Research Article

轴突病变可能通过阿尔茨海默氏症小鼠模型的轴突泄漏机制启动神经病理过程

卷 19, 期 3, 2019

页: [183 - 195] 页: 13

弟呕挨: 10.2174/1566524019666190405174908

价格: $65

摘要

背景:过度磷酸化tau的形成和β-淀粉样蛋白的产生被认为是导致阿尔茨海默病(AD)病理机制的关键步骤。然而,关于它们在AD发病时的重要性存在长期争论。最近的研究表明,轴突病变被认为是AD的早期神经病理学改变。然而,轴突病变的发展与老年斑(SP)和神经原纤维缠结(NFTs)等典型神经病理学变化之间的确切关系尚不清楚。 目的:本研究旨在探讨SPs和NFTs的形成是否与轴突渗漏的发展有关。 方法和结果:在这里我们表明,轴突渗漏的形成和发展 - 一种新的轴突病变是一个年龄依赖的过程,伴随着轴突和静脉曲张的肿胀,并与昆明小鼠硫胺素缺乏(TD)饮食诱导的慢性氧化应激有关。在AD的APP / PS1转基因小鼠模型中,轴突渗漏出现在3个月,在6个月时变得更明显,并且在1个月后变得更严重。我们还表明轻微的轴突渗漏与过度磷酸化tau的形成有关,但与斑块没有关系,只有严重的轴突渗漏伴有广泛肿胀的轴突和静脉曲张,β-淀粉样蛋白的过量产生导致SP的形成和过度磷酸化的tau 。 结论:这些数据解释了SP和NFT的共同起源和发展,并提示轴突渗漏可能是AD发生神经病理过程的关键事件。

关键词: 轴突,轴突渗漏,老年斑,神经原纤维缠结,阿尔茨海默病。

[1]
Wouterlood FG, Vinkenoog M, van den Oever M. Tracing tools to resolve neural circuits. Network 2002; 13: 327-42.
[2]
Wang QH, Wang X, Bu XL, et al. Comorbidity burden of dementia: A hospital-based retrospective study from 2003 to 2012 in seven cities in china. Neurosci Bull 2017; 33: 703-10.
[3]
Masliah E, Mallory M, Deerinck T, et al. Re-evaluation of the structural organization of neuritic plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 1993; 52: 619-32.
[4]
Spittaels K, Van den Haute C, Van Dorpe J, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999; 155: 2153-65.
[5]
Spittaels K, Van den Haute C, Van Dorpe J, et al. Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 2000; 275: 41340-9.
[6]
Dai J, Buijs RM, Kamphorst W, et al. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Res 2002; 948: 138-44.
[7]
Higuchi M, Lee VM, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2002; 2: 131-50.
[8]
Bian F, Nath R, Sobocinski G, et al. Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J Comp Neurol 2002; 446: 257-66.
[9]
Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005; 307: 1282-8.
[10]
Yoon SY, Choi JE, Yoon JH, et al. BACE inhibitor reduces APP-beta-C-terminal fragment accumulation in axonal swellings of okadaic acid-induced neurodegeneration. Neurobiol Dis 2006; 22: 435-44.
[11]
Götz J, Ittner LM, Kins S. Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 2006; 98: 993-1006.
[12]
Wirths O, Weis J, Szczygielski J, et al. Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathol 2006; 111: 312-9.
[13]
Yang Y, Yang XF, Wang YP, et al. Inhibition of protein phosphatases induces transport deficits and axonopathy. J Neurochem 2007; 102: 878-86.
[14]
Smith KD, Kallhoff V, Zheng H, et al. In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease. Neuroimage 2007; 35: 1401-8.
[15]
Lazarov O, Morfini GA, Pigino G, et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1. J Neurosci 2007; 27: 7011-20.
[16]
Minoshima S, Cross D. In vivo imaging of axonal transport using MRI: aging and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2008; 35: S89-92.
[17]
Adalbert R, Nogradi A, Babetto E, et al. Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain 2008; 132: 402-16.
[18]
Vickers JC, King AE, Woodhouse A, et al. Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull 2009; 80: 217-23.
[19]
Zhang Q, Gao T, Luo Y, et al. Transient focal cerebral ischemia/reperfusion induces early and chronic axonal changes in rats: its importance for the risk of Alzheimer’s disease. PLoS One 2012; 7e33722
[20]
Zhou Y, Luo Y, Dai J. Axonal and dendritic changes are associated with diabetic encephalopathy in rats: An important risk factor for Alzheimer’s disease. J Alzheimers Dis 2013; 34: 937-47.
[21]
Dennissen FJ, Anglada-Huguet M, Sydow A, et al. Adenosine A1 receptor antagonist rolofylline alleviates axonopathy caused by human Tau ΔK280. Proc Natl Acad Sci USA 2016; 113: 11597-602.
[22]
Seehusen F, Kiel K, Jottini S, et al. Axonopathy in the central nervous system is the hallmark of mice with a novel intragenic null mutation of dystonin. Genetics 2016; 204: 191-203.
[23]
Gilley J, Ribchester RR, Coleman MP. Sarm1 deletion, but Not Wld(S), confers lifelong rescue in a mouse model of severe axonopathy. Cell Rep 2017; 21: 10-6.
[24]
Wang S, He B, Hang W, et al. Berberine alleviates tau hyperphosphorylation and axonopathy-associated with diabetic encephalopathy via restoring PI3K/Akt/GSK3β pathway. J Alzheimers Dis 2018; 65: 1385-400.
[25]
Xiao AW, He J, Wang Q, et al. The origin and development of plaques and phosphorylated tau are associated with axonopathy in Alzheimer’s disease. Neurosci Bull 2011; 27: 287-99.
[26]
Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013; 9: 25-34.
[27]
Jankowsky JL, Fadale DJ, Anderson J, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2004; 13: 159-70.
[28]
Ke ZJ, DeGiorgio LA, Volpe BT, et al. Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol 2003; 62: 195-207.
[29]
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, Third ed. People’s Medical Publishing House, Beijing. 2005.
[30]
Dai J, Swaab DF, Van der Vliet J, et al. Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol 1998; 400: 87-102.
[31]
Erisir A, Aoki C. A method of combining biocytin tract-tracing with avidin-biotin-peroxidase complex immunocytochemistry for pre-embedding electron microscopic labeling in neonatal tissue. J Neurosci Methods 1998; 81: 189-97.
[32]
Chen G, Chen KS, Knox J, et al. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 2000; 408: 975-9.
[33]
Wouterlood FG, Vinkenoog M, van den Oever M. Tracing tools to resolve neural circuits. Network 12002(3): 327-42.
[34]
Calingasan NY, Chun WJ, Park LC, et al. Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol 1999; 58: 946-58.
[35]
Wang X, Wang B, Fan Z, et al. Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience 2007; 144: 1045-56.
[36]
Gibson G, Barclay L, Blass J. The role of the cholinergic system in thiamin deficiency. Ann N Y Acad Sci 1982; 378: 382-403.
[37]
Ke ZJ, Gibson GE. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem Int 2004; 45: 361-9.
[38]
Yamamoto M, Kiyota T, Horiba M, et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007; 170: 680-92.
[39]
Chornyy S, Parkhomenko J, Chorna N. Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells. Acta Biochim Pol 2007; 54: 315-22.
[40]
Karuppagounder SS, Xu H, Shi Q, et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiol Aging 2009; 30: 1587-600.
[41]
Perry G. Neuritic plaques in Alzheimer disease originate from neurofibrillary tangles. Med Hypotheses 1993; 40: 257-8.
[42]
Schönheit B, Zarski R, Ohm TG. Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 2004; 25: 697-711.
[43]
Trojanowski JQ, Lee VM-Y. The Alzheimer’s brain binding out what’s broken tells us how to fix it. Am J Pathol 2005; 167: 1183-8.
[44]
Arai H, Schmidt ML, Lee VM, et al. Epitope analysis of senile plaque components in the hippocampus of patients with Parkinson’s disease. Neurology 1992; 42: 1315-22.
[45]
Steiner B, Mandelkow EM, Biernat J, et al. Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2 (+)-calmodulin dependent kinase and relationship with tau hosphorylation in Alzheimer tangles. EMBO J 1990; 9: 3539-44.
[46]
Fleming LM, Johnson GV. Modulation of the phosphorylation state of tau in situ: the roles of calcium and cyclic AMP. Biochem J 1995; 309: 41-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy