[1]
Suter, B.; Kittanakom, S.; Stagljar, I. Two-hybrid technologies in proteomics research. Curr. Opin. Biotechnol., 2008, 19(4), 316-323. [http://dx.doi.org/ 10.1016/j.copbio.2008.06.005]. [PMID: 18619540].
[2]
Wells, J.A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol., 1991, 202, 390-411. [http://dx.doi.org/ 10.1016/0076-6879(91)02020-A]. [PMID: 1723781].
[3]
Perrakis, A.; Romier, C. Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: An overview. Methods Mol. Biol., 2008, 426, 247-256. [http://dx.doi.org/ 10.1007/978-1-60327-058-8_15]. [PMID: 18542868].
[4]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542. [http://dx.doi.org/ 10.1016/S0022-2836(77)80200-3]. [PMID: 875032].
[5]
Braun, P.; Gingras, A.C. History of protein-protein interactions: From egg-white to complex networks. Proteomics, 2012, 12(10), 1478-1498. [http://dx.doi.org/ 10.1002/pmic.201100563]. [PMID: 22711592].
[6]
Yanagida, M. Functional proteomics; current achievements. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 771(1-2), 89-106. [http://dx.doi.org/ 10.1016/S1570-0232(02)00074-0]. [PMID: 12015994].
[7]
Berggård, T.; Linse, S.; James, P. Methods for the detection and analysis of protein-protein interactions. Proteomics, 2007, 7(16), 2833-2842. [http://dx.doi.org/ 10.1002/pmic.200700131]. [PMID: 17640003].
[8]
Keskin, O.; Tuncbag, N.; Gursoy, A. Predicting protein–protein interactions from the molecular to the proteome level. Chem. Rev., 2016, 116(8), 4884-4909. [http://dx.doi.org/ 10.1021/acs.chemrev. 5b00683]. [PMID: 27074302].
[9]
Mackay, J.P.; Sunde, M.; Lowry, J.A.; Crossley, M.; Matthews, J.M. Protein interactions: is seeing believing? Trends Biochem. Sci., 2007, 32(12), 530-531. [http://dx.doi.org/ 10.1016/j.tibs.2007. 09.006]. [PMID: 17980603].
[10]
Chatr-Aryamontri, A.; Ceol, A.; Licata, L.; Cesareni, G. Protein interactions: Integration leads to belief. Trends Biochem. Sci., 2008, 33(6), 241-242. [http://dx.doi.org/ 10.1016/j.tibs.2008. 04.002]. [PMID: 18472267].
[11]
De Las Rivas, J.; Fontanillo, C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Comput. Biol., 2010, 6(6), e1000807. [http://dx.doi.org/ 10.1371/journal.pcbi.1000807]. [PMID: 20589078].
[12]
Ma, B.; Elkayam, T.; Wolfson, H.; Nussinov, R. Protein-protein interactions: Structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 5772-5777. [http://dx.doi.org/ 10.1073/ pnas.1030237100]. [PMID: 12730379].
[13]
Bogan, A.A.; Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol., 1998, 280(1), 1-9. [http://dx.doi.org/ 10.1006/ jmbi.1998.1843]. [PMID: 9653027].
[14]
Chakrabarti, P.; Janin, J. Dissecting protein-protein recognition sites. Proteins, 2002, 47(3), 334-343. [http://dx.doi.org/ 10.1002/prot.10085]. [PMID: 11948787].
[15]
Guharoy, M.; Chakrabarti, P. Conservation and relative importance of residues across protein-protein interfaces. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15447-15452. [http://dx.doi.org/ 10.1073/ pnas.0505425102]. [PMID: 16221766].
[16]
Jones, S.; Thornton, J.M. Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol., 1997, 272(1), 121-132. [http://dx.doi.org/ 10.1006/jmbi.1997.1234]. [PMID: 9299342].
[17]
Plach, M.G.; Semmelmann, F.; Busch, F.; Busch, M.; Heizinger, L.; Wysocki, V.H.; Merkl, R.; Sterner, R. Evolutionary diversification of protein-protein interactions by interface add-ons. Proc. Natl. Acad. Sci. USA, 2017, 114(40), E8333-E8342. [http://dx.doi.org/ 10.1073/pnas.1707335114]. [PMID: 28923934].
[18]
DeLano, W.L. Unraveling hot spots in binding interfaces: Progress and challenges. Curr. Opin. Struct. Biol., 2002, 12(1), 14-20. [http://dx.doi.org/ 10.1016/S0959-440X(02)00283-X]. [PMID: 11839484].
[19]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(Database issue), D115-D119. [http://dx.doi.org/ 10.1093/nar/gkh131]. [PMID: 14681372].
[20]
Jones, S.; Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 13-20. [http://dx.doi.org/ 10.1073/pnas.93.1.13]. [PMID: 8552589].
[21]
Nooren, I.M.; Thornton, J.M. Diversity of protein-protein interactions. EMBO J., 2003, 22(14), 3486-3492. [http://dx.doi.org/ 10.1093/emboj/cdg359]. [PMID: 12853464].
[22]
Arnold, H.; Pette, D. Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur. J. Biochem., 1970, 15(2), 360-366. [http://dx.doi.org/ 10.1111/j.1432-1033.1970.tb01016.x]. [PMID: 5502667].
[23]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: methods and analysis. Int. J. Proteomics, 2014, 2014147648. [http://dx.doi.org/ 10.1155/2014/147648]. [PMID: 24693427].
[24]
Li, Y.W.; Seager, M.A.; Wojcik, T.; Heman, K.; Molski, T.F.; Fernandes, A.; Langdon, S.; Pendri, A.; Gerritz, S.; Tian, Y.; Hong, Y.; Gallagher, L.; Merritt, J.R.; Zhang, C.; Westphal, R.; Zaczek, R.; Macor, J.E.; Bronson, J.J.; Lodge, N.J. Biochemical and behavioral effects of PDE10A inhibitors: Relationship to target site occupancy. Neuropharmacology, 2016, 102, 121-135. [http://dx.doi.org/ 10.1016/j.neuropharm.2015.10.037]. [PMID: 26522433].
[25]
Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic nucleotide phosphodiesterases: Important signaling modulators and therapeutic targets. Oral Dis., 2015, 21(1), e25-e50. [http://dx.doi.org/ 10.1111/odi.12275]. [PMID: 25056711].
[26]
Ejiofor, S.; Turner, A.M. Pharmacotherapies for COPD. Clin. Med. Insights Circ. Respir. Pulm. Med., 2013, 7, 17-34. [http://dx.doi.org/ 10.4137/CCRPM.S7211]. [PMID: 23700381].
[27]
Eschenhagen, T. PDE4 in the human heart - major player or little helper? Br. J. Pharmacol., 2013, 169(3), 524-527. [http://dx.doi.org/ 10.1111/bph.12168]. [PMID: 23489196].
[28]
Brand, T.; Klussmann, E. Cyclic Nucleotide Signaling and the Cardiovascular System., 2018.
[29]
Azevedo, M.F.; Faucz, F.R.; Bimpaki, E.; Horvath, A.; Levy, I.; de Alexandre, R.B.; Ahmad, F.; Manganiello, V.; Stratakis, C.A. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr. Rev., 2014, 35(2), 195-233. [http://dx.doi.org/ 10.1210/er. 2013-1053]. [PMID: 24311737].
[30]
Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov., 2014, 13(4), 290-314. [http://dx.doi.org/ 10.1038/nrd4228]. [PMID: 24687066].
[31]
Omori, K.; Kotera, J. Overview of PDEs and their regulation. Circ. Res., 2007, 100(3), 309-327. [http://dx.doi.org/ 10.1161/01. RES.0000256354.95791.f1]. [PMID: 17307970].
[32]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520. [http://dx.doi.org/ 10.1124/pr.58.3.5]. [PMID: 16968949].
[33]
Goraya, T.A.; Cooper, D.M. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): Current perspectives. Cell. Signal., 2005, 17(7), 789-797. [http://dx.doi.org/ 10.1016/j.cellsig.2004.12.017]. [PMID: 15763421].
[34]
Yan, C.; Zhao, A.Z.; Bentley, J.K.; Beavo, J.A. The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J. Biol. Chem., 1996, 271(41), 25699-25706. [http://dx.doi.org/ 10.1074/jbc.271.41.25699]. [PMID: 8810348].
[35]
Miller, C.L.; Oikawa, M.; Cai, Y.; Wojtovich, A.P.; Nagel, D.J.; Xu, X.; Xu, H.; Florio, V.; Rybalkin, S.D.; Beavo, J.A.; Chen, Y.F.; Li, J.D.; Blaxall, B.C.; Abe, J.; Yan, C. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ. Res., 2009, 105(10), 956-964. [http://dx.doi.org/ 10.1161/CIRCRESAHA. 109.198515]. [PMID: 19797176].
[36]
Nagel, D.J.; Aizawa, T.; Jeon, K.I.; Liu, W.; Mohan, A.; Wei, H.; Miano, J.M.; Florio, V.A.; Gao, P.; Korshunov, V.A.; Berk, B.C.; Yan, C. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ. Res., 2006, 98(6), 777-784. [http://dx.doi.org/ 10.1161/01. RES.0000215576.27615.fd]. [PMID: 16514069].
[37]
Shafiee-Nick, R.; Afshari, A.R.; Mousavi, S.H.; Rafighdoust, A.; Askari, V.R.; Mollazadeh, H.; Fanoudi, S.; Mohtashami, E.; Rahimi, V.B.; Mohebbi, M.; Vahedi, M.M. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed. Pharmacother., 2017, 94, 541-556. [http://dx.doi.org/ 10.1016/j.biopha.2017.07.084]. [PMID: 28779712].
[38]
Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev., 2011, 91(2), 651-690. [http://dx.doi.org/ 10.1152/physrev.00030.2010]. [PMID: 21527734].
[39]
Sorensen, A.B.; Søndergaard, M.T.; Overgaard, M.T. Calmodulin in a heartbeat. FEBS J., 2013, 280(21), 5511-5532. [http://dx.doi.org/ 10.1111/febs.12337]. [PMID: 23663249].
[40]
Kawaguchi, S.Y.; Hirano, T. Gating of long-term depression by Ca2+/calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells. J. Physiol., 2013, 591(7), 1707-1730. [http://dx.doi.org/ 10.1113/jphysiol.2012. 245787]. [PMID: 23297306].
[41]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398. [http://dx.doi.org/ 10.1016/j.pharmthera.2005.07.003]. [PMID: 16102838].
[42]
Jeon, Y.H.; Heo, Y.S.; Kim, C.M.; Hyun, Y.L.; Lee, T.G.; Ro, S.; Cho, J.M. Phosphodiesterase: Overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell. Mol. Life Sci., 2005, 62(11), 1198-1220. [http://dx.doi.org/ 10.1007/s00018-005-4533-5]. [PMID: 15798894].
[43]
Movsesian, M.; Ahmad, F.; Hirsch, E. Functions of PDE3 isoforms in cardiac muscle. J. Cardiovasc. Dev. Dis., 2018, 5(1), 5. [http://dx.doi.org/ 10.3390/jcdd5010010]. [PMID: 29415428].
[44]
Degerman, E.; Belfrage, P.; Manganiello, V.C. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J. Biol. Chem., 1997, 272(11), 6823-6826. [http://dx.doi.org/ 10.1074/jbc.272.11.6823]. [PMID: 9102399].
[45]
Elbatarny, H.S.; Maurice, D.H. Leptin-mediated activation of human platelets: Involvement of a leptin receptor and phosphodiesterase 3A-containing cellular signaling complex. Am. J. Physiol. Endocrinol. Metab., 2005, 289(4), E695-E702. [http://dx.doi.org/ 10.1152/ajpendo.00125.2005]. [PMID: 15886225].
[46]
Palmer, D.; Jimmo, S.L.; Raymond, D.R.; Wilson, L.S.; Carter, R.L.; Maurice, D.H. Protein kinase A phosphorylation of human phosphodiesterase 3B promotes 14-3-3 protein binding and inhibits phosphatase-catalyzed inactivation. J. Biol. Chem., 2007, 282(13), 9411-9419. [http://dx.doi.org/ 10.1074/jbc.M606936200]. [PMID: 17255105].
[47]
Degerman, E.; Smith, C.J.; Tornqvist, H.; Vasta, V.; Belfrage, P.; Manganiello, V.C. Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc. Natl. Acad. Sci. USA, 1990, 87(2), 533-537. [http://dx.doi.org/ 10.1073/pnas.87.2.533]. [PMID: 2153956].
[48]
Ahmad, F.; Cong, L-N.; Stenson Holst, L.; Wang, L-M.; Rahn Landstrom, T.; Pierce, J.H.; Quon, M.J.; Degerman, E.; Manganiello, V.C. Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells. J. Immunol., 2000, 164(9), 4678-4688. [http://dx.doi.org/ 10.4049/jimmunol.164.9.4678]. [PMID: 10779773].
[49]
Ahmad, F.; Lindh, R.; Tang, Y.; Weston, M.; Degerman, E.; Manganiello, V.C. Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem. J., 2007, 404(2), 257-268. [http://dx.doi.org/ 10.1042/BJ20060960]. [PMID: 17324123].
[50]
Nilsson, R.; Ahmad, F.; Swärd, K.; Andersson, U.; Weston, M.; Manganiello, V.; Degerman, E. Plasma membrane cyclic nucleotide phosphodiesterase 3B (PDE3B) is associated with caveolae in primary adipocytes. Cell. Signal., 2006, 18(10), 1713-1721. [http://dx.doi.org/ 10.1016/j.cellsig.2006.01.010]. [PMID: 16503395].
[51]
Patrucco, E.; Notte, A.; Barberis, L.; Selvetella, G.; Maffei, A.; Brancaccio, M.; Marengo, S.; Russo, G.; Azzolino, O.; Rybalkin, S.D.; Silengo, L.; Altruda, F.; Wetzker, R.; Wymann, M.P.; Lembo, G.; Hirsch, E. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell, 2004, 118(3), 375-387. [http://dx.doi.org/ 10.1016/j.cell.2004.07.017]. [PMID: 15294162].
[52]
Voigt, P.; Dorner, M.B.; Schaefer, M. Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B. J. Biol. Chem., 2006, 281(15), 9977-9986. [http://dx.doi.org/ 10.1074/jbc.M512502200]. [PMID: 16476736].
[53]
Wilson, L.S.; Baillie, G.S.; Pritchard, L.M.; Umana, B.; Terrin, A.; Zaccolo, M.; Houslay, M.D.; Maurice, D.H. A phosphodiesterase 3B-based signaling complex integrates exchange protein activated by cAMP 1 and phosphatidylinositol 3-kinase signals in human arterial endothelial cells. J. Biol. Chem., 2011, 286(18), 16285-16296. [http://dx.doi.org/ 10.1074/jbc.M110.217026]. [PMID: 21393242].
[54]
Mongillo, M.; McSorley, T.; Evellin, S.; Sood, A.; Lissandron, V.; Terrin, A.; Huston, E.; Hannawacker, A.; Lohse, M.J.; Pozzan, T.; Houslay, M.D.; Zaccolo, M. Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ. Res., 2004, 95(1), 67-75. [http://dx.doi.org/ 10.1161/01.RES.0000134629.84732.11]. [PMID: 15178638].
[55]
Francis, S.H.; Conti, M.; Houslay, M.D. Phosphodiesterases as drug targets, 1st ed; Springer-Verlag Berlin Heidelberg, 2011. [http://dx.doi.org/ 10.1007/978-3-642-17969-3]
[56]
Houslay, M.D. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci., 2010, 35(2), 91-100. [http://dx.doi.org/ 10.1016/j.tibs.2009.09.007]. [PMID: 19864144].
[57]
Houslay, M.D.; Baillie, G.S.; Maurice, D.H. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: A molecular toolbox for generating compartmentalized cAMP signaling. Circ. Res., 2007, 100(7), 950-966. [http://dx.doi.org/ 10.1161/01.RES.0000261934.56938.38]. [PMID: 17431197].
[58]
Huston, E.; Lynch, M.J.; Mohamed, A.; Collins, D.M.; Hill, E.V.; MacLeod, R.; Krause, E.; Baillie, G.S.; Houslay, M.D. EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 12791-12796. [http://dx.doi.org/ 10.1073/pnas.0805167105]. [PMID: 18728186].
[59]
Mongillo, M.; Tocchetti, C.G.; Terrin, A.; Lissandron, V.; Cheung, Y.F.; Dostmann, W.R.; Pozzan, T.; Kass, D.A.; Paolocci, N.; Houslay, M.D.; Zaccolo, M. Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ. Res., 2006, 98(2), 226-234. [http://dx.doi.org/ 10.1161/01.RES.0000200178.34179.93]. [PMID: 16357307].
[60]
Szaszák, M.; Christian, F.; Rosenthal, W.; Klussmann, E. Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell. Signal., 2008, 20(4), 590-601. [http://dx.doi.org/ 10.1016/j.cellsig.2007.10.020]. [PMID: 18061403].
[61]
Dodge, K.L.; Khouangsathiene, S.; Kapiloff, M.S.; Mouton, R.; Hill, E.V.; Houslay, M.D.; Langeberg, L.K.; Scott, J.D. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J., 2001, 20(8), 1921-1930. [http://dx.doi.org/ 10.1093/emboj/20.8.1921]. [PMID: 11296225].
[62]
Passariello, C.L.; Li, J.; Dodge-Kafka, K.; Kapiloff, M.S. mAKAP-a master scaffold for cardiac remodeling. J. Cardiovasc. Pharmacol., 2015, 65(3), 218-225. [http://dx.doi.org/ 10.1097/ FJC.0000000000000206]. [PMID: 25551320].
[63]
Sette, C.; Conti, M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J. Biol. Chem., 1996, 271(28), 16526-16534. [http://dx.doi.org/ 10.1074/jbc.271. 28.16526]. [PMID: 8663227].
[64]
Carlisle Michel, J.J.; Dodge, K.L.; Wong, W.; Mayer, N.C.; Langeberg, L.K.; Scott, J.D. PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem. J., 2004, 381(Pt 3), 587-592. [http://dx.doi.org/ 10.1042/BJ200 40846]. [PMID: 15182229].
[65]
Klussmann, E. Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value. Cell. Signal., 2016, 28(7), 713-718. [http://dx.doi.org/ 10.1016/j.cellsig. 2015.10.005]. [PMID: 26498857].
[66]
Torres-Quesada, O.; Mayrhofer, J.E.; Stefan, E. The many faces of compartmentalized PKA signalosomes. Cell. Signal., 2017, 37, 1-11. [http://dx.doi.org/ 10.1016/j.cellsig.2017.05.012]. [PMID: 28528970].
[67]
Taskén, K.A.; Collas, P.; Kemmner, W.A.; Witczak, O.; Conti, M.; Taskén, K. Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J. Biol. Chem., 2001, 276(25), 21999-22002. [http://dx.doi.org/ 10.1074/jbc.C000911200]. [PMID: 11285255].
[68]
Loughney, K.; Hill, T.R.; Florio, V.A.; Uher, L.; Rosman, G.J.; Wolda, S.L.; Jones, B.A.; Howard, M.L.; McAllister-Lucas, L.M.; Sonnenburg, W.K.; Francis, S.H.; Corbin, J.D.; Beavo, J.A.; Ferguson, K. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene, 1998, 216(1), 139-147. [http://dx.doi.org/ 10.1016/S0378-1119(98)00303-5]. [PMID: 9714779].
[69]
McAllister-Lucas, L.M.; Haik, T.L.; Colbran, J.L.; Sonnenburg, W.K.; Seger, D.; Turko, I.V.; Beavo, J.A.; Francis, S.H.; Corbin, J.D. An essential aspartic acid at each of two allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase. J. Biol. Chem., 1995, 270(51), 30671-30679. [http://dx.doi.org/ 10.1074/jbc.270.51.30671]. [PMID: 8530505].
[70]
Blount, M.A.; Zoraghi, R.; Ke, H.; Bessay, E.P.; Corbin, J.D.; Francis, S.H. A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Mol. Pharmacol., 2006, 70(5), 1822-1831. [http://dx.doi.org/ 10.1124/mol.106.028688]. [PMID: 16926278].
[71]
Francis, S.H.; Bessay, E.P.; Kotera, J.; Grimes, K.A.; Liu, L.; Thompson, W.J.; Corbin, J.D. Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. J. Biol. Chem., 2002, 277(49), 47581-47587. [http://dx.doi.org/ 10.1074/jbc.M206088200]. [PMID: 12359732].
[72]
Rybalkin, S.D.; Rybalkina, I.G.; Shimizu-Albergine, M.; Tang, X.B.; Beavo, J.A. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J., 2003, 22(3), 469-478. [http://dx.doi.org/ 10.1093/emboj/cdg051]. [PMID: 12554648].
[73]
Schlossmann, J.; Ammendola, A.; Ashman, K.; Zong, X.; Huber, A.; Neubauer, G.; Wang, G-X.; Allescher, H-D.; Korth, M.; Wilm, M.; Hofmann, F.; Ruth, P. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature, 2000, 404(6774), 197-201. [http://dx.doi.org/ 10.1038/35004606]. [PMID: 10724174].
[74]
Antl, M.; von Brühl, M-L.; Eiglsperger, C.; Werner, M.; Konrad, I.; Kocher, T.; Wilm, M.; Hofmann, F.; Massberg, S.; Schlossmann, J. IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood, 2007, 109(2), 552-559. [http://dx.doi.org/ 10.1182/blood-2005-10-026294]. [PMID: 16990611].
[75]
Wilson, L.S.; Elbatarny, H.S.; Crawley, S.W.; Bennett, B.M.; Maurice, D.H. Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13650-13655. [http://dx.doi.org/ 10.1073/pnas.0804738105]. [PMID: 18757735].
[76]
Arshavsky, V.Y.; Burns, M.E. Photoreceptor signaling: supporting vision across a wide range of light intensities. J. Biol. Chem., 2012, 287(3), 1620-1626. [http://dx.doi.org/ 10.1074/jbc.R111.305243]. [PMID: 22074925].
[77]
Gao, X. Regulation of photoreceptor phosphodiesterase and its activation by transducin elucidated by structural and biochemical approaches; University of New Hmapshire: Durham, 2017.
[78]
Zhang, X.J.; Skiba, N.P.; Cote, R.H. Structural requirements of the photoreceptor phosphodiesterase gamma-subunit for inhibition of rod PDE6 holoenzyme and for its activation by transducin. J. Biol. Chem., 2010, 285(7), 4455-4463. [http://dx.doi.org/ 10.1074/jbc. M109.057406]. [PMID: 19948718].
[79]
Zhang, X.J.; Gao, X.Z.; Yao, W.; Cote, R.H. Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1). J. Biol. Chem., 2012, 287(31), 26312-26320. [http://dx.doi.org/ 10.1074/jbc. M112.377333]. [PMID: 22665478].
[80]
Guo, L.W.; Hajipour, A.R.; Ruoho, A.E. Complementary interactions of the rod PDE6 inhibitory subunit with the catalytic subunits and transducin. J. Biol. Chem., 2010, 285(20), 15209-15219. [http://dx.doi.org/ 10.1074/jbc.M109.086116]. [PMID: 20231289].
[81]
Yamazaki, A.; Hayashi, F.; Matsuura, I.; Bondarenko, V.A. Binding of cGMP to the transducin-activated cGMP phosphodiesterase, PDE6, initiates a large conformational change involved in its deactivation. FEBS J., 2011, 278(11), 1854-1872. [http://dx.doi.org/ 10.1111/j.1742-4658.2011.08104.x]. [PMID: 21439020].
[82]
Qureshi, B.M.; Behrmann, E.; Schöneberg, J.; Loerke, J.; Bürger, J.; Mielke, T.; Giesebrecht, J.; Noé, F.; Lamb, T.D.; Hofmann, K.P.; Spahn, C.M.T.; Heck, M. It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Open Biol., 2018, 8(8), 180075. [http://dx.doi.org/ 10.1098/rsob.180075]. [PMID: 30068566].
[83]
Das, R.; Esposito, V.; Abu-Abed, M.; Anand, G.S.; Taylor, S.S.; Melacini, G. cAMP activation of PKA defines an ancient signaling mechanism. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 93-98. [http://dx.doi.org/ 10.1073/pnas.0609033103]. [PMID: 17182741].
[84]
Kim, C.; Xuong, N.H.; Taylor, S.S. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science, 2005, 307(5710), 690-696. [http://dx.doi.org/ 10.1126/ science.1104607]. [PMID: 15692043].
[85]
Taylor, S.S.; Zhang, P.; Steichen, J.M.; Keshwani, M.M.; Kornev, A.P. PKA: Lessons learned after twenty years. Biochim. Biophys. Acta, 2013, 1834(7), 1271-1278. [http://dx.doi.org/ 10.1016/ j.bbapap.2013.03.007]. [PMID: 23535202].
[86]
Huang, Y.M.; Huber, G.; McCammon, J.A. Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Protein Sci., 2015, 24(11), 1884-1889. [http://dx.doi.org/ 10.1002/pro.2794]. [PMID: 26346301].
[87]
Tulsian, N.K.; Krishnamurthy, S.; Anand, G.S. Channeling of cAMP in PDE-PKA complexes promotes signal adaptation. Biophys. J., 2017, 112(12), 2552-2566. [http://dx.doi.org/ 10.1016/ j.bpj.2017.04.045]. [PMID: 28636912].
[88]
Shepherd, G.M. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 2013, 14(4), 278-291. [http://dx.doi.org/ 10.1038/nrn3469]. [PMID: 23511908].
[89]
Hersch, S.M.; Ciliax, B.J.; Gutekunst, C.A.; Rees, H.D.; Heilman, C.J.; Yung, K.K.; Bolam, J.P.; Ince, E.; Yi, H.; Levey, A.I. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J. Neurosci., 1995, 15(7 Pt 2), 5222-5237. [http://dx.doi.org/10.1523/JNEUROSCI.15-07-05222.1995]. [PMID: 7623147].
[90]
Bolam, J.P.; Hanley, J.J.; Booth, P.A.; Bevan, M.D. Synaptic organisation of the basal ganglia. J. Anat., 2000, 196(Pt 4), 527-542. [http://dx.doi.org/ 10.1046/j.1469-7580.2000.19640527.x]. [PMID: 10923985].
[91]
Fujishige, K.; Kotera, J.; Omori, K. Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur. J. Biochem., 1999, 266(3), 1118-1127. [http://dx.doi.org/10.1046/j.1432-1327.1999.00963.x]. [PMID: 10583409].
[92]
Xie, Z.; Adamowicz, W.O.; Eldred, W.D.; Jakowski, A.B.; Kleiman, R.J.; Morton, D.G.; Stephenson, D.T.; Strick, C.A.; Williams, R.D.; Menniti, F.S. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience, 2006, 139(2), 597-607. [http://dx.doi.org/ 10.1016/j.neuroscience. 2005.12.042]. [PMID: 16483723].
[93]
Seeger, T.F.; Bartlett, B.; Coskran, T.M.; Culp, J.S.; James, L.C.; Krull, D.L.; Lanfear, J.; Ryan, A.M.; Schmidt, C.J.; Strick, C.A.; Varghese, A.H.; Williams, R.D.; Wylie, P.G.; Menniti, F.S. Immunohistochemical localization of PDE10A in the rat brain. Brain Res., 2003, 985(2), 113-126. [http://dx.doi.org/ 10.1016/S0006-8993(03)02754-9]. [PMID: 12967715].
[94]
Russwurm, C.; Koesling, D.; Russwurm, M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. J. Biol. Chem., 2015, 290(19), 11936-11947. [http://dx.doi.org/ 10.1074/jbc.M114.595769]. [PMID: 25762721].