prep. Proced. Int., 1993, 25(3), 353-355.
[29]
Arias, K.S.; Climent, M.J.; Corma, A.; Iborra, S. Chemicals from biomass: Synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top. Catal., 2016, 59(13), 1257-1265.
[30]
Zhao, F.; Zhao, Q-J.; Zhao, J-X.; Zhang, D-Z.; Wu, Q-Y.; Jin, Y-S. Synthesis and cdc25B inhibitory activity evaluation of chalcones. Chem. Nat. Compd., 2013, 49(2), 206-214.
[31]
Wang, Y-H.; Dong, H-H.; Zhao, F.; Wang, J.; Yan, F.; Jiang, Y-Y.; Jin, Y-S. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorg. Med. Chem. Lett., 2016, 26(13), 3098-3102.
[32]
Suryawanshi, S.N.; Chandra, N.; Kumar, P.; Porwal, J.; Gupta, S. Chemotherapy of leishmaniasis part-VIII: Synthesis and bioevaluation of novel chalcones. Eur. J. Med. Chem., 2008, 43(11), 2473-2478.
[33]
Mugunthan, G.; Ramakrishna, K.; Sriram, D.; Yogeeswari, P.; Ravindranathan Kartha, K.P. Synthesis and screening of (E)-1-(β-d-galactopyranosyl)-4-(aryl)but-3-ene-2-one against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2011, 21(13), 3947-3950.
[34]
Muthusamy, K.; Lalitha, K.; Prasad, Y.S.; Thamizhanban, A.; Sridharan, V.; Maheswari, C.U.; Nagarajan, S. Lipase-catalyzed synthesis of furan-based oligoesters and their self-assembly-assisted polymerization. ChemSusChem, 2018, 11(14), 2453-2463.
[35]
Lockman, J.W.; Reeder, M.D.; Suzuki, K.; Ostanin, K.; Hoff, R.; Bhoite, L.; Austin, H.; Baichwal, V.; Adam Willardsen, J. Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues. Bioorg. Med. Chem. Lett., 2010, 20(7), 2283-2286.
[36]
Meguellati, A.; Ahmed-Belkacem, A.; Yi, W.; Haudecoeur, R.; Crouillère, M.; Brillet, R.; Pawlotsky, J-M.; Boumendjel, A.; Peuchmaur, M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2014, 80, 579-592.
[37]
Taylor, K.M.; Taylor, Z.E.; Handy, S.T. Rapid synthesis of aurones under mild conditions using a combination of microwaves and deep eutectic solvents. Tetrahedron Lett., 2017, 58(3), 240-241.
[38]
Witczak, Z.J.; Bielski, R.; Mencer, D.E. Concise and efficient synthesis of E-stereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1. Tetrahedron Lett., 2017, 58(43), 4069-4072.
[39]
Zhao, F.; Dong, H-H.; Wang, Y-H.; Wang, T-Y.; Yan, Z-H.; Yan, F.; Zhang, D-Z.; Cao, Y-Y.; Jin, Y-S. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. MedChemComm, 2017, 8(5), 1093-1102.
[40]
Liu, Q.; Zhang, C.; Shi, N.; Zhang, X.; Wang, C.; Ma, L. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones. RSC Adv, 2018, 8(25), 13686-13696.
[41]
Amarasekara, A.S.; Singh, T.B.; Larkin, E.; Hasan, M.A.; Fan, H-J. NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water. Ind. Crops Prod., 2015, 65, 546-549.
[42]
Keskiväli, J.; Wrigstedt, P.; Lagerblom, K.; Repo, T. One-step Pd/C and Eu(OTf)3 catalyzed hydrodeoxygenation of branched C11 and C12 biomass-based furans to the corresponding alkanes. Appl. Catal. A Gen., 2017, 534, 40-45.
[43]
Lin, L.; Shi, Q.; Nyarko, A.K.; Bastow, K.F.; Wu, C-C.; Su, C-Y.; Shih, C.C.Y.; Lee, K-H. Antitumor agents. 250. design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J. Med. Chem., 2006, 49(13), 3963-3972.
[44]
Martichonok, V.V.; Chiang, P.K.; Dornbush, P.J.; Land, K.M. On regioselectivity of aldol condensation of aromatic aldehydes with borate complex of acetylacetone. Synth. Commun., 2014, 44(9), 1245-1250.
[45]
Shao, W-Y.; Cao, Y-N.; Yu, Z-W.; Pan, W-J.; Qiu, X.; Bu, X-Z.; An, L-K.; Huang, Z-S.; Gu, L-Q.; Chan, A.S.C. Facile preparation of new unsymmetrical curcumin derivatives by solid-phase synthesis strategy. Tetrahedron Lett., 2006, 47(24), 4085-4089.
[46]
Tarleton, M.; Dyson, L.; Gilbert, J.; Sakoff, J.A.; McCluskey, A. Focused library development of 2-phenylacrylamides as broad spectrum cytotoxic agents. Bioorg. Med. Chem., 2013, 21(1), 333-347.
[47]
Tarleton, M.; Gilbert, J.; Sakoff, J.A.; McCluskey, A. Cytotoxic 2-phenyacrylnitriles, the importance of the cyanide moiety and discovery of potent broad spectrum cytotoxic agents. Eur. J. Med. Chem., 2012, 57, 65-73.
[48]
Feng, Z.; Jia, J.; Liu, Y.; Wang, Z.; Zhao, X. 3-Furyl-2-cyano-2-acrylamide derivative, preparation method therefor, pharmaceutical composition and use thereof. US20160272604A1, 2016.
[49]
Hanefeld, W.; Schlitzer, M.; Debski, N.; Euler, H. 3-(2,5-Dioxopyrrolidin-1-yl), 3-(2,6-dioxopiperidin-1-yl), and 3-(1,3-dioxoisoindolin-2-yl)rhodanines. a novel type of rhodanine derivatives. J. Heterocycl. Chem., 1996, 33(4), 1143-1146.
[50]
Gregg, B.T.; Golden, K.C.; Quinn, J.F.; Tymoshenko, D.O.; Earley, W.G.; Maynard, D.A.; Razzano, D.A.; Rennells, W.M.; Butcher, J. Expedient lewis acid catalyzed synthesis of a 3-substituted 5-arylidene-1-methyl-2-thiohydantoin library. J. Comb. Chem., 2007, 9(6), 1036-1040.
[51]
Lukevics, E.; Ignatovich, L.; Shestakova, I. Synthesis, psychotropic and anticancer activity of 2,2-dimethyl-5-[5′-trialkylgermyl(silyl)-2′-hetarylidene]-1,3-dioxane-4,6-diones and their analogues. Appl. Organomet. Chem., 2003, 17(12), 898-905.
[52]
Gomes, R.F.A.; Coelho, J.A.S.; Afonso, C.A.M. Direct conversion of activated 5-hydroxymethylfurfural into delta-lactone-fused cyclopentenones. ChemSusChem, 2019, 12(2), 420-425.
[53]
Nikolov, M.N.; Poneva, M.V. Spectral determination of the structure of 5-hydroxymethylfurfurylidene barbituric acid. Spectrosc. Lett., 1987, 20(10), 821-834.
[54]
Mercep, M.; Malnar, I.; Filipovic Sucic, A.; Mesic, M. Preparation of antiinflammatory conjugates of erythromycin macrolides and coumarins. WO2006092739A1 2006.
[55]
van Schijndel, J.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. Exploration of the role of double schiff bases as catalytic intermediates in the knoevenagel reaction of furanic aldehydes: mechanistic considerations. Synlett, 2018, 29(15), 1983-1988.
[56]
Cummings, R.T.; DiZio, J.P.; Krafft, G.A. Photoactivable fluorophores. 2. Synthesis and photoactivation of functionalized 3-aroyl-2-(2-furyl)-chromones. Tetrahedron Lett., 1988, 29(1), 69-72.
[57]
Miller, R. Synthesis and stereochemistry of (E)-5-(3,4,5,6-tetrahydropyrid-3-ylidenemethyl)-2-furanmethanol, a Product of the reaction between D-glucose and L-lysine. Acta Chem. Scand. B, 1987, 41, 208-209.
[58]
Shao, X.; Li, Z.; Qian, X.; Xu, X. Design, synthesis, and insecticidal activities of novel analogues of neonicotinoids: Replacement of nitromethylene with nitroconjugated system. J. Agric. Food Chem., 2009, 57(3), 951-957.
[59]
Lee, J-S.; Kang, N-Y.; Kim, Y.K.; Samanta, A.; Feng, S.; Kim, H.K.; Vendrell, M.; Park, J.H.; Chang, Y-T. Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J. Am. Chem. Soc., 2009, 131(29), 10077-10082.
[60]
Karaguni, I-M.; Glüsenkamp, K-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Möröy, T.; Müller, O. New indene-derivatives with anti-proliferative properties. Bioorg. Med. Chem. Lett., 2002, 12(4), 709-713.
[61]
Mouloungui, Z.; Delmas, M.; Gaset, A. Synthesis of α,β unsaturated esters using a solid-liquid phase transfer in a slightly hydrated aprotic medium. Synth. Commun., 1984, 14(8), 701-706.
[62]
Mouloungui, Z.; Delmas, M.; Gaset, A. Synthesis of α, β-Ethylenic Esters in a Heterogenous Solid-Liquid Medium. II - A transesterification reaction linked to a wittig-horner reaction in a protic medium. Synth. Commun., 1985, 15(6), 491-494.
[63]
Goodman, S.N.; Jacobsen, E.N. A practical synthesis of α,β-unsaturated imides, useful substrates for asymmetric conjugate addition reactions. Adv. Synth. Catal., 2002, 344(9), 953-956.
[64]
Almirante, N.; Cerri, A.; Fedrizzi, G.; Marazzi, G.; Santagostino, M. A general, [1+4] approach to the synthesis of 3(5)-substituted pyrazoles from aldehydes. Tetrahedron Lett., 1998, 39(20), 3287-3290.
[65]
Fumagalli, T.; Sello, G.; Orsini, F. One-pot, fluoride-promoted wittig reaction. Synth. Commun., 2009, 39(12), 2178-2195.
[66]
Yoshida, N.; Kasuya, N.; Haga, N.; Fukuda, K. Brand-new biomass-based vinyl polymers from 5-hydroxymethylfurfural. Polym. J., 2008, 40, 1164-1169.
[67]
Han, M.; Liu, X.; Zhang, X.; Pang, Y.; Xu, P.; Guo, J.; Liu, Y.; Zhang, S.; Ji, S. 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive. Green Chem., 2017, 19(3), 722-728.
[68]
Romashov, L.V.; Ananikov, V.P. Alkynylation of bio-based 5-hydroxymethylfurfural to connect biomass processing with conjugated polymers and furanic pharmaceuticals. Chem. Asian J., 2017, 12(20), 2652-2655.
[69]
Sharma, U.K.; Gemoets, H.P.L.; Schröder, F.; Noël, T.; Van der Eycken, E.V. Merger of visible-light photoredox catalysis and C–H activation for the room-temperature C-2 acylation of indoles in batch and flow. ACS Catal., 2017, 7(6), 3818-3823.
[70]
Ramonczai, J.; Vargha, L. Studies on furan compounds. III. A new synthesis of furyl ketones. J. Am. Chem. Soc., 1950, 72(6), 2737-2737.
[71]
Nicklaus, C.M.; Minnaard, A.J.; Feringa, B.L.; de Vries, J.G. Synthesis of renewable fine-chemical building blocks by reductive coupling between furfural derivatives and terpenes. ChemSusChem, 2013, 6(9), 1631-1635.
[72]
Hirapara, P.; Riemer, D.; Hazra, N.; Gajera, J.; Finger, M.; Das, S. CO2-assisted synthesis of non-symmetric α-diketones directly from aldehydes via C–C bond formation. Green Chem., 2017, 19(22), 5356-5360.
[73]
Cooper, W.F.; Nuttall, W.H. CXII.—Furan-2: 5-Dialdehyde. J. Chem. Soc. Trans., 1912, 101, 1074-1081.
[74]
Middendorp, J.A. Sur l’oxyméthylfurfurol. Recl. Trav. Chim. Pays Bas, 1919, 38(1), 1-71.
[75]
Cottier, L.; Descotes, G.; Lewkowski, J.; Skowroński, R. Synthesis and its stereochemistry of aminophosphonic acids derived from 5-hydroxymethylfurfural. Phosphorus Sulfur Silicon Relat. Elem., 1996, 116(1), 93-100.
[76]
Fan, W.; Queneau, Y.; Popowycz, F. The synthesis of HMF-based α-amino phosphonates via one-pot Kabachnik–Fields reaction. RSC Adv, 2018, 8(55), 31496-31501.
[77]
Amarasekara, A.S.; Edigin, O.; Hernandez, W. Cycloaddition reactions of 5-hydroxymethyl-furan-2-nitrileoxide. Lett. Org. Chem., 2007, 4(5), 306-308.
[78]
Wang, E.; Zhou, Y.; Huang, Q.; Pang, L.; Qiao, H.; Yu, F.; Gao, B.; Zhang, J.; Min, Y.; Ma, T. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+. Spectrochim. Acta A, 2016, 152, 327-335.
[79]
Alsaeedi, H.S.; Aljaber, N.A.; Ara, I. Synthesis and investigation of antimicrobial activity of some nifuroxazide analogues. Asian J. Chem., 2015, 27(10), 3639-3646.
[80]
Brown, M.L.; Cheung, M.; Dickerson, S.H.; Drewry, D.H.; Lackey, K.E.; Peat, A.J.; Thomson, S.A.; Veal, J.M.; Wilson, J.L.R. reparation of pyrazolopyrimidines as kinase inhibitors for the treatment of type 2 diabetes. WO2004009596A2 2004.
[81]
Alturiqi, A.S.; Alaghaz, A-N.M.A.; Ammar, R.A.; Zayed, M.E. Synthesis, Spectral Characterization, and Thermal and Cytotoxicity Studies of Cr(III), Ru(III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes of schiff base derived from 5-hydroxymethylfuran-2-carbaldehyde. J. Chem., 2018, 2018, 1-17.
[82]
Mohamed, O.G.; Khalil, Z.G.; Capon, R.J. Prolinimines: N-amino-l-pro-methyl ester (Hydrazine) schiff bases from a fish gastrointestinal tract-derived fungus, trichoderma sp. CMB-F563. Org. Lett., 2018, 20(2), 377-380.
[83]
Cisneros, L.; Serna, P.; Corma, A. Selective reductive coupling of nitro compounds with aldehydes to nitrones in H2 using carbon-supported and -decorated platinum nanoparticles. Angew. Chem. Int. Ed., 2014, 53(35), 9306-9310.
[84]
Pezzetta, C.; Veiros, L.F.; Oble, J.; Poli, G. Murai reaction on furfural derivatives enabled by removable N,N′-bidentate directing groups. Chem. Eur. J., 2017, 23(35), 8385-8389.
[85]
Siopa, F.; Ramis Cladera, V-A.; Afonso, C.A.M.; Oble, J.; Poli, G. Ruthenium-catalyzed C-H arylation and alkenylation of furfural imines with boronates. Eur. J. Org. Chem., 2018, 2018(44), 6101-6106.
[86]
Cukalovic, A.; Stevens, C.V. Production of biobased HMF derivatives by reductive amination. Green Chem., 2010, 12(7), 1201-1206.
[87]
Elming, N.; Clauson-Kaas, N. Transformation of 2-(hydroxymethyl)-5-(aminomethyl)-furan into 6-methyl-3-pyridinol. Acta Chem. Scand., 1956, 10, 1603-1605.
[88]
Xu, Z.; Yan, P.; Xu, W.; Jia, S.; Xia, Z.; Chung, B.; Zhang, Z.C. Direct reductive amination of 5-hydroxymethylfurfural with primary/secondary amines via Ru-complex catalyzed hydrogenation. RSC Adv, 2014, 4(103), 59083-59087.
[89]
Chatterjee, M.; Ishizaka, T.; Kawanami, H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem., 2016, 18(2), 487-496.
[90]
Komanoya, T.; Kinemura, T.; Kita, Y.; Kamata, K.; Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc., 2017, 139(33), 11493-11499.
[91]
Chandra, D.; Inoue, Y.; Sasase, M.; Kitano, M.; Bhaumik, A.; Kamata, K.; Hosono, H.; Hara, M. A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds. Chem. Sci., 2018, 9(27), 5949-5956.
[92]
Jagadeesh, R.V.; Murugesan, K.; Alshammari, A.S.; Neumann, H.; Pohl, M-M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358(6361), 326-332.
[93]
Zhu, M-M.; Tao, L.; Zhang, Q.; Dong, J.; Liu, Y-M.; He, H-Y.; Cao, Y. Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst. Green Chem., 2017, 19(16), 3880-3887.
[94]
Carrillo, A.I.; Llanes, P.; Pericàs, M.A. A versatile, immobilized gold catalyst for the reductive amination of aldehydes in batch and flow. React. Chem. Eng., 2018, 3(5), 714-721.
[95]
Niphakis, M.J.; Gay, B.C.; Hong, K.H.; Bleeker, N.P.; Georg, G.I. Synthesis and evaluation of the anti-proliferative and NF-κB activities of a library of simplified tylophorine analogs. Bioorg. Med. Chem., 2012, 20(19), 5893-5900.
[96]
Kojiri, K.; Kondo, H.; Arakawa, H.; Ohkubo, M.; Suda, H. Preparation of indolopyrrolocarbazole derivatives having glucopyranosyl group and antitumor agents containing them. US6703373B1 2004.
[97]
Plitta, B.; Adamska, E.; Giel-Pietraszuk, M.; Fedoruk-Wyszomirska, A.; Naskręt-Barciszewska, M.; Markiewicz, W.T.; Barciszewski, J. New cytosine derivatives as inhibitors of DNA methylation. Eur. J. Med. Chem., 2012, 55, 243-254.
[98]
Xu, Z.; Yan, P.; Liu, K.; Wan, L.; Xu, W.; Li, H.; Liu, X.; Zhang, Z.C. Synthesis of bis(hydroxylmethylfurfuryl)amine monomers from 5-hydroxymethylfurfural. ChemSusChem, 2016, 9(11), 1255-1258.
[99]
Sattler, L.; Zerban, F.W.; Clark, G.L.; Chu, C-C. The reaction of 2-aminobenzenethiol with Al-doses and with hydroxymethylfurfural. J. Am. Chem. Soc., 1951, 73(12), 5908-5910.
[100]
Koehler, A.N.; Stefan, E.; Caballero, F. Preparation of fused 1,3-azole derivatives useful for the treatment of proliferative diseases. WO2016094688A1 2016.
[101]
Takezawa, H.; Hayashi, M.; Iwasawa, Y.; Hosoi, M.; Iida, Y.; Tsuchiya, Y.; Horie, M.; Kamei, T. Substituted alkylamine derivatives. US5234946A 1993.
[102]
Forster, Forster. M.; Chaikuad, A.; Bauer, S.M.; Holstein, J.; Robers, M.B.; Corona, C.R.; Gehringer, M.; Pfaffenrot, E.; Ghoreschi, K.; Knapp, S.; Laufer, S.A. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol., 2016, 23(11), 1335-1340.
[103]
Forster, M.; Chaikuad, A.; Dimitrov, T.; Döring, E.; Holstein, J.; Berger, B-T.; Gehringer, M.; Ghoreschi, K.; Müller, S.; Knapp, S.; Laufer, S.A. Development, optimization, and structure–activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic imidazo[5,4-d]pyrrolo[2,3-b]pyridine scaffold. J. Med. Chem., 2018, 61(12), 5350-5366.
[104]
Hrast, M.; Rožman, K.; Jukič, M.; Patin, D.; Gobec, S.; Sova, M. Synthesis and structure–activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorg. Med. Chem. Lett., 2017, 27(15), 3529-3533.
[105]
Snyder, D.S.; Tradtrantip, L.; Yao, C.; Kurth, M.J.; Verkman, A.S. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J. Med. Chem., 2011, 54(15), 5468-5477.
[106]
Sachdeva, N.; Dolzhenko, A.V.; Lim, S.J.; Ong, W.L.; Chui, W.K. An efficient synthesis of 2,4,7-trisubstituted pyrimido[1,2-a][1,3,5]triazin-6-ones. New J. Chem., 2015, 39(6), 4796-4804.
[107]
Matasi, J.J.; Caldwell, J.P.; Hao, J.; Neustadt, B.; Arik, L.; Foster, C.J.; Lachowicz, J.; Tulshian, D.B. The discovery and synthesis of novel adenosine receptor (A2A) antagonists. Bioorg. Med. Chem. Lett., 2005, 15(5), 1333-1336.
[108]
Bode, M.L.; Rousseau, A.L.; Gravestock, D.; Moleele, S.S.; Van der Westhuyzen, C.W. Imidazopyridines and imidazopyrimidines as HIV-1 reverse transcriptase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of HIV infection. WO2010032195A1 2010.
[109]
Fan, W.; Queneau, Y.; Popowycz, F. HMF in multicomponent reactions: utilization of 5-hydroxymethylfurfural (HMF) in the Biginelli reaction. Green Chem., 2018, 20(2), 485-492.
[110]
Wu, Q.; Chen, J.; Guo, X.; Xu, Y. Copper(I)-catalyzed four-component coupling using renewable building blocks of CO2 and biomass-based aldehydes. Eur. J. Org. Chem., 2018, 2018(24), 3105-3113.
[111]
Antonio, J.P.M.; Frade, R.F.M.; Santos, F.M.F.; Coelho, J.A.S.; Afonso, C.A.M.; Gois, P.M.P.; Trindade, A.F. NHC catalysed direct addition of HMF to diazo compounds: synthesis of acyl hydrazones with antitumor activity. RSC Adv, 2014, 4(55), 29352-29356.
[112]
Baliani, A.; Bueno, G.J.; Stewart, M.L.; Yardley, V.; Brun, R.; Barrett, M.P.; Gilbert, I.H. Design and synthesis of a series of melamine-based nitroheterocycles with activity against trypanosomatid parasites. J. Med. Chem., 2005, 48(17), 5570-5579.
[113]
Kashiwagi, M.; Fuhshuku, K-I.; Sugai, T. Control of the nitrile-hydrolyzing enzyme activity in Rhodococcus rhodochrous IFO 15564: preferential action of nitrile hydratase and amidase depending on the reaction condition factors and its application to the one-pot preparation of amides from aldehydes. J. Mol. Catal., B Enzym., 2004, 29(1), 249-258.
[114]
Ambreen, N.; Wirth, T. High-temperature synthesis of amides from alcohols or aldehydes by using flow chemistry. Eur. J. Org. Chem., 2014, 2014(34), 7590-7593.
[115]
Jia, X.; Ma, J.; Wang, M.; Ma, H.; Chen, C.; Xu, J. Catalytic conversion of 5-hydroxymethylfurfural into 2,5-furandiamidine dihydrochloride. Green Chem., 2016, 18(4), 974-978.
[116]
Cottier, L.; Descotes, G.; Soro, Y. Synthesis of acetylated ranunculin diastereoisomers and δ–glucosyloxy–γ–oxo esters from α or β glucosylmethylfurfural. J. Carbohydr. Chem., 2005, 24(1), 55-71.
[117]
Casanova, O.; Iborra, S.; Corma, A. Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J. Catal., 2009, 265(1), 109-116.
[118]
Kanai, S.; Nagahara, I.; Kita, Y.; Kamata, K.; Hara, M. A bifunctional cerium phosphate catalyst for chemoselective acetalization. Chem. Sci., 2017, 8(4), 3146-3153.
[119]
Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E.J.M.; Nakajima, K. Aerobic oxidation of 5-(hydroxymethyl)furfural cyclic acetal enables selective furan-2,5-dicarboxylic acid formation with CeO2-supported gold catalyst. Angew. Chem. Int. Ed., 2018, 57(27), 8235-8239.
[120]
Arias, K.S.; Garcia-Ortiz, A.; Climent, M.J.; Corma, A.; Iborra, S. Mutual valorization of 5-hydroxymethylfurfural and glycerol into valuable diol monomers with solid acid catalysts. ACS Sustainable. Chem.& Eng., 2018, 6(3), 4239-4245.
[121]
Mallesham, B.; Sudarsanam, P.; Raju, G.; Reddy, B.M. Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: Acetalization of bio-glycerol. Green Chem., 2013, 15(2), 478-489.
[122]
Garcia-Ortiz, A.; Arias, K.S.; Climent, M.J.; Corma, A.; Iborra, S. One-pot synthesis of biomass-derived surfactants by reacting hydroxymethylfurfural, glycerol, and fatty alcohols on solid acid catalysts. ChemSusChem, 2018, 11(17), 2870-2880.
[123]
Li, H.; Yang, T.; Riisager, A.; Saravanamurugan, S.; Yang, S. Chemoselective synthesis of dithioacetals from bio-aldehydes with zeolites under ambient and solvent-free conditions. ChemCatChem, 2017, 9(6), 1097-1104.
[124]
Zhao, Q.; Zou, Y.; Huang, C.; Lan, P.; Zheng, J.; Ou, S. Formation of a hydroxymethylfurfural–cysteine adduct and its absorption and cytotoxicity in caco-2 cells. J. Agric. Food Chem., 2017, 65(45), 9902-9908.
[125]
Mascal, M. 5-(chloromethyl)furfural is the new HMF: Functionally equivalent but more practical in terms of its production from biomass. ChemSusChem, 2015, 8(20), 3391-3395.
[126]
Sanda, K.; Rigal, L.; Gaset, A. Synthèse du 5-bromométhyl- et du 5-chlorométhyl-2-furannecarboxaldéhyde. Carbohydr. Res., 1989, 187(1), 15-23.
[127]
Bredihhin, A.; Mäeorg, U.; Vares, L. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr. Res., 2013, 375, 63-67.
[128]
Romashov, L.V.; Ananikov, V.P. Synthesis of HIV-1 capsid protein assembly inhibitor(CAP-1) and its analogues based on a biomass approach. Org. Biomol. Chem., 2016, 14(45), 10593-10598.
[129]
Sanda, K.; Rigal, L.; Delmas, M.; Gaset, A. The vilsmeier reaction: A new synthetic method for 5-(chloromethyl)-2-furaldehyde. Synthesis, 1992, 1992(06), 541-542.
[130]
Newth, F.H.; Wiggins, L.F. The conversion of sucrose into furan compounds. Part III. Some amidino-furans. J. Chem. Soc., 1947, 396-398.
[131]
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Roquet, F.; Martinez, J.; Amblard, M.; Pugniere, M.; Leonetti, J-P. Structure−activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J. Med. Chem., 2007, 50(17), 4195-4204.
[132]
Bedjeguelal, K.; Rabot, R.; Kaloun, E.B.; Mayer, P.; Marchand, A.; Rahier, N.; Schambel, P.; Bienayme, H. Preparation of pyrazolopyridine derivatives as ALK kinase inhibitors for treating cancer. WO2011045344A1 2011.
[133]
Chundury, D.; Szmant, H.H. Preparation of polymeric building blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind. Eng. Chem. Prod. Res. Dev., 1981, 20(1), 158-163.
[134]
Larousse, C.; Rigal, L.; Gaset, A. Synthesis of 5,5′-oxydimethylenebis(2-furfural) by thermal dehydration of 5-hydroxymethyl-2-furfural in the presence of dimethylsulfoxide. J. Chem. Technol. Biotechnol., 1992, 53(1), 111-116.
[135]
Cottier, L.; Descotes, G.; Eymard, L.; Rapp, K. Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis, 1995, 1995(03), 303-306.
[136]
Páez, A.; Rojas, H.A.; Portilla, O.; Sathicq, G.; Afonso, C.A.M.; Romanelli, G.P.; Martínez, J.J. Preyssler heteropolyacids in the self-etherification of 5-hydroxymethylfurfural to 5,5′-[oxybis(methylene)]bis-2-furfural under mild reaction conditions. ChemCatChem, 2017, 9(17), 3322-3329.
[137]
Casanova, O.; Iborra, S.; Corma, A. Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. J. Catal., 2010, 275(2), 236-242.
[138]
Wang, H.; Wang, Y.; Deng, T.; Chen, C.; Zhu, Y.; Hou, X. Carbocatalyst in biorefinery: Selective etherification of 5-hydroxymethylfurfural to 5,5′(oxy-bis(methylene)bis-2-furfural over graphene oxide. Catal. Commun., 2015, 59, 127-130.
[139]
Shinde, S.; Rode, C. Selective self-etherification of 5-(hydroxymethyl)furfural over Sn-Mont catalyst. Catal. Commun., 2017, 88, 77-80.
[140]
Mliki, K.; Trabelsi, M. Chemicals from biomass: Efficient and facile synthesis of 5,5′(oxy-bis(methylene))bis-2-furfural from 5-hydroxymethylfurfural. Ind. Crops Prod., 2015, 78, 91-94.
[141]
Wen, R.; Yu, F.; Dong, X.; Miao, Y.; Zhou, P.; Lin, Z.; Zheng, J.; Wang, H.; Huang, L.; Qing, D. Preparation of furfuryl compounds as antiviral agents. CN1456556A 2003.
[142]
Wang, H.; Deng, T.; Wang, Y.; Cui, X.; Qi, Y.; Mu, X.; Hou, X.; Zhu, Y. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem., 2013, 15(9), 2379.
[143]
Thombal, R.S.; Jadhav, V.H. Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Lett., 2016, 57(39), 4398-4400.
[144]
Quiroz-Florentino, H.; Hernández-Benitez, R.I.; Aviña, J.A.; Burgueño-Tapia, E.; Tamariz, J. Total synthesis of naturally occurring furan compounds 5-[(4-hydroxybenzyl)oxy]methyl-2-furaldehyde and pichiafuran C. Synthesis, 2011, 2011(07), 1106-1112.
[145]
Ilkei, V.; Faragó, K.; Sánta, Z.; Dékány, M.; Hazai, L. Jr., C.S.; Szántay, C.; Kalaus, G. The first synthesis of sessiline. Int. J. Org. Chem, 2014, 4, 309-313.
[146]
Berton, J.K.E.T.; Heugebaert, T.S.A.; Debrouwer, W.; Stevens, C.V. 3-Imidoallenylphosphonates: In situ formation and β-alkoxylation. Org. Lett., 2016, 18(2), 208-211.
[147]
El-Hajj, T.; Martin, J-C.; Descotes, G. Dérivés de l’hydroxyméthyl-5 furfural. I. Synthése de dérivés du di- et terfuranne. J. Heterocycl. Chem., 1983, 20(1), 233-235.
[148]
de Freitas Filho, J.R.; Srivastava, R.M.; Soro, Y.; Cottier, L.; Descotes, G. Synthesis of new 2,3-unsaturated O-glycosides through Ferrier rearrangement. J. Carbohydr. Chem., 2001, 20(7-8), 561-568.
[149]
Ding, Z.; Luo, X.; Ma, Y.; Chen, H.; Qiu, S.; Sun, G.; Zhang, W.; Yu, C.; Wu, Z.; Zhang, J. Eco-friendly synthesis of 5-hydroxymethylfurfural (HMF) and its application to the Ferrier-rearrangement reaction. J. Carbohydr. Chem., 2018, 37(2), 81-93.
[150]
Jogia, M.; Vakamoce, V.; Weavers, R. Synthesis of some furfural and syringic acid derivatives. Aust. J. Chem., 1985, 38(7), 1009-1016.
[151]
Bognár, R.; Herczegh, P.; Zsély, M.; Batta, G. Synthesis of 3,4-dideoxy-dl-hex-3-enopyranosides from 5-hydroxymethyl-2-furaldehyde. Carbohydr. Res., 1987, 164, 465-469.
[152]
Bakholdina, L.A.; Khlebnikov, A.I.; Sevodin, V.P. Mild reaction of primary alcohols with ferulic acid. Russ. J. Org. Chem., 2016, 52(3), 441-443.
[153]
Zhou, H.; Liu, W.; Sun, C.; Peng, C.; Wang, J.; Wang, Q.; Yang, C. Synthesis of novel coumarin derivatives and in vitro biological evaluation as potential PTP 1B inhibitors. Heterocycles, 2013, 87(8), 1711.
[154]
Quiroz-Florentino, H.; García, A.; Burgueño-Tapia, E.; Tamariz, J. Total synthesis of the natural succinate derivative of 5-(hydroxymethyl)furfural isolated from the Noni fruit (Morinda citrifolia). Nat. Prod. Res., 2009, 23(14), 1355-1362.
[155]
Sugimura, H.; Kikuchi, M.; Kato, S.; Sekita, W.; Sasaki, I. Practical synthesis of mumefural, a component of Japanese apricot juice concentrate. Tetrahedron, 2016, 72(47), 7638-7641.
[156]
Krystof, M.; Pérez-Sánchez, M.; Domínguez de María, P. Lipase-catalyzed (Trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents. ChemSusChem, 2013, 6(4), 630-634.
[157]
Qin, Y-Z.; Zong, M-H.; Lou, W-Y.; Li, N. Biocatalytic upgrading of 5-hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain. Chem.& Eng., 2016, 4(7), 4050-4054.
[158]
Dow, R.L.; Kelly, R.C.; Schletter, I.; Wierenga, W. A direct alcohol for hydrazine interchange: Scope and stereochemistry. Synth. Commun., 1981, 11(1), 43-53.
[159]
Lewis, T.A.; Bayless, L.; Eckman, J.B.; Ellis, J.L.; Grewal, G.; Libertine, L.; Marie Nicolas, J.; Scannell, R.T.; Wels, B.F.; Wenberg, K.; Wypij, D.M. 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity. Bioorg. Med. Chem. Lett., 2004, 14(9), 2265-2268.
[160]
Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. An efficient and general iron-catalyzed arylation of benzyl alcohols and benzyl carboxylates. Angew. Chem. Int. Ed., 2005, 44(25), 3913-3917.
[161]
Zhou, X.; Rauchfuss, T.B. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem, 2013, 6(2), 383-388.
[162]
Bering, L.; Jeyakumar, K.; Antonchick, A.P. Metal-free C–O bond functionalization: Catalytic intramolecular and intermolecular benzylation of arenes. Org. Lett., 2018, 20(13), 3911-3914.
[163]
Onorato, A.; Pavlik, C.; Invernale, M.A.; Berghorn, I.D.; Sotzing, G.A.; Morton, M.D.; Smith, M.B. Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydr. Res., 2011, 346(13), 1662-1670.
[164]
Nale, S.D.; Jadhav, V.H. Synthesis of fuel intermediates from HMF/fructose. Catal. Lett., 2016, 146(10), 1984-1990.
[165]
Ryabukhin, D.S.; Zakusilo, D.N.; Kompanets, M.O.; Tarakanov, A. A.; Boyarskaya, I.A.; Artamonova, T.O.; Khohodorkovskiy, M.A.; Opeida, I.O.; Vasilyev, A.V. Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products. Beilstein J. Org. Chem., 2016, 12, 2125-2135.
[166]
Teunissen, H.P. Velocity measurements on the opening of the furane ring in hydroxy-methylfurfuraldehyde. Recl. Trav. Chim. Pays Bas, 1930, 49(9), 784-826.
[167]
Luijkx, G.C.A.; van Rantwijk, F.; van Bekkum, H. Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose. Carbohydr. Res., 1993, 242, 131-139.
[168]
Tšupova, S.; Rominger, F.; Rudolph, M.; Hashmi, A.S.K. Synthesis of phenols from hydroxymethylfurfural (HMF). Green Chem., 2016, 18(21), 5800-5805.
[169]
Roylance, J.J.; Choi, K-S. Electrochemical reductive biomass conversion: direct conversion of 5-hydroxymethylfurfural (HMF) to 2,5-hexanedione (HD) via reductive ring-opening. Green Chem., 2016, 18(10), 2956-2960.
[170]
Ren, D.; Song, Z.; Li, L.; Liu, Y.; Jin, F.; Huo, Z. Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural. Green Chem., 2016, 18(10), 3075-3081.
[171]
Wu, W-P.; Xu, Y-J.; Zhu, R.; Cui, M-S.; Li, X-L.; Deng, J.; Fu, Y. Selective conversion of 5-hydroxymethylfuraldehyde using Cp*Ir catalysts in aqueous formate buffer solution. ChemSusChem, 2016, 9(10), 1209-1215.
[172]
Xu, Z.; Yan, P.; Li, H.; Liu, K.; Liu, X.; Jia, S.; Zhang, Z.C. Active Cp*Iridium(III) complex with ortho-hydroxyl group functionalized bipyridine ligand containing an electron-donating group for the production of diketone from 5-HMF. ACS Catal., 2016, 6(6), 3784-3788.
[173]
Wozniak, B.; Li, Y.H.; Hinze, S.; Tin, S.; de Vries, J.G. Efficient synthesis of biomass-derived N-substituted 2-hydroxymethyl-5-methyl-pyrroles in two steps from 5-hydroxymethylfurfural. Eur. J. Org. Chem., 2018, 2018(17), 2009-2012.
[174]
Sacia, E.R.; Deaner, M.H.; Louie, Y.L.; Bell, A.T. Synthesis of biomass-derived methylcyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2,5-hexanedione. Green Chem., 2015, 17(4), 2393-2397.
[175]
Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Ma, L-F.; Yang, Y. Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca–Al catalysts via a two-step procedure. Green Chem., 2017, 19(21), 5103-5113.
[176]
Wozniak, B.; Spannenberg, A.; Li, Y.; Hinze, S.; de Vries, J.G. Cyclopentanone derivatives from 5-hydroxymethylfurfural via 1-hydroxyhexane-2,5-dione as intermediate. ChemSusChem, 2018, 11(2), 356-359.
[177]
Ohyama, J.; Kanao, R.; Ohira, Y.; Satsuma, A. The effect of heterogeneous acid-base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative. Green Chem., 2016, 18(3), 676-680.
[178]
Ohyama, J.; Kanao, R.; Esaki, A.; Satsuma, A. Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles. Chem. Commun. , 2014, 50(42), 5633-5636.
[179]
Verrier, C.; Moebs-Sanchez, S.; Queneau, Y.; Popowycz, F. The Piancatelli reaction and its variants: Recent applications to high added-value chemicals and biomass valorization. Org. Biomol. Chem., 2018, 16(5), 676-687.
[180]
Lichtenthaler, F.W.; Brust, A.; Cuny, E. Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from -fructose and isomaltulose. Green Chem., 2001, 3(5), 201-209.
[181]
Heugebaert, T.S.A.; Stevens, C.V.; Kappe, C.O. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow. ChemSusChem, 2015, 8(10), 1648-1651.
[182]
Kucherov, F.A.; Galkin, K.I.; Gordeev, E.G.; Ananikov, V.P. Efficient route for the construction of polycyclic systems from bioderived HMF. Green Chem., 2017, 19(20), 4858-4864.
[183]
Galkin, K.I.; Kucherov, F.A.; Markov, O.N.; Egorova, K.S.; Posvyatenko, A.V.; Ananikov, V.P. Facile chemical access to biologically active norcantharidin derivatives from biomass. Molecules, 2017, 22(12), 2210.
[184]
Higson, S.; Subrizi, F.; Sheppard, T.D.; Hailes, H.C. Chemical cascades in water for the synthesis of functionalized aromatics from furfurals. Green Chem., 2016, 18(7), 1855-1858.
[185]
Lin, Z.; Ierapetritou, M.; Nikolakis, V. Aromatics from lignocellulosic biomass: Economic analysis of the production of p-xylene from 5-hydroxymethylfurfural. AlChE J., 2013, 59(6), 2079-2087.
[186]
Ni, L.; Xin, J.; Dong, H.; Lu, X.; Liu, X.; Zhang, S. A simple and mild approach for the synthesis of p-xylene from bio-based 2,5-dimethyfuran by using metal triflates. ChemSusChem, 2017, 10(11), 2394-2401.
[187]
Shiramizu, M.; Toste, F.D. On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): Conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chemistry . Eur. J., , 2011, 17(44), 12452-12457.
[188]
Serum, E.M.; Sermadurai, S.; Zimmermann, N.; Sibi, M.P. Valorization of 2,5-furandicarboxylic acid. Diels-Alder reactions with benzyne. Green Chem., 2018, 20(7), 1448-1454.
[189]
Pacheco, J.J.; Labinger, J.A.; Sessions, A.L.; Davis, M.E. Route to renewable PET: Reaction pathways and energetics of Diels–Alder and dehydrative aromatization reactions between ethylene and biomass-derived furans catalyzed by lewis acid molecular sieves. ACS Catal., 2015, 5(10), 5904-5913.
[190]
Chang, C-C.; Je Cho, H.; Yu, J.; Gorte, R.J.; Gulbinski, J.; Dauenhauer, P.; Fan, W. Lewis acid zeolites for tandem Diels-Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene. Green Chem., 2016, 18(5), 1368-1376.
[191]
Song, S.; Wu, G.; Dai, W.; Guan, N.; Li, L. Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids. J. Mol. Catal. Chem., 2016, 420, 134-141.
[192]
Do, P.T.M.; McAtee, J.R.; Watson, D.A.; Lobo, R.F. Elucidation of Diels–Alder reaction network of 2,5-dimethylfuran and ethylene on HY zeolite catalyst. ACS Catal., 2013, 3(1), 41-46.
[193]
Pacheco, J.J.; Davis, M.E. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8363-8367.
[194]
McNelis, B.J.; Sternbach, D.D.; MacPhail, A.T. Synthetic and kinetic studies of substituent effects in the furan intramolecular Diels-Alder reaction. Tetrahedron, 1994, 50(23), 6767-6782.
[195]
Sun, S.; Murray, W.V. Solid phase Diels−Alder reactions of amino acid derived trienes. J. Org. Chem., 1999, 64(16), 5941-5945.
[196]
Schinzer, D.; Bourguet, E.; Ducki, S. Synthesis of furano-epothilone D. Chem. Eur. J., 2004, 10(13), 3217-3224.
[197]
Koh, P.F.; Loh, T.P. Synthesis of biologically active natural products, aspergillides A and B, entirely from biomass derived platform chemicals. Green Chem., 2015, 17(7), 3746-3750.
[198]
Connolly, T.J.; Considine, J.L.; Ding, Z.; Forsatz, B.; Jennings, M.N.; MacEwan, M.F.; McCoy, K.M.; Place, D.W.; Sharma, A.; Sutherland, K. Efficient synthesis of 8-oxa-3-aza-bicyclo[3.2.1]octane hydrochloride. Org. Proc Res. Dev., 2010, 14(2), 459-465.
[199]
Oikawa, M.; Ikoma, M.; Sasaki, M. Parallel synthesis of tandem Ugi/Diels–Alder reaction products on a soluble polymer support directed toward split-pool realization of a small molecule library. Tetrahedron Lett., 2005, 46(3), 415-418.
[200]
Gupta, P.; Singh, S.K.; Pathak, A.; Kundu, B. Template-directed approach to solid-phase combinatorial synthesis of furan-based libraries. Tetrahedron, 2002, 58(52), 10469-10474.
[201]
Müller, C.; Diehl, V.; Lichtenthaler, F.W. Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose. Tetrahedron, 1998, 54(36), 10703-10712.
[202]
Villard, R.; Robert, F.; Blank, I.; Bernardinelli, G.; Soldo, T.; Hofmann, T. Racemic and enantiopure synthesis and physicochemical characterization of the novel taste enhancer N-(1-carboxyethyl)-6-(hydroxymethyl)pyri-dinium-3-ol inner salt. J. Agric. Food Chem., 2003, 51(14), 4040-4045.
[203]
Koch, J.; Pischetsrieder, M.; Polborn, K.; Severin, T. Formation of pyridinium betaines by reaction of hexoses with primary amines. Carbohydr. Res., 1998, 313(2), 117-123.
[204]
Frank, O.; Ottinger, H.; Hofmann, T. Characterization of an intense bitter-tasting 1H,4H-quinolizinium-7-olate by application of the taste dilution analysis, a novel bioassay for the screening and identification of taste-active compounds in foods. J. Agric. Food Chem., 2001, 49(1), 231-238.
[205]
Soldo, T.; Hofmann, T. Application of hydrophilic interaction liquid chromatography/comparative taste dilution analysis for identification of a bitter inhibitor by a combinatorial approach based on maillard reaction chemistry. J. Agric. Food Chem., 2005, 53(23), 9165-9171.
[206]
Sowmiah, S.; Veiros, L.F.; Esperanca, J.M.; Rebelo, L.P.; Afonso, C.A. Organocatalyzed one-step synthesis of functionalized n-alkyl-pyridinium salts from biomass derived 5-hydroxymethylfurfural. Org. Lett., 2015, 17(21), 5244-5247.
[207]
Rajmohan, R.; Gayathri, S.; Vairaprakash, P. Facile synthesis of 5-hydroxymethylfurfural: a sustainable raw material for the synthesis of key intermediates toward 21,23-dioxaporphyrins. RSC Adv, 2015, 5(121), 100401-100407.
[208]
McDermott, P.J.; Stockman, R.A. Combining two-directional synthesis and tandem reactions: Synthesis of trioxadispiroketals. Org. Lett., 2005, 7(1), 27-29.