[1]
Trost, B.M.; Fleming, I.; Paquette, L.A. Comprehensive Organic Synthesis,
Vol. 5, Chapters 1-9; Pergamon: Oxford. 1991.
[2]
Curran, D.P. Advances in Cycloaddition, Vols. 1-3, JAI Press: Greenwich. 1991.
[3]
Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rev., 1996, 96, 49-92.
[4]
Hegedus, L.S. Transition metals in organic synthesis. Highlights for the year 1995. Coord. Chem. Rev., 1997, 161, 129-255.
[5]
Wender, P.A.; Love, J.A. Advances in Cycloaddition; JAI Press: Greenwich, 1999, Vol. 5, pp. 1-45.
[6]
Wender, P.A.; Ihle, N.C. Nickel-catalyzed intramolecular [4+4]-cycloadditions: A new method for the synthesis of polycycles containing eight-membered rings. J. Am. Chem. Soc., 1986, 108, 4678-4679.
[7]
Wender, P.A.; Jenkins, T.E. Nickel-catalyzed intramolecular [4+2] dienyne cycloadditions: an efficient new method for the synthesis of polycycles containing cyclohexa-1,4-dienes. J. Am. Chem. Soc., 1989, 111, 6432-6434.
[8]
Wender, P.A.; Smith, T.E. Transition metal-catalyzed intramolecular [4+2] cycloadditions: Initial studies on stereochemistry and on steroid and vitamin D analog syntheses. J. Org. Chem., 1995, 60, 2962-2963.
[9]
Wender, P.A.; Smith, T.E. Transition metal-catalyzed intramolecular [4+2] cycloadditions: A novel method for the assembly of nitrogen heterocycles and its application to yohimban alkaloid synthesis. J. Org. Chem., 1996, 61, 824-825.
[10]
Wender, P.A.; Smith, T.E. Transition metal-catalyzed intramolecular [4+2] cycloadditions: Mechanistic and synthetic investigations. Tetrahedron, 1998, 54, 1255-1275.
[11]
Jolly, R.S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. Novel cyclization reactions on transition metal templates. The catalysis of intramolecular [4+2] cycloadditions by low-valent rhodium complexes. J. Am. Chem. Soc., 1990, 112, 4965-4966.
[12]
Wender, P. Jenkins, T.E.; Suzuki, S. Transition metal-catalyzed intramolecular [4+2] diene-allene cycloadditions: A convenient synthesis of angularly substituted ring systems with provision for catalyst-controlled chemo- and stereocomplementarity. J. Am. Chem. Soc., 1995, 117, 1843-1844.
[13]
O’Mahony, D.J.R.; Belanger, D.B.; Livinghouse, T. On the counterion dependence of the rhodium(i)-catalysed [4+2] cycloaddition – a remarkable accelerating effect of the hexafluoroantimonate anion. Synlett, 1998, 443-445.
[14]
Gilbertson, S.R.; Hoge, G.S. Rhodium catalyzed intramolecular [4+2] cycloisomerization reactions. Tetrahedron Lett., 1998, 39, 2075-2078.
[15]
Gilbertson, S.R.; Hoge, G.S.; Genov, D.G. Rhodium-catalyzed asymmetric [4+2] cycloisomerization reactions. J. Org. Chem., 1998, 63, 10077-10080.
[16]
Murakami, M.; Ubukata, M.; Itami, K.; Ito, Y. Rhodium-catalyzed intermolecular [4+2] cycloaddition of unactivated substrates. Angew. Chem. Int. Ed., 1998, 37, 2248-2250.
[17]
Paik, S.; Son, S.U.; Chung, Y.K. Highly efficient intra- and intermolecular [4+2] cycloaddition reaction catalyzed by rhodium complex. Org. Lett., 1999, 1, 2045-2047.
[18]
Wang, B.; Cao, P.; Zhang, X. An efficient Rh-catalyst system for the intramolecular [4+2] and [5+2] cycloaddition reactions. Tetrahedron Lett., 2000, 41, 8041-8844.
[19]
Heath, H.; Wolfe, B.; Livinghouse, T.; Bae, S.K. New methods for the synthesis of P-chirogenic diphosphines: An application to the development of an improved asymmetric variation of the Rh(I)-catalyzed [4+2] cycloaddition. Synthesis, 2001, 2341-2347.
[20]
O’Mahony, D.J.R.; Belanger, D.B.; Livinghouse, T. Substrate control of stereoselection in rhodium(I) catalyzed intramolecular [4+2] cycloaddition reaction. Org. Biomol. Chem., 2003, 1, 2038.
[21]
Witulski, B.; Lumtscher, J.; Bergsträber, U. First thermal and transition metal catalysed intramolecular [4+2] cycloaddition reactions with N-tethered ynamides. Synlett, 2003, 2003, 708-710.
[22]
Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Phosphane-free rhodium catalyst in an anionic micellar system for [4+2] annulation of dienynes. Angew. Chem. Int. Ed., 2004, 43, 1860-1862.
[23]
Hilt, G.; Korn, T.J. An efficient cobalt catalyst for the neutral Diels–Alder reaction of acyclic 1,3-dienes with internal alkynes. Tetrahedron Lett., 2001, 42, 2783-2785.
[24]
Hilt, G.; Korn, T.J. An efficient cobalt catalyst for the neutral Diels-Alder reaction of acyclic 1,3-dienes with internal alkynes. Tetrahedron Lett., 2001, 42, 2783-2785.
[25]
Hilt, G.; Smolko, K.I.; Lotsch, B.V. Cobalt(I)-catalyzed neutral Diels-Alder reactions of oxygen-functionalized acyclic 1,3-dienes with alkynes. Synlett,2002, 2002, 1081-1085. (d) Hilt, G.; Lüers, S. Cobalt(I)-catalyzed 1,4-hydrovinylation reactions of 1,3-dienes with functionalized terminal alkenes under mild conditions. Synthesis, 2002, 2002, 609-618.
[26]
Hilt, G.; Smolko, K.I. Cobalt(I)-catalyzed neutral Diels-Alder reactions of 1,3-diynes with acyclic 1,3-dienes. Synthesis,2002, 2002, 686-692. (f) Hilt, G.; Smolko, K.I. Alkynylboronic esters as efficient dienophiles in cobalt-catalyzed Diels-Alder reactions. Angew. Chem. Int. Ed., 2003, 42, 2795-2797.
[27]
Hilt, G.; Lüers, S. Alkynyl sulfides as dienophilesin cobalt-catalyzed Diels-Alder reactions. Synthesis, 2003, 2003, 1784-1786.
[28]
Hilt, G.; Lüers, S.; Harms, K. The first broad application of alkynyl sulfides as dienophiles in cobalt(I)-catalyzed Diels-Alder reactions. J. Org. Chem., 2004, 69, 624-630.
[29]
Hilt, G.; Lüers, S.; Smolko, K.I. A two-step reaction sequence for the syntheses of tetrahydronaphthalenes. Org. Lett., 2005, 7, 251-253.
[30]
Shibata, T.; Takasaku, K.; Takesue, Y.; Hirata, N.; Takagi, K. Iridium complex-catalyzed enantioselective intramolecular [4+2] cycloaddition of dieneynes. Synlett, 2002, 2002, 1681-1682.
[31]
Murakami, M.; Itami, K.; Ito, Y. Directed intermolecular [4+2] cycloaddition of unactivated 1,3-diene substrates with high regio- and stereoselectivities. J. Am. Chem. Soc., 1997, 119, 7163-7164.
[32]
Murakami, M.; Minamida, R.; Itami, K.; Sawamura, M.; Ito, Y. Palladium-catalysed asymmetric [4+2] cycloaddition of vinylallene with 1,3-diene. Chem. Commun., 2000, 2000, 2293-2294.
[33]
Lautens, M.; Tam, W. Transition-metal-catalyzed cycloaddition reactions of
bicyclo[2.2.1]hepta-2,5-dienes (norbornadienes). In: Advances in Metal-
Organic Chemistry, Liebeskind, L.S, Ed., JAI Press: Greenwich CT, , 1998. Vol. 6, pp. 49-101
[34]
Lyons, J.E.; Myers, H.K.; Schneider, A. Selective homo-Diels-Alder addition of acetylenic hydrocarbons to norbornadiene catalyzed by a cobalt complex. Chem. Commun., 1978, 1978, 636-638.
[35]
Lautens, M.; Crudden, C.M. Scope of the cobalt-catalyzed [2+2+2] homo-Diels-Alder reaction. Organometallics, 1989, 8, 2733-2735.
[36]
Lautens, M.; Lautens, J.C.; Smith, A.C. Catalytic asymmetric induction in the homo Diels-Alder reaction. J. Am. Chem. Soc., 1990, 112, 5627-5628.
[37]
Lautens, M.; Tam, W.; Edwards, L.G. Cobalt-catalyzed intramolecular homo Diels-Alder reactions. J. Org. Chem., 1992, 57, 8-9.
[38]
Lautens, M.; Tam, W.; Sood, C. Enantioselective cobalt-catalyzed [4.pi.+2.pi.+2.pi.] cycloadditions. J. Org. Chem., 1993, 58, 4513-4515.
[39]
Lautens, M.; Tam, W.; Lautens, J.C.; Edwards, L.G.; Crudden, C.M.; Smith, A.C. Cobalt-catalyzed [2.pi.+2.pi.+2.pi.] (Homo-Diels-Alder) and [2.pi.+2.pi.+4.pi.] cycloadditions of bicyclo[2.2.1]hepta-2,5-dienes. J. Am. Chem. Soc., 1995, 117, 6863.
[40]
Duan, I-F.; Cheng, C-H.; Shaw, J-S.; Cheng, S-S.; Liou, K-F. Homo-Diels-Alder cycloadditions catalyzed by cobalt-triphenylphosphine-zinc systems. Chem. Commun., 1991, 1991, 1347-1348.
[41]
Binger, P.; Albus, S. Deltacyclene formation catalysed by cationic Co(II) complexes. J. Organomet. Chem., 1995, 493, C6-C8.
[42]
Chen, Y.; Snyder, J.K. Metal-catalyzed [4+2+2] Cycloadditions: cycloadducts of substituted norbornadienes and their opening with Zeise’s dimer. J. Org. Chem., 1998, 63, 2060-2061.
[43]
Hilt, G.; du Mesnil, F-X. An improved cobalt catalyst for homo Diels-Alder reactions of acyclic 1,3-dienes with alkynes. Tetrahedron Lett., 2000, 41, 6757-6761.
[44]
Pardigon, O.; Tenaglia, A.; Buono, G. Enantioselective syntheses of monofunctionalized deltacyclenes using a [CoI2/Zn] catalytic system. J. Org. Chem., 1995, 60, 1868-1871.
[45]
Tenaglia, A.; Giordano, L. Ruthenium(II)-catalyzed homo-Diels-Alder reactions of disubstituted alkynes and norbornadiene. Tetrahedron Lett., 2004, 45, 171.
[46]
Tenaglia, A.; Gaillard, S. Ruthenium-catalyzed intramolecular Homo-Diels-Alder reaction of alkyne-tethered norbornadienes. An entry to fused angular triquinanes. Org. Lett., 2007, 9, 3607-3610.
[47]
Kettles, T.J.; Cockburn, N.; Tam, W. Ruthenium-catalyzed Homo Diels-Alder [2+2+2] cycloadditions of alkynyl phosphonates with bicyclo[2.2.1]hepta-2,5-diene. J. Org. Chem., 2011, 76, 6951-6957.
[48]
Trost, B.M.; Imi, K.; Indolese, A.F. 1,5-cyclooctadiene as a bis-homodiene partner in a metal-catalyzed [4+2] cycloaddition. J. Am. Chem. Soc., 1993, 115, 8831-8832.
[49]
Alvarez, P.; Gimeno, J.; Lastra, E.; García-Granda, S.; Van der Maelen, J.F.; Bassetti, M. Synthesis and reactivity of indenyl ruthenium(II) complexes containing the labile ligand 1,5-cyclooctadiene (COD): Catalytic activity of [Ru(η5-C9H7)Cl(COD)]. Organometallics, 2001, 20, 3762-3771.
[50]
Huang, X.; Lin, Z. Density functional theory studies of ruthenium-catalyzed Bis-Diels-Alder cycloaddition of 1,5-cyclooctadiene with alkynes. Organometallics, 2003, 22, 5478-5484.
[51]
Petko, D.; Stratton, M.; Tam, W. Ruthenium-catalyzed Bis-Homo-Diels-Alder reaction: searching for commercially available catalysts and expanding the scope of reaction. Can. J. Chem., 2018, 96, 1115-1121.
[52]
Hasinoff, B.B.; Creighton, A.M.; Kozlowska, H.; Thampatty, P.; Allan, W.P.; Yalowich, J.C. Mitindomide is a catalytic inhibitor of DNA topoisomerase II that acts at the bisdioxopiperazine binding site. Mol. Pharmacol., 1997, 52, 839-845.
[53]
Leverrier, A.; Awang, K.; Guéritte, F.; Litaudon, M. Pentacyclic polyketides from Endiandra kingiana as inhibitors of the Bcl-xL/Bak interaction. Phytochemistry, 2011, 72, 1443-1452.
[54]
Naota, T.; Takaya, H.; Murahashi, S-I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev., 1998, 98, 2599-2660.
[55]
Grubbs, R.H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron, 1998, 54, 4413-4450.
[56]
Fürstner, A. Topics in Organometallic Chemistry; Fürstner, A., Ed.; Springer: Berlin, Heidelberg, 1998, Vol. 1, pp. 37-72.
[57]
Trost, B.M.; Toste, F.D.; Pinkerton, A.B. Non-metathesis ruthenium-catalyzed C-C bond formation. Chem. Rev., 2001, 101, 2067-2096.
[58]
Bruneau, C.; Dixneuf, P.H. Topics in Organometallic Chemistry, Vol. 11,
Springer-Verlag GmbH: Berlin, New York, 2004
[59]
Murahashi, S.-I. Ruthenium in Organic Synthesis, Wiley-VCH: Weinhein. 2004.
[60]
Machin, B.P.; Howell, J.; Mandel, J.; Blanchard, N.; Tam, W. Ruthenium-catalyzed nucleophilic ring-opening reactions of a 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with alcohols. Org. Lett., 2009, 11, 2077-2080.
[61]
Rüba, E.; Schmid, R.; Kirchner, K.; Calhorda, M.J. Ruthenium-mediated cyclotrimerization of alkynes utilizing the cationic complex [RuCp(CH3CN)3]PF6. J. Organomet. Chem., 2003, 682, 204-211.