[1]
Archer, G.L. Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis., 1998, 26(5), 1179-1181. [http://dx.doi.org/10.1086/520289]. [PMID: 9597249].
[3]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40. [http://dx.doi.org/10.1038/nrd2201]. [PMID: 17159923].
[4]
Lewis, K. New approaches to antimicrobial discovery. Biochem. Pharmacol., 2017, 134, 87-98. [http://dx.doi.org/10.1016/j.bcp.2016.11.002]. [PMID: 27823963].
[5]
Proctor, R.A. Challenges for a universal Staphylococcus aureus vaccine. Clin. Infect. Dis., 2012, 54(8), 1179-1186. [http://dx.doi.org/10.1093/cid/cis033]. [PMID: 22354924].
[6]
Jansen, K.U.; Girgenti, D.Q.; Scully, I.L.; Anderson, A.S. Vaccine review: “Staphyloccocus aureus vaccines: Problems and prospects. Vaccine, 2013, 31(25), 2723-2730. [http://dx.doi.org/10.1016/j.vaccine.2013.04.002]. [PMID: 23624095].
[7]
Clatworthy, A.E.; Pierson, E.; Hung, D.T. Targeting virulence: A new paradigm for antimicrobial therapy. Nat. Chem. Biol., 2007, 3(9), 541-548. [http://dx.doi.org/10.1038/nchembio.2007.24]. [PMID: 17710100].
[8]
Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov., 2010, 9(2), 117-128. [http://dx.doi.org/10.1038/nrd3013]. [PMID: 20081869].
[9]
Heras, B.; Scanlon, M.J.; Martin, J.L. Targeting virulence not viability in the search for future antibacterials. Br. J. Clin. Pharmacol., 2015, 79(2), 208-215. [http://dx.doi.org/10.1111/bcp.12356]. [PMID: 24552512].
[10]
Brannon, J.R.; Hadjifrangiskou, M. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them. Drug Des. Devel. Ther., 2016, 10, 1795-1806. [PMID: 27313446].
[11]
Kong, C.; Neoh, H.M.; Nathan, S. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins (Basel), 2016, 8(3)E72 [http://dx.doi.org/10.3390/toxins8030072]. [PMID: 26999200].
[12]
Vale, P.F.; McNally, L.; Doeschl-Wilson, A.; King, K.C.; Popat, R.; Domingo-Sananes, M.R.; Allen, J.E.; Soares, M.P.; Kümmerli, R. Beyond killing: Can we find new ways to manage infection? Evol. Med. Public Health, 2016, 2016(1), 148-157. [http://dx.doi.org/10.1093/emph/eow012]. [PMID: 27016341].
[13]
Welsh, M.A.; Blackwell, H.E. Chemical probes of quorum sensing: From compound development to biological discovery. FEMS Microbiol. Rev., 2016, 40(5), 774-794. [http://dx.doi.org/10.1093/femsre/fuw009]. [PMID: 27268906].
[14]
Braff, D.; Shis, D.; Collins, J.J. Synthetic biology platform technologies for antimicrobial applications. Adv. Drug Deliv.
Rev., 2016, 105(Pt A), 35-43.. [http://dx.doi.org/10.1016/j.addr.2016.04.006]
[15]
Hwang, I.Y.; Koh, E.; Kim, H.R.; Yew, W.S.; Chang, M.W. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist. Updat., 2016, 27, 59-71. [http://dx.doi.org/10.1016/j.drup.2016.06.002]. [PMID: 27449598].
[16]
Markowska, K.; Grudniak, A.M.; Wolska, K.I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol., 2013, 60(4), 523-530. [PMID: 24432308].
[17]
Chang, L.; Bertani, P.; Gallego-Perez, D.; Yang, Z.; Chen, F.; Chiang, C.; Malkoc, V.; Kuang, T.; Gao, K.; Lee, L.J.; Lu, W. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale, 2016, 8(1), 243-252. [http://dx.doi.org/10.1039/C5NR03187G]. [PMID: 26309218].
[18]
Chang, L.; Gallego-Perez, D.; Chiang, C.L.; Bertani, P.; Kuang, T.; Sheng, Y.; Chen, F.; Chen, Z.; Shi, J.; Yang, H.; Huang, X.; Malkoc, V.; Lu, W.; Lee, L.J. Controllable large-scale transfection of primary mammalian cardiomyocytes on a nanochannel array platform. Small, 2016, 12(43), 5971-5980. [http://dx.doi.org/10.1002/smll.201601465]. [PMID: 27648733].
[19]
Balaban, N.; Goldkorn, T.; Nhan, R.T.; Dang, L.B.; Scott, S.; Ridgley, R.M.; Rasooly, A.; Wright, S.C.; Larrick, J.W.; Rasooly, R.; Carlson, J.R. Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science, 1998, 280(5362), 438-440. [http://dx.doi.org/10.1126/science.280.5362.438]. [PMID: 9545222].
[20]
Novick, R.P.; Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet., 2008, 42, 541-564. [http://dx.doi.org/10.1146/annurev.genet.42.110807.091640]. [PMID: 18713030].
[21]
Sun, F.; Ding, Y.; Ji, Q.; Liang, Z.; Deng, X.; Wong, C.C.; Yi, C.; Zhang, L.; Xie, S.; Alvarez, S.; Hicks, L.M.; Luo, C.; Jiang, H.; Lan, L.; He, C. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15461-15466. [http://dx.doi.org/10.1073/pnas.1205952109]. [PMID: 22927394].
[22]
Zheng, W.; Cai, X.; Xie, M.; Liang, Y.; Wang, T.; Li, Z. Structure-based identification of a potent inhibitor targeting stp1-mediated virulence regulation in Staphylococcus aureus. Cell Chem. Biol., 2016, 23(8), 1002-1013. [http://dx.doi.org/10.1016/j.chembiol.2016.06.014]. [PMID: 27499528].
[23]
Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.R.; Otto, M.; Cheung, A.L.; Edwards, B.S.; Sklar, L.A.; Horswill, A.R.; Hall, P.R.; Gresham, H.D. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog., 2014, 10(6)e1004174 [http://dx.doi.org/10.1371/journal.ppat.1004174]. [PMID: 24945495].
[24]
Sun, F.; Zhou, L.; Zhao, B.C.; Deng, X.; Cho, H.; Yi, C.; Jian, X.; Song, C.X.; Luan, C.H.; Bae, T.; Li, Z.; He, C. Targeting MgrA-mediated virulence regulation in Staphylococcus aureus. Chem. Biol., 2011, 18(8), 1032-1041. [http://dx.doi.org/10.1016/j.chembiol.2011.05.014]. [PMID: 21867918].
[25]
Wang, B.; Muir, T.W. Regulation of Virulence in Staphylococcus aureus: Molecular mechanisms and remaining puzzles. Cell Chem. Biol., 2016, 23(2), 214-224. [http://dx.doi.org/10.1016/j.chembiol.2016.01.004]. [PMID: 26971873].
[26]
Chen, F.; Di, H.; Wang, Y.; Cao, Q.; Xu, B.; Zhang, X.; Yang, N.; Liu, G.; Yang, C.G.; Xu, Y.; Jiang, H.; Lian, F.; Zhang, N.; Li, J.; Lan, L. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol., 2016, 12(3), 174-179. [http://dx.doi.org/10.1038/nchembio.2003]. [PMID: 26780405].
[27]
Gordon, C.P.; Williams, P.; Chan, W.C. Attenuating Staphylococcus aureus virulence gene regulation: A medicinal chemistry perspective. J. Med. Chem., 2013, 56(4), 1389-1404. [http://dx.doi.org/10.1021/jm3014635]. [PMID: 23294220].
[28]
Cascioferro, S.; Totsika, M.; Schillaci, D.; Sortase, A.; Sortase, A. An ideal target for anti-virulence drug development. Microb. Pathog., 2014, 77, 105-112. [http://dx.doi.org/10.1016/j.micpath.2014.10.007]. [PMID: 25457798].
[29]
Singh, R.P.; Desouky, S.E.; Nakayama, J. Quorum quenching strategy targeting gram-positive pathogenic bacteria. Adv. Exp. Med. Biol., 2016, 901, 109-130. [http://dx.doi.org/10.1007/5584_2016_1]. [PMID: 27167409].
[30]
Ye, F.; Li, J.; Yang, C.G. The development of small-molecule modulators for ClpP protease activity. Mol. Biosyst., 2016, 13(1), 23-31. [http://dx.doi.org/10.1039/C6MB00644B]. [PMID: 27831584].
[31]
Recsei, P.; Kreiswirth, B.; O’Reilly, M.; Schlievert, P.; Gruss, A.; Novick, R.P. Regulation of exoprotein gene expression in Staphylococcus aureus by agar. Mol. Gen. Genet., 1986, 202(1), 58-61. [http://dx.doi.org/10.1007/BF00330517]. [PMID: 3007938].
[32]
Novick, R.P.; Ross, H.F.; Projan, S.J.; Kornblum, J.; Kreiswirth, B.; Moghazeh, S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J., 1993, 12(10), 3967-3975. [http://dx.doi.org/10.1002/j.1460-2075.1993.tb06074.x]. [PMID: 7691599].
[33]
Novick, R.P.; Projan, S.J.; Kornblum, J.; Ross, H.F.; Ji, G.; Kreiswirth, B.; Vandenesch, F.; Moghazeh, S. The agr P2 operon: An autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet., 1995, 248(4), 446-458. [http://dx.doi.org/10.1007/BF02191645]. [PMID: 7565609].
[34]
Gupta, R.K.; Luong, T.T.; Lee, C.Y. RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA. Proc. Natl. Acad. Sci. USA, 2015, 112(45), 14036-14041. [http://dx.doi.org/10.1073/pnas.1509251112]. [PMID: 26504242].
[35]
Abdelnour, A.; Arvidson, S.; Bremell, T.; Rydén, C.; Tarkowski, A. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect. Immun., 1993, 61(9), 3879-3885. [PMID: 8359909].
[36]
Mayville, P.; Ji, G.; Beavis, R.; Yang, H.; Goger, M.; Novick, R.P.; Muir, T.W. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1218-1223. [http://dx.doi.org/10.1073/pnas.96.4.1218]. [PMID: 9990004].
[37]
Quave, C.L.; Horswill, A.R. Flipping the switch: Tools for detecting small molecule inhibitors of staphylococcal virulence. Front. Microbiol., 2014, 5, 706. [http://dx.doi.org/10.3389/fmicb.2014.00706]. [PMID: 25566220].
[38]
Kupferwasser, L.I.; Yeaman, M.R.; Nast, C.C.; Kupferwasser, D.; Xiong, Y.Q.; Palma, M.; Cheung, A.L.; Bayer, A.S. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Invest., 2003, 112(2), 222-233. [http://dx.doi.org/10.1172/JCI200316876]. [PMID: 12865410].
[39]
Malone, C.L.; Boles, B.R.; Lauderdale, K.J.; Thoendel, M.; Kavanaugh, J.S.; Horswill, A.R. Fluorescent reporters for Staphylococcus aureus. J. Microbiol. Methods, 2009, 77(3), 251-260. [http://dx.doi.org/10.1016/j.mimet.2009.02.011]. [PMID: 19264102].
[40]
Sully, E.K. Small Molecule Inhibitor of Staphylococcus aureus. Virulence, 2011.
[41]
Mesak, L.R.; Yim, G.; Davies, J. Improved lux reporters for use in Staphylococcus aureus. Plasmid, 2009, 61(3), 182-187. [http://dx.doi.org/10.1016/j.plasmid.2009.01.003]. [PMID: 19399993].
[42]
Figueroa, M.; Jarmusch, A.K.; Raja, H.A.; El-Elimat, T.; Kavanaugh, J.S.; Horswill, A.R.; Cooks, R.G.; Cech, N.B.; Oberlies, N.H. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J. Nat. Prod., 2014, 77(6), 1351-1358. [http://dx.doi.org/10.1021/np5000704]. [PMID: 24911880].
[43]
Daly, S.M.; Elmore, B.O.; Kavanaugh, J.S.; Triplett, K.D.; Figueroa, M.; Raja, H.A.; El-Elimat, T.; Crosby, H.A.; Femling, J.K.; Cech, N.B.; Horswill, A.R.; Oberlies, N.H.; Hall, P.R. ω-Hydroxyemodin limits Staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob. Agents Chemother., 2015, 59(4), 2223-2235. [http://dx.doi.org/10.1128/AAC.04564-14]. [PMID: 25645827].
[44]
Cheung, A.L.; Nishina, K.A.; Trotonda, M.P.; Tamber, S. The SarA protein family of Staphylococcus aureus. Int. J. Biochem. Cell Biol., 2008, 40(3), 355-361. [http://dx.doi.org/10.1016/j.biocel.2007.10.032]. [PMID: 18083623].
[45]
Desouky, S.E.; Nishiguchi, K.; Zendo, T.; Igarashi, Y.; Williams, P.; Sonomoto, K.; Nakayama, J. High-throughput screening of inhibitors targeting Agr/Fsr quorum sensing in Staphylococcus aureus and Enterococcus faecalis. Biosci. Biotechnol. Biochem., 2013, 77(5), 923-927. [http://dx.doi.org/10.1271/bbb.120769]. [PMID: 23649251].
[46]
Cheung, A.L.; Koomey, J.M.; Butler, C.A.; Projan, S.J.; Fischetti, V.A. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl. Acad. Sci. USA, 1992, 89(14), 6462-6466. [http://dx.doi.org/10.1073/pnas.89.14.6462]. [PMID: 1321441].
[47]
Cheung, A.L.; Projan, S.J. Cloning and sequencing of sarA of Staphylococcus aureus, a gene required for the expression of agr. J. Bacteriol., 1994, 176(13), 4168-4172. [http://dx.doi.org/10.1128/jb.176.13.4168-4172.1994]. [PMID: 8021198].
[48]
Cheung, A.L.; Bayer, A.S.; Zhang, G.; Gresham, H.; Xiong, Y.Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol., 2004, 40(1), 1-9. [http://dx.doi.org/10.1016/S0928-8244(03)00309-2]. [PMID: 14734180].
[49]
Liu, Y.; Manna, A.C.; Pan, C.H.; Kriksunov, I.A.; Thiel, D.J.; Cheung, A.L.; Zhang, G. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA, 2006, 103(7), 2392-2397. [http://dx.doi.org/10.1073/pnas.0510439103]. [PMID: 16455801].
[50]
Luong, T.T.; Newell, S.W.; Lee, C.Y. Mgr, a novel global regulator in Staphylococcus aureus. J. Bacteriol., 2003, 185(13), 3703-3710. [http://dx.doi.org/10.1128/JB.185.13.3703-3710.2003]. [PMID: 12813062].
[51]
Chen, P.R.; Bae, T.; Williams, W.A.; Duguid, E.M.; Rice, P.A.; Schneewind, O.; He, C. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat. Chem. Biol., 2006, 2(11), 591-595. [http://dx.doi.org/10.1038/nchembio820]. [PMID: 16980961].
[52]
Wang, Y.; Zhang, H.; Zhang, Q.; Liang, Y.; Ma, L.; Tan, H.; Lao, Y.; Xu, H.; Li, Z. Genetically encoded fluorescence screening probe for MgrA, a global regulator in Staphylococcus aureus. RSC Advances, 2015, 5(106), 87216-87220. [http://dx.doi.org/10.1039/C5RA11455A].
[53]
Mazmanian, S.K.; Liu, G.; Ton-That, H.; Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science, 1999, 285(5428), 760-763. [http://dx.doi.org/10.1126/science.285.5428.760]. [PMID: 10427003].
[54]
Mazmanian, S.K.; Liu, G.; Jensen, E.R.; Lenoy, E.; Schneewind, O. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA, 2000, 97(10), 5510-5515. [http://dx.doi.org/10.1073/pnas.080520697]. [PMID: 10805806].
[55]
Ton-That, H.; Liu, G.; Mazmanian, S.K.; Faull, K.F.; Schneewind, O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12424-12429. [http://dx.doi.org/10.1073/pnas.96.22.12424]. [PMID: 10535938].
[56]
Maresso, A.W.; Schneewind, O. Sortase as a target of anti-infective therapy. Pharmacol. Rev., 2008, 60(1), 128-141. [http://dx.doi.org/10.1124/pr.107.07110]. [PMID: 18321961].
[57]
Cascioferro, S.; Raffa, D.; Maggio, B.; Raimondi, M.V.; Schillaci, D.; Daidone, G.; Sortase, A. Sortase A inhibitors: Recent advances and future perspectives. J. Med. Chem., 2015, 58(23), 9108-9123. [http://dx.doi.org/10.1021/acs.jmedchem.5b00779]. [PMID: 26280844].
[58]
Oh, K.B.; Kim, S.H.; Lee, J.; Cho, W.J.; Lee, T.; Kim, S. Discovery of diarylacrylonitriles as a novel series of small molecule sortase A inhibitors. J. Med. Chem., 2004, 47(10), 2418-2421. [http://dx.doi.org/10.1021/jm0498708]. [PMID: 15115384].
[59]
Maresso, A.W.; Wu, R.; Kern, J.W.; Zhang, R.; Janik, D.; Missiakas, D.M.; Duban, M.E.; Joachimiak, A.; Schneewind, O. Activation of inhibitors by sortase triggers irreversible modification of the active site. J. Biol. Chem., 2007, 282(32), 23129-23139. [http://dx.doi.org/10.1074/jbc.M701857200]. [PMID: 17545669].
[60]
Suree, N.; Yi, S.W.; Thieu, W.; Marohn, M.; Damoiseaux, R.; Chan, A.; Jung, M.E.; Clubb, R.T. Discovery and structure-activity relationship analysis of Staphylococcus aureus sortase A inhibitors. Bioorg. Med. Chem., 2009, 17(20), 7174-7185. [http://dx.doi.org/10.1016/j.bmc.2009.08.067]. [PMID: 19781950].
[61]
Zhulenkovs, D.; Rudevica, Z.; Jaudzems, K.; Turks, M.; Leonchiks, A. Discovery and structure-activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase. Bioorg. Med. Chem., 2014, 22(21), 5988-6003. [http://dx.doi.org/10.1016/j.bmc.2014.09.011]. [PMID: 25282649].
[62]
Oh, K.B.; Nam, K.W.; Ahn, H.; Shin, J.; Kim, S.; Mar, W. Therapeutic effect of (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) against Staphylococcus aureus infection in a murine model. Biochem. Biophys. Res. Commun., 2010, 396(2), 440-444. [http://dx.doi.org/10.1016/j.bbrc.2010.04.113]. [PMID: 20433810].
[63]
Kruger, R.G.; Dostal, P.; McCafferty, D.G. Development of a high-performance liquid chromatography assay and revision of kinetic parameters for the Staphylococcus aureus sortase transpeptidase SrtA. Anal. Biochem., 2004, 326(1), 42-48. [http://dx.doi.org/10.1016/j.ab.2003.10.023]. [PMID: 14769334].
[64]
Zhang, J.; Liu, H.; Zhu, K.; Gong, S.; Dramsi, S.; Wang, Y.T.; Li, J.; Chen, F.; Zhang, R.; Zhou, L.; Lan, L.; Jiang, H.; Schneewind, O.; Luo, C.; Yang, C.G. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc. Natl. Acad. Sci. USA, 2014, 111(37), 13517-13522. [http://dx.doi.org/10.1073/pnas.1408601111]. [PMID: 25197057].
[65]
Katayama, Y.; Gottesman, S.; Pumphrey, J.; Rudikoff, S.; Clark, W.P.; Maurizi, M.R. The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. J. Biol. Chem., 1988, 263(29), 15226-15236. [PMID: 3049606].
[66]
Frees, D.; Savijoki, K.; Varmanen, P.; Ingmer, H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol. Microbiol., 2007, 63(5), 1285-1295. [http://dx.doi.org/10.1111/j.1365-2958.2007.05598.x]. [PMID: 17302811].
[67]
Mei, J.M.; Nourbakhsh, F.; Ford, C.W.; Holden, D.W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol., 1997, 26(2), 399-407. [http://dx.doi.org/10.1046/j.1365-2958.1997.5911966.x]. [PMID: 9383163].
[68]
Frees, D.; Qazi, S.N.; Hill, P.J.; Ingmer, H. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol., 2003, 48(6), 1565-1578. [http://dx.doi.org/10.1046/j.1365-2958.2003.03524.x]. [PMID: 12791139].
[69]
Frees, D.; Gerth, U.; Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol., 2014, 304(2), 142-149. [http://dx.doi.org/10.1016/j.ijmm.2013.11.009]. [PMID: 24457183].
[70]
Hackl, M.W.; Lakemeyer, M.; Dahmen, M.; Glaser, M.; Pahl, A.; Lorenz-Baath, K.; Menzel, T.; Sievers, S.; Böttcher, T.; Antes, I.; Waldmann, H.; Sieber, S.A. Phenyl esters are potent inhibitors of caseinolytic protease P and reveal a stereogenic switch for deoligomerization. J. Am. Chem. Soc., 2015, 137(26), 8475-8483. [http://dx.doi.org/10.1021/jacs.5b03084]. [PMID: 26083639].
[71]
Pahl, A.; Lakemeyer, M.; Vielberg, M.T.; Hackl, M.W.; Vomacka, J.; Korotkov, V.S.; Stein, M.L.; Fetzer, C.; Lorenz-Baath, K.; Richter, K.; Waldmann, H.; Groll, M.; Sieber, S.A. Reversible inhibitors arrest ClpP in a defined conformational state that can be revoked by ClpX association. Angew. Chem. Int. Ed. Engl., 2015, 54(52), 15892-15896. [http://dx.doi.org/10.1002/anie.201507266]. [PMID: 26566002].
[72]
Brautigan, D.L. Protein Ser/Thr phosphatases--the ugly ducklings of cell signalling. FEBS J., 2013, 280(2), 324-345. [http://dx.doi.org/10.1111/j.1742-4658.2012.08609.x]. [PMID: 22519956].
[73]
Muñoz-Dorado, J.; Inouye, S.; Inouye, M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell, 1991, 67(5), 995-1006. [http://dx.doi.org/10.1016/0092-8674(91)90372-6]. [PMID: 1835671].
[74]
Wang, J.; Li, C.; Yang, H.; Mushegian, A.; Jin, S. A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice. J. Bacteriol., 1998, 180(24), 6764-6768. [PMID: 9852028].
[75]
Beltramini, A.M.; Mukhopadhyay, C.D.; Pancholi, V. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect. Immun., 2009, 77(4), 1406-1416. [http://dx.doi.org/10.1128/IAI.01499-08]. [PMID: 19188361].
[76]
Débarbouillé, M.; Dramsi, S.; Dussurget, O.; Nahori, M.A.; Vaganay, E.; Jouvion, G.; Cozzone, A.; Msadek, T.; Duclos, B. Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus. J. Bacteriol., 2009, 191(13), 4070-4081. [http://dx.doi.org/10.1128/JB.01813-08]. [PMID: 19395491].
[77]
Cameron, D.R.; Ward, D.V.; Kostoulias, X.; Howden, B.P.; Moellering, R.C., Jr; Eliopoulos, G.M.; Peleg, A.Y. Serine/threonine phosphatase Stp1 contributes to reduced susceptibility to vancomycin and virulence in Staphylococcus aureus. J. Infect. Dis., 2012, 205(11), 1677-1687. [http://dx.doi.org/10.1093/infdis/jis252]. [PMID: 22492855].
[78]
Av-Gay, Y.; Everett, M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol., 2000, 8(5), 238-244. [http://dx.doi.org/10.1016/S0966-842X(00)01734-0]. [PMID: 10785641].
[79]
Wehenkel, A.; Bellinzoni, M.; Graña, M.; Duran, R.; Villarino, A.; Fernandez, P.; Andre-Leroux, G.; England, P.; Takiff, H.; Cerveñansky, C.; Cole, S.T.; Alzari, P.M. Mycobacterial Ser/Thr protein kinases and phosphatases: Physiological roles and therapeutic potential. Biochim. Biophys. Acta, 2008, 1784(1), 193-202. [http://dx.doi.org/10.1016/j.bbapap.2007.08.006]. [PMID: 17869195].
[80]
Kristich, C.J.; Wells, C.L.; Dunny, G.M. A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3508-3513. [http://dx.doi.org/10.1073/pnas.0608742104]. [PMID: 17360674].
[81]
Echenique, J.; Kadioglu, A.; Romao, S.; Andrew, P.W.; Trombe, M.C. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect. Immun., 2004, 72(4), 2434-2437. [http://dx.doi.org/10.1128/IAI.72.4.2434-2437.2004]. [PMID: 15039376].
[82]
Rajagopal, L.; Clancy, A.; Rubens, C.E. A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J. Biol. Chem., 2003, 278(16), 14429-14441. [http://dx.doi.org/10.1074/jbc.M212747200]. [PMID: 12562757].
[83]
Jin, H.; Pancholi, V. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: Their biological functions and substrate identification. J. Mol. Biol., 2006, 357(5), 1351-1372. [http://dx.doi.org/10.1016/j.jmb.2006.01.020]. [PMID: 16487973].
[84]
Wright, D.P.; Ulijasz, A.T. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in gram-positive bacterial pathogens. Virulence, 2014, 5(8), 863-885. [http://dx.doi.org/10.4161/21505594.2014.983404]. [PMID: 25603430].
[85]
Burnside, K.; Lembo, A.; de Los Reyes, M.; Iliuk, A.; Binhtran, N.T.; Connelly, J.E.; Lin, W.J.; Schmidt, B.Z.; Richardson, A.R.; Fang, F.C.; Tao, W.A.; Rajagopal, L. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One, 2010, 5(6)e11071 [http://dx.doi.org/10.1371/journal.pone.0011071]. [PMID: 20552019].
[86]
Ohlsen, K.; Donat, S. The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int. J. Med. Microbiol., 2010, 300(2-3), 137-141. [http://dx.doi.org/10.1016/j.ijmm.2009.08.016]. [PMID: 19783479].
[87]
Zheng, W.; Liang, Y.; Zhao, H.; Zhang, J.; Li, Z. 5,5′-Methylenedisalicylic Acid (MDSA) modulates SarA/MgrA phosphorylation by targeting Ser/Thr phosphatase stp1. ChemBioChem, 2015, 16(7), 1035-1040. [http://dx.doi.org/10.1002/cbic.201500003]. [PMID: 25810089].