摘要
由可生物降解的聚合物制成的用于蛋白质和肽药物递送的持续释放系统已经受到全世界的学术研究人员和主要制药公司的广泛关注。已经应用各种类型的可生物降解材料,包括天然和合成聚合物,以形成蛋白质和肽药物载体。在这些候选材料中,聚乳酸(PLA)和聚乳酸 - 共 - 羟基乙酸(PLGA)是蛋白质和肽微球体开发中最常用的可生物降解材料。此外,已经开发了许多微球制备技术,包括喷雾干燥,凝聚,多乳液溶剂蒸发方法和微孔膜乳化,用于制备微球。在本综述中,我们特别总结并简要介绍了用于制造微球作为蛋白质递送系统的材料和方法。还讨论了成功输送蛋白质的现有机会和挑战。
关键词: 缓释系统,蛋白质和多肽药物,微球,药物输送,微孔膜乳化技术,可生物降解材料,组织工程。
[1]
Mullard, A. 2015 FDA drug approvals. Nat. Rev. Drug Discov., 2016, 15(2), 73-76. [http://dx.doi.org/10.1038/nrd.2016.15]. [PMID: 26837582].
[2]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93. [http://dx.doi.org/10.1016/j.ijpharm.2013.02.030]. [PMID: 23428883].
[3]
Zhu, S.; Chen, S.; Gao, Y.; Guo, F.; Li, F.; Xie, B.; Zhou, J.; Zhong, H. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and engrailed secretion peptide (Sec). Drug Deliv., 2016, 23(6), 1980-1991. [http://dx.doi.org/10.3109/10717544.2015.1043472]. [PMID: 26181841].
[4]
Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 2014, 64(2), 353-367. [http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017]. [PMID: 24360899].
[5]
Laili, C.R.; Hamdan, S. Preparation of nanomaterials for drug delivery system via microemulsion polymerisation method. J. Emerg. Trends. Eng. Appl. Sci., 2015, 6(5), 319-326.
[6]
Wang, K.; Huang, Q.; Qiu, F.; Sui, M. Non-viral Delivery Systems for the Application in p53 Cancer Gene Therapy. Curr. Med. Chem., 2015, 22(35), 4118-4136. [http://dx.doi.org/10.2174/0929867322666151001121601]. [PMID: 26423086].
[7]
Park, K.; Kwon, I.C.; Park, K. Oral protein delivery: Current status and future prospect. React. Funct. Polym., 2011, 71(3), 280-287. [http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.002].
[8]
Cho, D.I.D.; Yoo, H.J. Microfabrication methods for biodegradable polymeric carriers for drug delivery system applications: A review. J. Microelectromech. Syst., 2015, 24(1), 10-18. [http://dx.doi.org/10.1109/JMEMS.2014.2368071].
[9]
Zhang, B.; Wang, K.; Si, J.; Sui, M.; Shen, Y. Charge-reversal polymers for biodelivery. Wiley-VCH Verlag GmbH & Co. KGaA, 2014, 9, 223-242.
[10]
An, F.F.; Deng, Z.J.; Ye, J.; Zhang, J.F.; Yang, Y.L.; Li, C.H.; Zheng, C.J.; Zhang, X.H. Aggregation-induced near-infrared absorption of squaraine dye in an albumin nanocomplex for photoacoustic tomography in vivo. ACS Appl. Mater. Interfaces, 2014, 6(20), 17985-17992. [http://dx.doi.org/10.1021/am504816h]. [PMID: 25223319].
[11]
Chen, J.; Ding, J.; Xu, W.; Sun, T.; Xiao, H.; Zhuang, X.; Chen, X. Receptor and microenvironment dual-recognizable nanogel for targeted chemotherapy of highly metastatic malignancy. Nano Lett., 2017, 17(7), 4526-4533. [http://dx.doi.org/10.1021/acs.nanolett.7b02129]. [PMID: 28644032].
[12]
Li, S.; Zhang, T.; Xu, W.; Ding, J.; Yin, F.; Xu, J.; Sun, W.; Wang, H.; Sun, M.; Cai, Z.; Hua, Y. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics, 2018, 8(5), 1361-1375. [http://dx.doi.org/10.7150/thno.18299]. [PMID: 29507626].
[13]
Wu, J.; You, X.; Gu, Z.; Chen, X.; Kang, Y.; Zhao, W.; Hollett, G. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7779-7792. [http://dx.doi.org/10.1039/C6TB01925K].
[14]
Xiang-ru, F.; Jian-xun, D.; Gref, R.; Xue-si, C. Poly(β-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chin. J. Polym. Sci., 2017, 35(6), 693-699. [http://dx.doi.org/10.1007/s10118-017-1932-7].
[15]
Uskokovic, D.; Stevanovic, M. Poly(lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr. Nanosci., 2009, 5(1), 1-15. [http://dx.doi.org/10.2174/157341309787314566].
[16]
Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 2014, 64(2), 353-367. [http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017]. [PMID: 24360899].
[17]
Edlund, U.; Albertsson, A.C. Degradable polymer microspheres for controlled drug delivery. Adv. Polym. Sci., 2001, 157(1), 67-112.
[18]
Hossain, K.M.Z.; Patel, U.; Ahmed, I. Development of microspheres for biomedical applications: A review. Prog. Biomater., 2015, 4(1), 1-19. [http://dx.doi.org/10.1007/s40204-014-0033-8]. [PMID: 29470791].
[19]
Chen, Q.; Yang, Y.; Lin, X.; Ma, W.; Chen, G.; Li, W.; Wang, X.; Yu, Z. Platinum(iv) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem. Commun. (Camb.), 2018, 54(42), 5369-5372. [http://dx.doi.org/10.1039/C8CC02791A]. [PMID: 29744485].
[20]
Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J. Control. Release, 2018, 273, 160-179. [http://dx.doi.org/10.1016/j.jconrel.2018.01.023]. [PMID: 29382547].
[21]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18. [http://dx.doi.org/10.1016/j.colsurfb.2009.09.001]. [PMID: 19782542].
[22]
Hua, X.; Tan, S.; Bandara, H.M.H.N.; Fu, Y.; Liu, S.; Smyth, H.D.C. Externally controlled triggered-release of drug from PLGA micro and nanoparticles. PLoS One, 2014, 9(12), e114271-e114271. [http://dx.doi.org/10.1371/journal.pone.0114271]. [PMID: 25479357].
[23]
Mohammadi-Samani, S.; Taghipour, B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm. Dev. Technol., 2015, 20(4), 385-393. [http://dx.doi.org/10.3109/10837450.2014.882940]. [PMID: 24483777].
[24]
Butun, S.; Ince, F.G.; Erdugan, H.; Sahiner, N. One-step fabrication of biocompatible carboxymethyl cellulose polymeric particles for drug delivery systems. Carbohydr. Polym., 2011, 86(2), 636-643. [http://dx.doi.org/10.1016/j.carbpol.2011.05.001].
[25]
Habibi, N. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: Characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectro.Acta. Part A, 2014, 131C(19), 55-58. [http://dx.doi.org/10.1016/j.saa.2014.04.039].
[26]
Floyd, J.A.; Galperin, A.; Ratner, B.D. Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv. Drug Deliv. Rev., 2015, 91, 23-37. [http://dx.doi.org/10.1016/j.addr.2015.04.008]. [PMID: 25895620].
[27]
Deng, H.; Lei, Z. Preparation and characterization of hollow Fe3O4/SiO2@PEG–PLA nanoparticles for drug delivery. Radiother. Oncol., 2014, 111(1), S42-S43.
[28]
Davaran, S.; Rezaei, A.; Alimohammadi, S.; Khandaghi, A.A.; Nejatikoshki, K.; Nasrabadi, H.T.; Akbarzadeh, A. Synthesis and physicochemical characterization of biodegradable star-shaped poly lactide-co-glycolide--cyclodextrin copolymer nanoparticles containing albumin. Adv. Nanoparticles, 2014, 03(1), 14-22. [http://dx.doi.org/10.4236/anp.2014.31003].
[29]
Hosseininasab, S.; Pashaei-Asl, R.; Khandaghi, A.A.; Nasrabadi, H.T.; Nejati-Koshki, K.; Akbarzadeh, A.; Joo, S.W.; Hanifehpour, Y.; Davaran, S. Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery. Chem. Biol. Drug Des., 2014, 84(3), 307-315. [http://dx.doi.org/10.1111/cbdd.12318]. [PMID: 24684797].
[30]
Giri, T.K.; Choudhary, C. Ajazuddin, Alexander, A.; Badwaik, H.; Tripathi, D.K. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm. J., 2013, 21(2), 125-141. [http://dx.doi.org/10.1016/j.jsps.2012.05.009]. [PMID: 23960828].
[31]
Casalini, T.; Rossi, F.; Lazzari, S.; Perale, G.; Masi, M. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release. Mol. Pharm., 2014, 11(11), 4036-4048. [http://dx.doi.org/10.1021/mp500078u]. [PMID: 25230105].
[32]
Kastellorizios, M.; Papadimitrakopoulos, F.; Burgess, D.J. Prevention of foreign body reaction in a pre-clinical large animal model. J. Control. Release, 2015, 202, 101-107. [http://dx.doi.org/10.1016/j.jconrel.2015.01.038]. [PMID: 25645376].
[33]
Quinlan, E.; López-Noriega, A.; Thompson, E.; Kelly, H.M.; Cryan, S.A.; O’Brien, F.J. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J. Control. Release, 2015, 198, 71-79. [http://dx.doi.org/10.1016/j.jconrel.2014.11.021]. [PMID: 25481441].
[34]
Patel, B.B.; Chakraborty, S. Biodegradable polymer: An emerging excipient in pharmaceutical and medical device industry. J. Excip. Food Chem., 2013, 4(4), 126-157.
[35]
Wright, J.C.; Hoffman, A.S. Historical Overview of Long Acting Injections and Implants. In: Wright J., Burgess D.,
Eds. Long Acting Injections and Implants. Advances in Delivery
Science and Technology ; Springer, Boston, MA.. [http://dx.doi.org/10.1007/978-1-4614-0554-2_2]
[36]
Hoffman, A.S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release, 2008, 132(3), 153-163. [http://dx.doi.org/10.1016/j.jconrel.2008.08.012]. [PMID: 18817820].
[37]
Okada, H.; Heya, T.; Ogawa, Y.; Toguchi, H.; Shimamoto, T. Sustained pharmacological activities in rats following single and repeated administration of once-a-month injectable microspheres of leuprolide acetate. Pharm. Res., 1991, 8(5), 584-587.
[38]
Ramazani, F.; Chen, W.; van Nostrum, C.F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W.E.; Kok, R.J. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int. J. Pharm., 2016, 499(1-2), 358-367. [http://dx.doi.org/10.1016/j.ijpharm.2016.01.020]. [PMID: 26795193].
[39]
Ramazani, F.; Chen, W.; Van Nostrum, C.F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W.E.; Kok, R.J. Formulation and characterization of microspheres loaded with imatinib for sustained delivery. Int. J. Pharm., 2015, 482(1-2), 123-130. [http://dx.doi.org/10.1016/j.ijpharm.2015.01.043]. [PMID: 25636301].
[40]
Liu, G.; Hong, X.; Jiang, M.; Yuan, W. Sustained-release G-CSF microspheres using a novel solid-in-oil-in-oil-inwater emulsion method. Int. J. Nanomedicine, 2012, 7(3), 4559-4569.
[41]
Kazazi-Hyseni, F.; Landin, M.; Lathuile, A.; Veldhuis, G.J.; Rahimian, S.; Hennink, W.E.; Kok, R.J.; van Nostrum, C.F. Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Pharm. Res., 2014, 31(10), 2844-2856. [http://dx.doi.org/10.1007/s11095-014-1381-8]. [PMID: 24825756].
[42]
Vladisavljević, G.T.; Kobayashi, I.; Nakajima, M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid. Nanofluidics, 2012, 13(1), 151-178. [http://dx.doi.org/10.1007/s10404-012-0948-0].
[43]
Marquette, S.; Peerboom, C.; Yates, A.; Denis, L.; Langer, I.; Amighi, K.; Goole, J. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. Int. J. Pharm., 2014, 470(1-2), 41-50. [http://dx.doi.org/10.1016/j.ijpharm.2014.04.063]. [PMID: 24792974].
[44]
Arshady, R. Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation. Polym. Eng. Sci., 1990, 30(15), 905-914.
[45]
Sinha, V.R.; Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release, 2003, 90(3), 261-280. [http://dx.doi.org/10.1016/S0168-3659(03)00194-9]. [PMID: 12880694].
[46]
Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm. J., 2015, 23(4), 352-365. [http://dx.doi.org/10.1016/j.jsps.2013.12.013]. [PMID: 27134535].
[47]
Paudel, A.; Worku, Z.A.; Meeus, J.; Guns, S.; Van den Mooter, G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int. J. Pharm., 2013, 453(1), 253-284. [http://dx.doi.org/10.1016/j.ijpharm.2012.07.015]. [PMID: 22820134].
[48]
Cai, Y.; Xu, M.; Yuan, M.; Liu, Z.; Yuan, W. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int. J. Nanomedicine, 2014, 9(1), 3527-3538. [PMID: 25114523].
[49]
Bittner, B.; Morlock, M.; Koll, H.; Winter, G.; Kissel, T. Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur. J. Pharm. Biopharm., 1998, 45(3), 295-305. [http://dx.doi.org/10.1016/S0939-6411(98)00012-5]. [PMID: 9653634].
[50]
Tiwari, A.; Bindal, S.; Bohidar, H.B. Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix. Biomacromolecules, 2009, 10(1), 184-189. [http://dx.doi.org/10.1021/bm801160s]. [PMID: 19072040].
[51]
Singh, S.S.; Aswal, V.K.; Bohidar, H.B. Structural studies of agar-gelatin complex coacervates by small angle neutron scattering, rheology and differential scanning calorimetry. Int. J. Biol. Macromol., 2007, 41(3), 301-307. [http://dx.doi.org/10.1016/j.ijbiomac.2007.03.009]. [PMID: 17481725].
[52]
Gupta, A.N.; Bohidar, H.B.; Aswal, V.K. Surface patch binding induced intermolecular complexation and phase separation in aqueous solutions of similarly charged gelatin-chitosan molecules. J. Phys. Chem. B, 2007, 111(34), 10137-10145. [http://dx.doi.org/10.1021/jp070745s]. [PMID: 17676887].
[53]
Abashzadeh, Sh.; Dinarvand, R.; Sharifzadeh, M.; Hassanzadeh, G.; Amini, M.; Atyabi, F. Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate. Eur. J. Pharm. Sci., 2011, 44(4), 514-521. [http://dx.doi.org/10.1016/j.ejps.2011.09.011]. [PMID: 21946260].
[54]
Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm., 2008, 364(2), 298-327. [http://dx.doi.org/10.1016/j.ijpharm.2008.04.042]. [PMID: 18621492].
[55]
Wee, S.; Gombotz, W.R. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 1998, 31(3), 267-285. [http://dx.doi.org/10.1016/S0169-409X(97)00124-5]. [PMID: 10837629].
[56]
Ding, A.G.; Schwendeman, S.P. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm. Res., 2008, 25(9), 2041-2052. [http://dx.doi.org/10.1007/s11095-008-9594-3]. [PMID: 18622692].
[57]
Naik, J.; Kulkarni, R.D.; Lokhande, A.B.; Mishra, S. Development of sustained release micro/nano particles using different solvent emulsification technique: A review. Int. J. Pharma Bio Sci., 2012, 3(4), 573-590.
[58]
Qi, F.; Wu, J.; Hao, D.; Yang, T.; Ren, Y.; Ma, G.; Su, Z. Comparative studies on the influences of primary emulsion preparation on properties of uniform-sized exenatide-loaded PLGA microspheres. Pharm. Res., 2014, 31(6), 1566-1574. [http://dx.doi.org/10.1007/s11095-013-1262-6]. [PMID: 24398695].
[59]
Gaignaux, A.; Réeff, J.; Siepmann, F.; Siepmann, J.; De Vriese, C.; Goole, J.; Amighi, K. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int. J. Pharm., 2012, 437(1-2), 20-28. [http://dx.doi.org/10.1016/j.ijpharm.2012.08.006]. [PMID: 22903047].
[60]
Niu, Y.; Stadler, F.J.; Song, J.; Chen, S.; Chen, S. Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 153, 160-167. [http://dx.doi.org/10.1016/j.colsurfb.2017.02.018]. [PMID: 28236792].
[61]
Mao, S.; Xu, J.; Cai, C.; Germershaus, O.; Schaper, A.; Kissel, T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int. J. Pharm., 2007, 334(1-2), 137-148. [http://dx.doi.org/10.1016/j.ijpharm.2006.10.036]. [PMID: 17196348].
[62]
Leitner, J.M.; Mayr, F.B.; Spiel, A.O.; Firbas, C.; Savulsky, C.; Mis, R.; Corrado, M.E.; Jilma, B. The pharmacokinetics and pharmacodynamics of a new sustained-release leuprolide acetate depot compared to market references. Int. J. Clin. Pharmacol. Ther., 2008, 46(8), 407-414. [http://dx.doi.org/10.5414/CPP46407]. [PMID: 18793582].
[63]
Ungaro, F.; De Rosa, G.; Miro, A.; Quaglia, F.; La Rotonda, M.I. Cyclodextrins in the production of large porous particles: Development of dry powders for the sustained release of insulin to the lungs. Eur. J. Pharm. Sci., 2006, 28(5), 423-432. [http://dx.doi.org/10.1016/j.ejps.2006.05.005]. [PMID: 16806857].
[64]
Wang, L.Y.; Ma, G.H.; Su, Z.G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J. Control. Release, 2005, 106(1-2), 62-75. [http://dx.doi.org/10.1016/j.jconrel.2005.04.005]. [PMID: 15922472].
[65]
Dunne, M.; Corrigan, I.; Ramtoola, Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 2000, 21(16), 1659-1668. [http://dx.doi.org/10.1016/S0142-9612(00)00040-5]. [PMID: 10905407].
[66]
Shakweh, M.; Besnard, M.; Nicolas, V.; Fattal, E. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer’s patches in mice. Eur. J. Pharm. Biopharm., 2005, 61(1-2), 1-13. [http://dx.doi.org/10.1016/j.ejpb.2005.04.006]. [PMID: 16005619].
[67]
Dawes, G.J.S.; Fratila-Apachitei, L.E.; Mulia, K.; Apachitei, I.; Witkamp, G.J.; Duszczyk, J. Size effect of PLGA spheres on drug loading efficiency and release profiles. J. Mater. Sci. Mater. Med., 2009, 20(5), 1089-1094. [http://dx.doi.org/10.1007/s10856-008-3666-0]. [PMID: 19160026].
[68]
Samadi, N.; Abbadessa, A.; Di Stefano, A.; van Nostrum, C.F.; Vermonden, T.; Rahimian, S.; Teunissen, E.A.; van Steenbergen, M.J.; Amidi, M.; Hennink, W.E. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles. J. Control. Release, 2013, 172(2), 436-443. [http://dx.doi.org/10.1016/j.jconrel.2013.05.034]. [PMID: 23751568].
[69]
Varde, N.K.; Pack, D.W. Influence of particle size and antacid on release and stability of plasmid DNA from uniform PLGA microspheres. J. Control. Release, 2007, 124(3), 172-180. [http://dx.doi.org/10.1016/j.jconrel.2007.09.005]. [PMID: 17928089].
[70]
Schmidt, C.; Lautenschlaeger, C.; Collnot, E.M.; Schumann, M.; Bojarski, C.; Schulzke, J.D.; Lehr, C.M.; Stallmach, A. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: A first in vivo study in human patients. J. Control. Release, 2013, 165(2), 139-145. [http://dx.doi.org/10.1016/j.jconrel.2012.10.019]. [PMID: 23127508].
[71]
Carr, K.E.; Smyth, S.H.; McCullough, M.T.; Morris, J.F.; Moyes, S.M. Morphological aspects of interactions between microparticles and mammalian cells: Intestinal uptake and onward movement. Prog. Histochem. Cytochem., 2012, 46(4), 185-252. [http://dx.doi.org/10.1016/j.proghi.2011.11.001]. [PMID: 22240063].
[72]
Piacentini, E.; Dragosavac, M.; Giorno, L. Pharmaceutical particles design by membrane emulsification: Preparation methods and applications in drug delivery. Curr. Pharm. Des., 2017, 23(2), 302-318. [http://dx.doi.org/10.2174/1381612823666161117160940]. [PMID: 27855607].
[73]
Falke, L.L.; van Vuuren, S.H.; Kazazi-Hyseni, F.; Ramazani, F.; Nguyen, T.Q.; Veldhuis, G.J.; Maarseveen, E.M.; Zandstra, J.; Zuidema, J.; Duque, L.F.; Steendam, R.; Popa, E.R.; Kok, R.J.; Goldschmeding, R. Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres. Biomaterials, 2015, 42, 151-160. [http://dx.doi.org/10.1016/j.biomaterials.2014.11.042]. [PMID: 25542803].
[74]
Qi, F.; Wu, J.; Yang, T.; Ma, G.; Su, Z. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater., 2014, 10(10), 4247-4256. [http://dx.doi.org/10.1016/j.actbio.2014.06.018]. [PMID: 24952071].
[75]
Spyropoulos, F.; Lloyd, D.M.; Hancocks, R.D.; Pawlik, A.K. Advances in membrane emulsification. Part A: Recent developments in processing aspects and microstructural design approaches. J. Sci. Food Agric., 2014, 94(4), 613-627. [http://dx.doi.org/10.1002/jsfa.6444]. [PMID: 24122870].
[76]
Spyropoulos, F.; Lloyd, D.M.; Hancocks, R.D.; Pawlik, A.K. Advances in membrane emulsification. Part B: Recent developments in modelling and scale-up approaches. J. Sci. Food Agric., 2014, 94(4), 628-638. [http://dx.doi.org/10.1002/jsfa.6443]. [PMID: 24122852].
[77]
Liu, S.Y.; Wei, W.; Yue, H.; Ni, D.Z.; Yue, Z.G.; Wang, S.; Fu, Q.; Wang, Y.Q.; Ma, G.H.; Su, Z.G. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials, 2013, 34(33), 8291-8300. [http://dx.doi.org/10.1016/j.biomaterials.2013.07.020]. [PMID: 23910466].
[78]
Wei, Q.; Wei, W.; Tian, R.; Wang, L.Y.; Su, Z.G.; Ma, G.H. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J. Colloid Interface Sci., 2008, 323(2), 267-273. [http://dx.doi.org/10.1016/j.jcis.2008.04.058]. [PMID: 18501376].
[79]
Wei, W.; Lv, P.P.; Chen, X.M.; Yue, Z.G.; Fu, Q.; Liu, S.Y.; Yue, H.; Ma, G.H. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials, 2013, 34(15), 3912-3923. [http://dx.doi.org/10.1016/j.biomaterials.2013.02.030]. [PMID: 23453062].
[80]
Wei, W.; Wang, L.Y.; Yuan, L.; Wei, Q.; Yang, X.D.; Su, Z.G.; Ma, G.H. Preparation and Application of Novel Microspheres Possessing Autofluorescent Properties. Adv. Funct. Mater., 2007, 17(16), 3153-3158. [http://dx.doi.org/10.1002/adfm.200700274].
[81]
Wang, X. Wu, X.; Xing, H.; Zhang, G.; Shi, Q.; e, L.; Liu, N.; Yang, T.; Wang, D.; Qi, F.; Wang, L.; Liu, H. Porous nanohydroxyapatite/collagen scaffolds loading insulin plga particles for restoration of critical size bone defect. ACS Appl. Mater. Interfaces, 2017, 9(13), 11380-11391. [http://dx.doi.org/10.1021/acsami.6b13566]. [PMID: 28256126].
[82]
Esposito, E.; Drechsler, M.; Cortesi, R. Microscopy characterisation of micro- and nanosystems for pharmaceutical use. OA Drug Des. Discov., 2013, 1(1), 2-8.
[83]
Lv, P.P.; Wei, W.; Gong, F.L.; Zhang, Y.L.; Zhao, H.Y.; Lei, J.D.; Wang, L.Y.; Ma, G.H. Preparation of uniformly sized chitosan nanospheres by a premix membrane emulsification technique. Ind. Eng. Chem. Res., 2009, 19(48), 8819-8828. [http://dx.doi.org/10.1021/ie801758e].
[84]
Shin, J.M.; Kim, M.P.; Yang, H.; Kang, H.K.; Jang, S.G.; Youm, K.H.; Yi, G.R.; Kim, B.J. Monodipserse nanostructured spheres of block copolymers and nanoparticles via cross-flow membrane emulsification. Chem. Mater., 2015, 27(18), 6314-6321. [http://dx.doi.org/10.1021/acs.chemmater.5b02020].
[85]
Akamatsu, K.; Kaneko, D.; Sugawara, T.; Kikuchi, R.; Nakao, S. Three preparation methods for monodispersed chitosan microspheres using the shirasu porous glass membrane emulsification technique and mechanisms of microsphere formation. Ind. Eng. Chem. Res., 2010, 49(7), 3236-3241. [http://dx.doi.org/10.1021/ie901821s].
[86]
Sun, G.; Qi, F.; Wu, J.; Ma, G.; Ngai, T. Preparation of uniform particle-stabilized emulsions using SPG membrane emulsification. Langmuir, 2014, 30(24), 7052-7056. [http://dx.doi.org/10.1021/la500701a]. [PMID: 24898350].
[87]
Wei, Y.; Wang, Y.; Kang, A.; Wang, W.; Ho, S.V.; Gao, J.; Ma, G.; Su, Z. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles. Mol. Pharm., 2012, 9(7), 2039-2048. [http://dx.doi.org/10.1021/mp300126t]. [PMID: 22663348].
[88]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442(7101), 368-373. [http://dx.doi.org/10.1038/nature05058]. [PMID: 16871203].
[89]
Xu, S.; Nie, Z.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H.A.; Garstecki, P.; Weibel, D.B.; Gitlin, I.; Whitesides, G.M. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition. Angew. Chem. Int. Ed. Engl., 2005, 44(5), 724-728. [http://dx.doi.org/10.1002/anie.200462226]. [PMID: 15612064].