[1]
Verma, S.; Jain, S.L.; Sain, B. PEG-embedded KBr3: A recyclable catalyst for multicomponent coupling reaction for the efficient synthesis of functionalized piperidines. J. Org. Chem., 2011, 7, 1334-1341.
[2]
Veisi, H.; Maleki, A.; Jahangard, S. Electrogenerated base promoted synthesis of 3-methyl-4-aryl-2,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-ones via multicomponent reactions of 5-methylpyrazol-3-amine, aldehydes, and meldrum’s acid. Tetrahedron Lett., 2015, 56, 1882-1886.
[3]
Yarim, M.; Sarac, S.; Kilic, F.S.; Erol, K. Synthesis and in vitro calcium antagonist activity of 4-aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octaquinazoline-2,5-dione derivatives. Farmaco, 2003, 58, 17-24.
[4]
Aron, Z.D.; Overman, L.E. The tethered Biginelli condensation in natural product synthesis. Chem. Commun., 2004, 2004, 253-265.
[5]
Haggarty, S.J.; Mayer, T.U.; Miyamoto, D.T.; Fathi, R.; King, R.W.; Mitchison, T.J.; Schreiber, S.L. Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol., 2000, 7, 275-286.
[6]
Ram, V.J.; Haque, N.P.; Guru, Y. Chemotherapeutic agents XXV: synthesis and leishmanicidal activity of carbazolylpyrimidines. Eur. J. Med. Chem., 1992, 27, 851-855.
[7]
Amir, M.; Javed, S.A.; Kumar, H. Pyrimidine as anti-inflammatory agent: A review. Int. J. Pharma Sci., 2007, 69, 337-343.
[8]
Sondhi, S.M.; Jain, S.; Dwivedi, A.D.; Shukla, R.; Raghubir, R. Synthesis of condensed pyrimidines and their evaluation for anti-inflammatory and analgesic activities. Ind. J. Chem. B, 2008, 47, 136-143.
[9]
Vega, S.; Alonso, J.; Diaz, J.A.; Junquera, F. Synthesis of 3-Substituted-4-phenyl-2-thioxo-1,2,3,4,5,6,7,8-octahydrobenzo[4,5]-thieno[2,3-d]-pyrimidi-nes. J. Heterocycl. Chem., 1990, 27, 269-273.
[10]
Smith, P.A.S.; Kan, R.O. Cyclization of isothiocyanates as a route to phthalic and homophthalic acid derivatives. J. Org. Chem., 1964, 29, 2261-2265.
[11]
a)Rovnyak, G.C.; Kimball, S.D.; Beyere, B.; Cucinotta, G.J.; DiMarco, D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38, 119-129.
b)Hannah, D.R.; Stevens, M.F.G. Structural studies on bioactive compounds. Part 38.1 Reactions of 5-aminoimidazole-4-carboxamide: Synthesis of imidazo[1,5-a]quinazoline-3- carboxamides. J. Chem. Res., 2003, 2003(7), 398-401.
[12]
Suresh, Sandhu. J.S. Past, present and future of the Biginelli reaction: a critical perspective. ARKIVOC, 2012, 2012(i), 66-133.
[13]
Kappe, C.O. 100 Years of Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49, 6937-6963.
[14]
Biginelli, P. Aldehyde-urea derivatives of aceto- and oxaloacetic acids. Gazz. Chim. Ital., 1893, 23, 360-413.
[15]
Folkers, K.; Harwood, H.; Johnson, J.T.B. Researches on pyrimidines. CXXX. Synthesis of 2-keto-l, 2,3,4-tetrahydropyrimidines. J. Am. Chem. Soc., 1932, 54, 3751-3758.
[16]
Hu, E.H.; Sidler, D.R.; Dolling, U.H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem., 1998, 63, 3454-3457.
[17]
Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett., 2000, 41, 9075-9078.
[18]
Bose, D.S.; Fatima, L.; Mereyala, H.B. Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4- dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction: Comparison of ethanol, water, and solvent-free Conditions. J. Org. Chem., 2003, 68, 587-590.
[19]
Ranu, B.C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a Three-Component Coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: An improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65, 6270-6272.
[20]
Ramalinga, K.; Vijayalakshmi, P.; Kaimala, T.N.B. Bismuth (III)-catalyzed synthesis of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Synlett, 2001, 863-865.
[21]
Paraskar, A.S.; Dewkar, G.K.; Sudalai, A. Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44, 3305-3308.
[22]
Fu, N.Y.; Yuan, Y.F.; Cao, Z.; Wang, S.W.; Wang, J.T.; Peppe, C. Indium (III) bromide-catalyzed preparation of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Tetrahedron, 2002, 58, 4801-4807.
[23]
Yadav, J.S.; Reddy, B.V.S.; Srinivas, R.; Venugopal, C.; Ramalingam, T. LiClO4-Catalyzed one-pot Synthesis of dihydropyrimidinones: An improved protocol for Biginelli reaction. Synthesis, 2001, 9, 1341-1345.
[24]
Maiti, G.; Kundua, P.; Guin, C. One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: An improved procedure for the Biginelli reaction. Tetrahedron Lett., 2003, 44, 2757-2758.
[25]
Lu, J.; Ma, H. Iron (III) Catalyzed synthesis of dihydropyrimidinones. improved condition for Biginelli reaction. Synlett, 2000, 63-64.
[26]
Cepance, I.; Litvic, M.; Bartolincic, A.; Lovric, M. Ferric chloride/tetraethyl orthosilicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction. Tetrahedron, 2005, 61, 4275-4280.
[27]
Kuraitheerthakumaran, A.; Pazhamalai, S.; Popalakrishnan, M. Microwave-assisted multicomponent reaction for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)-thiones using lanthanum oxide as a catalyst under solvent-free conditions. Arab. J. Chem., 2016, 9, S461-S465.
[28]
Song, X.; Cai, S.Y.; Li, L.Y.; Ming, S.X.; Xiang, Q. Synthesis of 4-Aryl-3-4-dihydropyrimidinones using microwave-assisted solventless Biginelli Reaction. Chin. J. Chem., 2002, 20, 385-389.
[29]
Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate catalyzed Biginelli reaction. one-pot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 2000, 65, 3864-3868.
[30]
Arfan, A.; Paquin, L.; Bazureau, J.P. Acidic task-specific ionic liquid as catalyst of microwave-assisted solvent-free Biginelli reaction. Russ. J. Org. Chem., 2007, 43, 1058-1064.
[31]
Chavan, S.S.; Sharma, Y.O.; Degani, M.S. Cost-effective ionic liquid for environmentally friendly synthesis of 3,4-dihydropyrimidin-2(1H)- ones. Green Chem. Lett. Rev., 2009, 2, 175-179.
[32]
Li, M.; Guo, W.S.; Wen, L.R.; Li, Y.F.; Yang, H.Z. One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products. J. Mol. Catal. A: Chem., 2006, 258, 133-138.
[33]
Chen, X.; Peng, Y. Chloroferrate(III) Ionic Liquid: Efficient and Recyclable Catalyst for Solvent-free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Catal. Lett., 2008, 122, 310-313.
[34]
Shaterian, H.R.; Aghakhanizadeh, M. Bronsted reusable acidic ionic liquids catalyzed Biginelli reaction under solvent free condition. Phosphorus Sulfur and Silicon, 2013, 188, 1064-1070.
[35]
Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and –thiones. Synthesis, 2011, 14, 2261-2267.
[36]
Zare, A.; Nasouri, Z. A green approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones (and -thiones) using N,N-diethyl-N-sulfoethanaminium hydrogen sulfate. J. Mol. Liq., 2016, 216, 364-369.
[37]
Dondoni, A.; Massi, A. Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction. Tetrahedron Lett., 2001, 42, 7975-7978.
[38]
Shirini, F.; Zolfigol, M.A. Albadi, Melamine trisulfonic acid (MTSA) as an efficient catalyst for the synthesis of triazolo[1,2-a]indazole-triones and some 2H-indazolo[2,1-b]phthalazinetriones. J. Chin. Chem. Lett., 2011, 22, 318-321.
[39]
Hankari, S.E.; Motos-Pérez, B.; Hesemann, P.; Bouhaouss, A.; Moreau, J.J.E. Periodic mesoporous organosilica from zwitterionic precursors. Chem. Commun., 2011, 47, 6704-6706.
[40]
Rafiee, E.; Jafari, H. A practical and green approach towards synthesis of dihydropyrimidinones: Using heteropoly acids as efficient catalysts. Bioorg. Med. Chem. Lett., 2006, 16, 2463-2466.
[41]
Choudhary, V.R.; Tillu, V.H.; Narkhede, V.S.; Borate, H.B.; Wakharkar, R.D. Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst. Catal. Commun., 2003, 4, 449-453.
[42]
Tayebee, R.; Amini, M.M.; Ghadamgahi, M.; Armaghan, M.H. 5PW10V2O40/Pip-SBA-15: A novel reusable organic–inorganic hybrid material as potent Lewis acid catalyst for one-pot solvent-free synthesis of 3,4-dihydropyrimidinones. J. Mol. Catal. Chem., 2013, 366, 266-274.
[43]
Kolvari, E.; Koukabi, N.; Armandpour, O. A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)- ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 2014, 70, 1383-1386.
[44]
Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@mesoporous SBA-15: A robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydro-pyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41, 6173-6181.
[45]
Abelman, M.M.; Smith, S.C.; James, D.R. Cyclic ketones and substituted -keto acids as alternative substrates for novel Biginelli-like scaffold syntheses. Tetrahedron Lett., 2003, 44, 4559-4562.
[46]
Hazarkhani, H.; Karimi, B. N-Bromosuccinimide as an almost neutral catalyst for efficient synthesis of dihydropyrimidinones under microwave irradiation. Synthesis, 2004, 8, 1239-1242.
[47]
Zhu, Y.L.; Huang, S.L.; Pan, Y.J. Highly chemoselective multicomponent Biginelli-type condensations of cycloalkanones, urea or thiourea and aldehydes. Eur. J. Org. Chem., 2005, 2354-2367.
[48]
Sabitha, G.; Reddy, G.S.K.K.; Reddy, C.S.; Yadav, J.S. One-pot synthesis of dihydropyrimidinones using iodotrimethylsilane. facile and new improved protocolfor the Biginelli reaction at room temperature. Synlett, 2003, 2003, 858-860.
[49]
Kappe, C.O.; Falsone, S.F. Polyphosphate ester-mediated synthesis of dihydropyrimidines. improved conditions for the Biginelli reaction. Synlett, 1998, 1998, 718-720.
[50]
Yang, Z.; Fan, M.; Mu, R.; Liu, W.; Liang, Y. A facile synthesis of highly functionalized dihydrofurans based on 1,4-diazabicyclo[2.2.2]octane (DABCO) catalyzed reaction of halides with enones. Tetrahedron, 2005, 61, 9140-9146.
[51]
Marra, A.; Vecchi, A.; Chiappe, C.; Melai, B.; Dondoni, A. Validation of the copper(I)-catalyzed azide-alkyne coupling in ionic liquids. synthesis of a triazole-Linked C-disaccharide as a case study. J. Org. Chem., 2008, 73, 2458-2461.
[52]
a)Sharma, Y.O.; Degani, M.S. CO2 absorbing cost-effective ionic liquid for synthesis of commercially important alpha cyanoacrylic acids: A safe process for activation of cyanoacetic acid. Green Chem., 2009, 11, 526-530.
b)Ranu, B.C.; Jana, R. Ionic liquid as catalyst and reaction medium – a simple, efficient and green procedure for knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid. Eur. J. Org. Chem., 2006, 3767-3770.
c)Zhu, A.; Jiang, T.; Wang, D.; Han, B.; Liu, L.; Huang, J.; Zhang, J.; Sun, D. Direct aldol reactions catalyzed by 1,1,3,3-tetramethylguanidine lactate without solvent. Green Chem., 2005, 7, 514-517.
(d)Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chem., 2010, 12, 514-517.
[53]
Jiang, T.; Gao, H.; Han, B.; Zhao, G.; Chang, Y.; Wu, W.; Gao, L.; Yang, G. Ionic liquid catalyzed Henry reactions. Tetrahedron Lett., 2004, 45, 2699-2701.
[54]
Dixit, A.; Yadav, G.D.; Chauhan, M.S.; Singh, S. Salts of 1-(chloromethyl)-DABCO: A highly efficient organocatalyst for the alcoholysis of epoxides. Curr. Catal., 2016, 5, 203-211.
[55]
Yadav, G.D. Deepa, Singh, S. 1,4-diazabicyclo[2.2.2]octane trifluoroacetate: A highly efficient organocatalyst for the cyanosilylation of carbonyl compounds under solvent free condition. Chem. Select, 2017, 2, 483-4835.
[56]
Kappe, C.O. A Reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. support for an N-acyliminium ion intermediate. J. Org. Chem., 1997, 62, 7201-7204.
[57]
CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013
CrysAlis171 .NET)
[58]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect A, 2008, 64, 112-122.
[59]
Amini, M.M.; Shaabani, A.; Bazgir, A. Tangstophosphoric acid (H3PW12O40): An efficient and eco-friendly catalyst for the one-pot synthesis of dihydopyrimidin-2(1H)-ones. Catal. Commun., 2006, 7, 843-847.
[60]
Khorshidi, A.; Tabatabaeian, K.; Azizi, H.; Hashjin, M.A.; Gilandeh, E.A. Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by a new heterogeneous catalyst based on co-functionalized Na+-montmorillonite. RSC Advances, 2017, 7, 17732-17740.
[61]
Fu, N.Y.; Yuan, Y.F.; Cao, Z.; Wang, S.W.; Wang, J.T.; Peppe, C. Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Tetrahedron, 2002, 58, 4801-4807.
[62]
Gholap, A.R.; Venkatesan, K.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation. Green Chem., 2004, 6, 147-150.
[63]
Stadler, A.; Kappe, C.O. Automated library generation using sequential microwave-assisted chemistry. application toward the Biginellli multicomponent condensation. J. Comb. Chem., 2001, 3, 624-630.
[64]
Lillo, V.J.; Saa, J.M. Towards enzyme-like, sustainable catalysis: switchable, highly efficient asymmetric synthesis of enantiopure Biginelli dihydropyrimidinones or hexahydropyrimidinones. Chem. Eur. J., 2016, 22, 17182-17186.
[65]
Nguyen, N.H.T.; Nguyen, P.P.T.; Nguyen, T.D.T.; Tran, M.N.T.; Huynh, T.N.T.; Tran, P.H. Au Nanorod: An efficient catalyst for one‐pot synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones via the multicomponent Biginelli reaction. ChemistrySelect, 2017, 2, 3932-3936.
[66]
Napoleon, A.A.; Khan, F.R.N. Potential anti-tubercular and in vitro anti-inflammatory agents: 9-substituted 1,8-dioxo-octahydroxanthenes through cascade/domino reaction by citric fruit juices. Med. Chem. Res., 2014, 23, 4749-4760.
[67]
Shirini, F.; Langarudi, M.S.N.; Seddighi, M.; Jolodar, O.G. Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives. Res. Chem. Intermed., 2015, 41, 8483-8497.
[68]
Jin, T.S.; Qi, N.; Li, M.; Han, L.S. liu, L.B.; Li, T.S. One-pot synthesis of 9-aryl-1,8-dioxo-1,2,3,4,6,7,8- octahydroxanthenes catalyzed by p-Dodecylbenzene sulfonic acid in aqueous media. Asian J. Chem., 2007, 19, 3803-3809.
[69]
Thakur, A.; Sharma, A.; Sharma, A. Efficient synthesis of xanthenedione derivatives using cesium salt of phosphotungstic acid as a heterogeneous and reusable catalyst in water. Synth. Commun., 2016, 46, 1766-1771.
[70]
Kokkirala, S.; Sabbavarapu, N.M.; Yadavalli, V.D.N. β-cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. Eur. J. Chem., 2011, 2, 272-275.
[71]
Li, P.; Ma, F.; Wang, P.; Zhang, Z. Highly efficient low melting mixture catalyzed synthesis of 1,8‐dioxo‐dodecahydroxanthene derivatives. Chin. J. Chem., 2013, 31, 757-763.
[72]
Amoozadeh, A.; Rahmani, S.; Bitaraf, M.; Abadi, F.B.; Tabrizian, E. Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: A new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions. New J. Chem., 2016, 40, 770-780.
[73]
Bhattacharjee, D.; Sutradhar, D.; Chandra, A.K.; Myrboth, B. L-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno[2,3-d]pyrimidine-triones, xanthenes in water. Tetrahedron, 2017, 73, 3497-3504.