Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions

Author(s): Vittoria Cicaloni, Alfonso Trezza, Francesco Pettini and Ottavia Spiga*

Volume 19, Issue 7, 2019

Page: [534 - 554] Pages: 21

DOI: 10.2174/1568026619666190304153901

Price: $65

Abstract

Background: Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention.

Objective: Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases.

Methods: Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures.

Results: In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules.

Conclusion: A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.

Keywords: Protein-protein interaction, Molecular dynamics simulation, Drug repositioning, Protein docking, Interaction network, Structural bioinformatics, Computational screening.

Graphical Abstract

[1]
Galperin, M.Y. The molecular biology database collection: 2007 update. Nucleic Acids Res., 2007, 35(Database issue), D3-D4. [http://dx.doi.org/ 10.1093/nar/gkl1008]. [PMID: 17148484].
[2]
Suter, B.; Kittanakom, S.; Stagljar, I. Two-hybrid technologies in proteomics research. Curr. Opin. Biotechnol., 2008, 19(4), 316-323. [http://dx.doi.org/ 10.1016/j.copbio.2008.06.005]. [PMID: 18619540].
[3]
Alonso-López, D.; Gutiérrez, M.A.; Lopes, K.P.; Prieto, C.; Santamaría, R.; De Las Rivas, J. APID interactomes: Providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res., 2016, 44(W1), W529-35. [http://dx.doi.org/ 10.1093/nar/gkw363]. [PMID: 27131791].
[4]
Sahni, N.; Yi, S.; Zhong, Q.; Jailkhani, N.; Charloteaux, B.; Cusick, M.E.; Vidal, M. Edgotype: A fundamental link between genotype and phenotype. Curr. Opin. Genet. Dev., 2013, 23(6), 649-657. [http://dx.doi.org/ 10.1016/j.gde.2013.11.002]. [PMID: 24287335].
[5]
Goñi, J.; Esteban, F.J.; de Mendizábal, N.V.; Sepulcre, J.; Ardanza-Trevijano, S.; Agirrezabal, I.; Villoslada, P. A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst. Biol., 2008, 2, 52. [http://dx.doi.org/ 10.1186/1752-0509-2-52]. [PMID: 18570646].
[6]
Murakami, Y.; Tripathi, L.P.; Prathipati, P.; Mizuguchi, K. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery. Curr. Opin. Struct. Biol., 2017, 44, 134-142. [http://dx.doi.org/ 10.1016/j.sbi.2017.02.005]. [PMID: 28364585].
[7]
Droit, A.; Poirier, G.G.; Hunter, J.M. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function. J. Mol. Endocrinol., 2005, 34(2), 263-280. [http://dx.doi.org/ 10.1677/jme.1.01693]. [PMID: 15821096].
[8]
Huthmacher, C.; Gille, C.; Holzhutter, H.G. Computational analysis of protein-protein interactions in metabolic networks of Escherichia coli and yeast. Genome Inform., 2007, 18, 162-172. [http://dx.doi.org/ 10.1142/9781860949920_0016].
[9]
Bakail, M.; Ochsenbein, F. Targeting protein–protein interactions, A wide open field for drug design. C. R. Chim., 2016, 19, 19-27. [http://dx.doi.org/ 10.1016/j.crci.2015.12.004].
[10]
Bashor, C.J.; Horwitz, A.A.; Peisajovich, S.G.; Lim, W.A. Rewiring cells: Synthetic biology as a tool to interrogate the organizational principles of living systems. Annu. Rev. Biophys., 2010, 39, 515-537. [http://dx.doi.org/ 10.1146/annurev.biophys.050708. 133652]. [PMID: 20192780].
[11]
Mohamed, R.; Degac, J.; Helms, V. Composition of overlapping protein-protein and protein-ligand interfaces. PLoS One, 2015, 10(10), e0140965. [http://dx.doi.org/ 10.1371/journal.pone. 0140965]. [PMID: 26517868].
[12]
Zhu, H.; Domingues, F.S.; Sommer, I.; Lengauer, T. NOXclass: Prediction of protein-protein interaction types. BMC Bioinformatics, 2006, 7, 27. [http://dx.doi.org/ 10.1186/1471-2105-7-27]. [PMID: 16423290].
[14]
Acuner Ozbabacan, S.E.; Engin, H.B.; Gursoy, A.; Keskin, O. Transient protein-protein interactions. Protein Eng. Des. Sel., 2011, 24(9), 635-648. [http://dx.doi.org/ 10.1093/protein/gzr025]. [PMID: 21676899].
[15]
Ansari, S.; Helms, V. Statistical analysis of predominantly transient protein-protein interfaces. Proteins, 2005, 61(2), 344-355. [http://dx.doi.org/ 10.1002/prot.20593]. [PMID: 16104020].
[16]
Lo Conte, L.; Chothia, C.; Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol., 1999, 285(5), 2177-2198. [http://dx.doi.org/ 10.1006/jmbi.1998.2439]. [PMID: 9925793].
[17]
Nooren, I.M.; Thornton, J.M. Diversity of protein-protein interactions. EMBO J., 2003, 22(14), 3486-3492. [http://dx.doi.org/ 10.1093/emboj/cdg359]. [PMID: 12853464].
[18]
Nooren, I.M.; Thornton, J.M. Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol., 2003, 325(5), 991-1018. [http://dx.doi.org/ 10.1016/S0022-2836(02)01281-0]. [PMID: 12527304].
[19]
Mintseris, J.; Weng, Z. Structure, function, and evolution of transient and obligate protein-protein interactions. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 10930-10935. [http://dx.doi.org/ 10.1073/pnas.0502667102]. [PMID: 16043700].
[20]
Mintseris, J.; Weng, Z. Atomic contact vectors in protein-protein recognition. Proteins, 2003, 53(3), 629-639. [http://dx.doi.org/ 10.1002/prot.10432]. [PMID: 14579354].
[21]
Chakrabarti, P.; Janin, J. Dissecting protein-protein recognition sites. Proteins, 2002, 47(3), 334-343. [http://dx.doi.org/ 10.1002/prot.10085]. [PMID: 11948787].
[22]
Keskin, O.; Tuncbag, N.; Gursoy, A. Predicting protein-protein interactions from the molecular to the proteome level. Chem. Rev., 2016, 116(8), 4884-4909. [http://dx.doi.org/10.1021/acs.chemrev.5b00683]. [PMID: 27074302].
[23]
Matalon, O.; Horovitz, A.; Levy, E.D. Different subunits belonging to the same protein complex often exhibit discordant expression levels and evolutionary properties. Curr. Opin. Struct. Biol., 2014, 26, 113-120. [http://dx.doi.org/ 10.1016/j.sbi.2014.06.001]. [PMID: 24997301].
[24]
Dey, S.; Pal, A.; Chakrabarti, P.; Janin, J. The subunit interfaces of weakly associated homodimeric proteins. J. Mol. Biol., 2010, 398(1), 146-160. [http://dx.doi.org/ 10.1016/j.jmb.2010.02.020]. [PMID: 20156457].
[25]
Jones, S.; Thornton, J.M. Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol., 1997, 272(1), 121-132. [http://dx.doi.org/ 10.1006/jmbi.1997.1234]. [PMID: 9299342].
[26]
Kim, P.M.; Lu, L.J.; Xia, Y.; Gerstein, M.B. Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 2006, 314(5807), 1938-1941. [http://dx.doi.org/ 10.1126/science.1136174]. [PMID: 17185604].
[27]
Patil, A.; Kinoshita, K.; Nakamura, H. Hub promiscuity in protein-protein interaction networks. Int. J. Mol. Sci., 2010, 11(4), 1930-1943. [http://dx.doi.org/ 10.3390/ijms11041930]. [PMID: 20480050].
[28]
Guerois, R.; Serrano, L. The SH3-fold family: experimental evidence and prediction of variations in the folding pathways. J. Mol. Biol., 2000, 304(5), 967-982. [http://dx.doi.org/ 10.1006/jmbi. 2000.4234]. [PMID: 11124040].
[29]
Nickson, A.A.; Stoll, K.E.; Clarke, J. Folding of a LysM domain: entropy-enthalpy compensation in the transition state of an ideal two-state folder. J. Mol. Biol., 2008, 380(3), 557-569. [http://dx.doi.org/ 10.1016/j.jmb.2008.05.020]. [PMID: 18538343].
[30]
Krishna, S.S.; Aravind, L. The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. J. Struct. Biol., 2010, 172(3), 294-299. [http://dx.doi.org/ 10.1016/j.jsb.2010.05.011]. [PMID: 20580930].
[31]
Ponstingl, H.; Henrick, K.; Thornton, J.M. Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins, 2000, 41(1), 47-57. [http://dx.doi.org/ 10.1002/1097-0134(20001001)41:1<47:AID-PROT80>3.0.CO;2-8]. [PMID: 10944393].
[32]
Bahadur, R.P.; Chakrabarti, P.; Rodier, F.; Janin, J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol., 2004, 336(4), 943-955. [http://dx.doi.org/ 10.1016/j.jmb.2003. 12.073]. [PMID: 15095871].
[33]
Janin, J.; Chothia, C. The structure of protein-protein recognition sites. J. Biol. Chem., 1990, 265(27), 16027-16030. [PMID: 2204619].
[34]
Nyfeler, B.; Michnick, S.W.; Hauri, H.P. Capturing protein interactions in the secretory pathway of living cells. Proc. Natl. Acad. Sci. USA, 2005, 102(18), 6350-6355. [http://dx.doi.org/ 10.1073/pnas. 0501976102]. [PMID: 15849265].
[35]
Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Essential Cell Biology, 3rd ed; Garland Science: New York, 2009.
[36]
Clore, G.M.; Venditti, V. Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem. Sci., 2013, 38(10), 515-530. [http://dx.doi.org/ 10.1016/j.tibs.2013. 08.003]. [PMID: 24055245].
[37]
Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., 2011, 10(6), 428-438. [http://dx.doi.org/ 10.1038/nrd3405]. [PMID: 21629293].
[38]
Swinney, D.C. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther., 2013, 93(4), 299-301. [http://dx.doi.org/ 10.1038/clpt.2012.236]. [PMID: 23511784].
[39]
Bermudez, M.; Rakers, C.; Wolber, G. Structural characteristics of the allosteric binding site represent a key to subtype selective modulators of muscarinic acetylcholine receptors. Mol. Inform., 2015, 34(8), 526-530. [http://dx.doi.org/ 10.1002/minf.201500025]. [PMID: 27490498].
[40]
Owens, J. Determining druggability. Nat. Rev. Drug Discov., 2007, 6, 187. [http://dx.doi.org/ 10.1038/nrd2275].
[41]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184. [http://dx.doi.org/ 10.1016/j.csbj.2016.04.004]. [PMID: 27293534].
[42]
Bender, A.; Glen, R.C. Molecular similarity: A key technique in molecular informatics. Org. Biomol. Chem., 2004, 2(22), 3204-3218. [http://dx.doi.org/ 10.1039/b409813g]. [PMID: 15534697].
[43]
Bender, A.; Young, D.W.; Jenkins, J.L.; Serrano, M.; Mikhailov, D.; Clemons, P.A.; Davies, J.W. Chemogenomic data analysis: Prediction of small-molecule targets and the advent of biological fingerprint. Comb. Chem. High Throughput Screen., 2007, 10(8), 719-731. [http://dx.doi.org/ 10.2174/138620707782507313]. [PMID: 18045083].
[44]
Jenkins, J.; Bender, A.W.; Davies, J. In silico target fishing: predicting biological targets from chemical structure. Drug Discov. Today. Technol., 2006, 3, 413-421. [http://dx.doi.org/ 10.1016/j. ddtec.2006.12.008].
[45]
Brown, R.D.; Martin, Y.C. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci., 1997, 37, 1-9. [http://dx.doi.org/ 10.1021/ ci960373c].
[46]
Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do structurally similar molecules have similar biological activity? J. Med. Chem., 2002, 45(19), 4350-4358. [http://dx.doi.org/ 10.1021/jm020155c]. [PMID: 12213076].
[47]
Mitchell, J.B. The relationship between the sequence identities of alpha helical proteins in the PDB and the molecular similarities of their ligands. J. Chem. Inf. Comput. Sci., 2001, 41(6), 1617-1622. [http://dx.doi.org/ 10.1021/ci010364q]. [PMID: 11749588].
[48]
Patterson, D.E.; Cramer, R.D.; Ferguson, A.M.; Clark, R.D.; Weinberger, L.E. Neighborhood behavior: A useful concept for validation of “molecular diversity” descriptors. J. Med. Chem., 1996, 39(16), 3049-3059. [http://dx.doi.org/ 10.1021/jm960290n]. [PMID: 8759626].
[49]
Schuffenhauer, A.; Floersheim, P.; Acklin, P.; Jacoby, E. Similarity metrics for ligands reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci., 2003, 43(2), 391-405. [http://dx.doi.org/ 10.1021/ci025569t]. [PMID: 12653501].
[50]
Rognan, D. Structure-based approaches to target fishing and ligand profiling. Mol. Inform., 2010, 29(3), 176-187. [http://dx.doi.org/ 10.1002/minf.200900081]. [PMID: 27462761].
[51]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181. [http://dx.doi.org/ 10.1038/nature08506]. [PMID: 19881490].
[52]
Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Côté, S.; Shoichet, B.K.; Urban, L. Large-scale prediction and testing of drug activity on side-effect targets. Nature, 2012, 486(7403), 361-367. [http://dx.doi.org/ 10.1038/nature11159]. [PMID: 22722194].
[53]
Ripphausen, P.; Nisius, B.; Peltason, L.; Bajorath, J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J. Med. Chem., 2010, 53(24), 8461-8467. [http://dx.doi.org/ 10.1021/jm101020z]. [PMID: 20929257].
[54]
Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J.L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D.K. Recognizing pitfalls in virtual screening: A critical review. J. Chem. Inf. Model., 2012, 52(4), 867-881. [http://dx.doi. org/10.1021/ci200528d]. [PMID: 22435959].
[55]
Varnek, A.; Baskin, I. Machine learning methods for property prediction in chemoinformatics: Quo Vadis? J. Chem. Inf. Model., 2012, 52(6), 1413-1437. [http://dx.doi.org/ 10.1021/ci200409x]. [PMID: 22582859].
[56]
Vyas, V.K.; Ukawala, R.D.; Ghate, M.; Chintha, C. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17. [http://dx.doi.org/ 10.4103/ 0250-474X.102537]. [PMID: 23204616].
[57]
Bernini, A.; Spiga, O.; Venditti, V.; Prischi, F.; Bracci, L.; Huang, J.; Tanner, J.A.; Niccolai, N. Tertiary structure prediction of SARS coronavirus helicase. Biochem. Biophys. Res. Commun., 2006, 343(4), 1101-1104. [http://dx.doi.org/ 10.1016/j.bbrc.2006.03.069]. [PMID: 16579970].
[58]
Fusi, F.; Durante, M.; Spiga, O.; Trezza, A.; Frosini, M.; Floriddia, E.; Teodori, E.; Dei, S.; Saponara, S. In vitro and in silico analysis of the vascular effects of asymmetrical N,N-bis(alkanol)amine aryl esters, novel multidrug resistance-reverting agents. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(9), 1033-1043. [http://dx.doi.org/ 10.1007/s00210-016-1266-y]. [PMID: 27351883].
[59]
Fusi, F.; Spiga, O.; Trezza, A.; Sgaragli, G.; Saponara, S. The surge of flavonoids as novel, fine regulators of cardiovascular Cav channels. Eur. J. Pharmacol., 2017, 796, 158-174. [http://dx.doi.org/ 10.1016/j.ejphar.2016.12.033]. [PMID: 28012974].
[60]
Fusi, F.; Trezza, A.; Spiga, O.; Sgaragli, G.; Bova, S. Cav1.2 channel current block by the PKA inhibitor H-89 in rat tail artery myocytes via a PKA-independent mechanism: Electrophysiological, functional, and molecular docking studies. Biochem. Pharmacol., 2017, 140, 53-63. [http://dx.doi.org/ 10.1016/j.bcp.2017.05.020]. [PMID: 28583845].
[61]
Galvagni, F.; Nardi, F.; Spiga, O.; Trezza, A.; Tarticchio, G.; Pellicani, R.; Andreuzzi, E.; Caldi, E.; Toti, P.; Tosi, G.M.; Santucci, A.; Iozzo, R.V.; Mongiat, M.; Orlandini, M. Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol., 2017, 64, 112-127. [http://dx.doi.org/ 10.1016/j.matbio.2017.08.003]. [PMID: 28912033].
[62]
Khanh, P.; Spiga, O.; Trezza, A.; Ho Kim, Y.; Cuong, N. Coumarins isolated from murraya paniculata in vietnam and their inhibitory effects against enzyme soluble Epoxide Hydrolase (sEH). Planta Med. Int. Open, 2017, 3, e68-e71. [http://dx.doi.org/ 10.1055/s-0042-120325].
[63]
Khanh, P.N.; Huong, T.T.; Spiga, O.; Trezza, A.; Son, N.T.; Cuong, T.D.; Ha, V.T.; Cuong, N.M. In silico screening of anthraquinones from Prismatomeris memecyloides as novel phosphodiesterase type-5 inhibitors (PDE-5Is). Rev. Int. Androl., 2018, 16(4), 147-158. [PMID: 30286869].
[64]
Pessina, F.; Gamberucci, A.; Chen, J.; Liu, B.; Vangheluwe, P.; Gorelli, B.; Lorenzini, S.; Spiga, O.; Trezza, A.; Sgaragli, G.; Saponara, S. Negative chronotropism, positive inotropism and lusitropism of 3,5-di-t-butyl-4-hydroxyanisole (DTBHA) on rat heart preparations occur through reduction of RyR2 Ca2+ leak. Biochem. Pharmacol., 2018, 155, 434-443. [http://dx.doi.org/ 10.1016/ j.bcp.2018.07.026]. [PMID: 30036502].
[65]
Trezza, A.; Cicaloni, V.; Porciatti, P.; Langella, A.; Fusi, F.; Saponara, S.; Spiga, O. From in silico to in vitro: A trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel. PeerJ, 2018, 6, e4680. [http://dx.doi.org/ 10.7717/peerj.4680]. [PMID: 29736333].
[66]
Bernini, A.; Spiga, O.; Ciutti, A.; Chiellini, S.; Bracci, L.; Yan, X.; Zheng, B.; Huang, J.; He, M.L.; Song, H.D.; Hao, P.; Zhao, G.; Niccolai, N. Prediction of quaternary assembly of SARS coronavirus peplomer. Biochem. Biophys. Res. Commun., 2004, 325(4), 1210-1214. [http://dx.doi.org/ 10.1016/j.bbrc.2004.10.156]. [PMID: 15555555].
[67]
Huang, Y.A.; You, Z.H.; Chen, X.; Chan, K.; Luo, X. Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinformatics, 2016, 17(1), 184. [http://dx.doi.org/ 10.1186/s12859-016-1035-4]. [PMID: 27112932].
[68]
Garg, A.; Raghava, G.P. ESLpred2: Improved method for predicting subcellular localization of eukaryotic proteins. BMC Bioinformatics, 2008, 9, 503. [http://dx.doi.org/ 10.1186/1471-2105-9-503]. [PMID: 19038062].
[69]
Sun, T.; Zhou, B.; Lai, L.; Pei, J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinformatics, 2017, 18(1), 277. [http://dx.doi.org/ 10.1186/s12859-017-1700-2]. [PMID: 28545462].
[70]
Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res., 2007, 35(Database issue), D301-D303. [http://dx.doi.org/ 10.1093/nar/gkl971]. [PMID: 17142228].
[71]
Hosur, R.; Xu, J.; Bienkowska, J.; Berger, B. iWRAP: An interface threading approach with application to prediction of cancer-related protein-protein interactions. J. Mol. Biol., 2011, 405(5), 1295-1310. [http://dx.doi.org/ 10.1016/j.jmb.2010.11.025]. [PMID: 21130772].
[72]
Lu, L.; Lu, H.; Skolnick, J. MULTIPROSPECTOR: An algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins, 2002, 49(3), 350-364. [http://dx.doi.org/ 10.1002/prot.10222]. [PMID: 12360525].
[73]
Xenarios, I.; Salwínski, L.; Duan, X.J.; Higney, P.; Kim, S.M.; Eisenberg, D. DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res., 2002, 30(1), 303-305. [http://dx.doi.org/ 10.1093/nar/30.1.303]. [PMID: 11752321].
[74]
Memišević, V.; Wallqvist, A.; Reifman, J. Reconstituting protein interaction networks using parameter-dependent domain-domain interactions. BMC Bioinformatics, 2013, 14, 154. [http://dx.doi.org/ 10.1186/1471-2105-14-154]. [PMID: 23651452].
[75]
Wojcik, J.; Schächter, V. Protein-protein interaction map inference using interacting domain profile pairs. Bioinformatics, 2001, 17(Suppl. 1), S296-S305. [http://dx.doi.org/ 10.1093/bioinfor-matics/17.suppl_1.S296]. [PMID: 11473021].
[76]
Enright, A.J.; Iliopoulos, I.; Kyrpides, N.C.; Ouzounis, C.A. Protein interaction maps for complete genomes based on gene fusion events. Nature, 1999, 402(6757), 86-90. [http://dx.doi.org/ 10.1038/47056]. [PMID: 10573422].
[77]
Overbeek, R.; Fonstein, M.; D’Souza, M.; Pusch, G.D.; Maltsev, N. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 1999, 96(6), 2896-2901. [http://dx.doi.org/ 10.1073/pnas.96.6.2896]. [PMID: 10077608].
[78]
Guo, W.; Wisniewski, J.A.; Ji, H. Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Bioorg. Med. Chem. Lett., 2014, 24(11), 2546-2554. [http://dx.doi.org/ 10.1016/j.bmcl.2014.03.095]. [PMID: 24751445].
[79]
Hirst, J.D.; Glowacki, D.R.; Baaden, M. Molecular simulations and visualization: Introduction and overview. Faraday Discuss., 2014, 169, 9-22. [http://dx.doi.org/ 10.1039/C4FD90024C]. [PMID: 25285906].
[80]
Venditti, V.; Egner, T.K.; Clore, G.M. Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining nmr residual dipolar couplings and solution x-ray scattering. Chem. Rev., 2016, 116(11), 6305-6322. [http://dx.doi.org/ 10.1021/acs.chemrev.5b00592]. [PMID: 26739383].
[81]
Ángyán, A.F.; Gáspári, Z. Ensemble-based interpretations of NMR structural data to describe protein internal dynamics. Molecules, 2013, 18(9), 10548-10567. [http://dx.doi.org/ 10.3390/molecules 180910548]. [PMID: 23999727].
[82]
Epa, V.; Winkler, D.; Tran, L. Computational approaches In: Adverse Effects of Engineered Nanomaterials, 1st Ed.; Elsevier. 2012. Vol. 5, pp. 85-96 [http://dx.doi.org/ 10.1016/B978-0-12-386940-1.00005-2].
[83]
Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys., 2012, 41, 429-452. [http://dx.doi.org/ 10.1146/annurev-biophys-042910-155245]. [PMID: 22577825].
[84]
Eyrisch, S.; Helms, V. Transient pockets on protein surfaces involved in protein-protein interaction. J. Med. Chem., 2007, 50(15), 3457-3464. [http://dx.doi.org/ 10.1021/jm070095g]. [PMID: 17602601].
[85]
Joerger, A.C.; Bauer, M.R.; Wilcken, R.; Baud, M.G.J.; Harbrecht, H.; Exner, T.E.; Boeckler, F.M.; Spencer, J.; Fersht, A.R. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure, 2015, 23(12), 2246-2255. [http://dx.doi.org/ 10.1016/j.str.2015.10.016]. [PMID: 26636255].
[86]
Luscombe, N.M.; Laskowski, R.A.; Thornton, J.M. Amino acid-base interactions: A three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res., 2001, 29(13), 2860-2874. [http://dx.doi.org/ 10.1093/nar/29.13.2860]. [PMID: 11433033].
[87]
Janin, J. Wet and dry interfaces: The role of solvent in protein-protein and protein-DNA recognition. Structure, 1999, 7(12), R277-R279. [http://dx.doi.org/ 10.1016/S0969-2126(00)88333-1]. [PMID: 10647173].
[88]
Huggins, D.J.; Marsh, M.; Payne, M.C. Thermodynamic properties of water molecules at a protein-protein interaction surface. J. Chem. Theory Comput., 2011, 7(11), 3514-3522. [http://dx.doi.org/ 10.1021/ct200465z]. [PMID: 24554921].
[89]
Shoemaker, B.A.; Panchenko, A.R. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLOS Comput. Biol., 2007, 3(4), e43. [http://dx.doi.org/ 10.1371/journal.pcbi.0030043]. [PMID: 17465672].
[90]
Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature, 2007, 450(7172), 1001-1009. [http://dx.doi.org/ 10.1038/nature06526]. [PMID: 18075579].
[91]
Massova, I.; Kollman, P.A. Computational alanine scanning to probe protein−protein interactions: A novel approach to evaluate binding free energies. J. Am. Chem. Soc., 1999, 121, 8133-8143. [http://dx.doi.org/ 10.1021/ja990935j].
[92]
Ahmad, M.; Gu, W.; Geyer, T.; Helms, V. Adhesive water networks facilitate binding of protein interfaces. Nat. Commun., 2011, 2, 261. [http://dx.doi.org/ 10.1038/ncomms1258]. [PMID: 21448160].
[93]
De Simone, A.; Dodson, G.G.; Verma, C.S.; Zagari, A.; Fraternali, F. Prion and water: Tight and dynamical hydration sites have a key role in structural stability. Proc. Natl. Acad. Sci. USA, 2005, 102(21), 7535-7540. [http://dx.doi.org/ 10.1073/pnas.0501748102]. [PMID: 15894615].
[94]
Lounnas, V.; Pettitt, B.M.; Phillips, G.N., Jr A global model of the protein-solvent interface. Biophys. J., 1994, 66(3 Pt 1), 601-614. [http://dx.doi.org/ 10.1016/S0006-3495(94)80835-5]. [PMID: 8011893].
[95]
Qiu, W.; Wang, L.; Lu, W.; Boechler, A.; Sanders, D.A.; Zhong, D. Dissection of complex protein dynamics in human thioredoxin. Proc. Natl. Acad. Sci. USA, 2007, 104(13), 5366-5371. [http://dx.doi.org/ 10.1073/pnas.0608498104]. [PMID: 17369362].
[96]
Venditti, V.; Bernini, A.; De Simone, A.; Spiga, O.; Prischi, F.; Niccolai, N. MD and NMR studies of alpha-bungarotoxin surface accessibility. Biochem. Biophys. Res. Commun., 2007, 356(1), 114-117. [http://dx.doi.org/ 10.1016/j.bbrc.2007.02.094]. [PMID: 17336923].
[97]
Bernini, A.; Venditti, V.; Spiga, O.; Niccolai, N. Probing protein surface accessibility with solvent and paramagnetic molecules. Prog. Nucl. Magn. Reson. Spectrosc., 2009, 54, 278-289. [http://dx.doi.org/ 10.1016/j.pnmrs.2008.10.003].
[98]
Niccolai, N.; Ciutti, A.; Spiga, O.; Scarselli, M.; Bernini, A.; Bracci, L.; Di Maro, D.; Dalvit, C.; Molinari, H.; Esposito, G.; Temussi, P.A. NMR studies of protein surface accessibility. J. Biol. Chem., 2001, 276(45), 42455-42461. [http://dx.doi.org/10.1074/ jbc.M107387200]. [PMID: 11546818].
[99]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. [http://dx.doi.org/ 10.1002/jcc. 20084]. [PMID: 15264254].
[100]
Sommer, J.; Jonah, C.; Fukuda, R.; Bersohn, R. Production and subsequent second-order decomposition of protein disulfide anions lengthy collisions between proteins. J. Mol. Biol., 1982, 159(4), 721-744. [http://dx.doi.org/ 10.1016/0022-2836(82)90110-3]. [PMID: 6815333].
[101]
Brune, D.; Kim, S. Hydrodynamic steering effects in protein association. Proc. Natl. Acad. Sci. USA, 1994, 91(8), 2930-2934. [http://dx.doi.org/ 10.1073/pnas.91.8.2930]. [PMID: 8159682].
[102]
Przytycka, T.M.; Singh, M.; Slonim, D.K. Toward the dynamic interactome: It’s about time. Brief. Bioinform., 2010, 11(1), 15-29. [http://dx.doi.org/ 10.1093/bib/bbp057]. [PMID: 20061351].
[103]
Carbonell, P.; Nussinov, R.; del Sol, A. Energetic determinants of protein binding specificity: insights into protein interaction networks. Proteomics, 2009, 9(7), 1744-1753. [http://dx.doi.org/ 10.1002/pmic.200800425]. [PMID: 19253304].
[104]
Cheng, Y.; Holst, M.J.; McCammon, J.A. Finite element analysis of drug electrostatic diffusion: Inhibition rate studies in N1 neuraminidase. Pac. Symp. Biocomput., 2009, 281-292. [PMID: 19209708].
[105]
Elcock, A.H.; Gabdoulline, R.R.; Wade, R.C.; McCammon, J.A. Computer simulation of protein-protein association kinetics: Acetylcholinesterase-fasciculin. J. Mol. Biol., 1999, 291(1), 149-162. [http://dx.doi.org/ 10.1006/jmbi.1999.2919]. [PMID: 10438612].
[106]
Sept, D.; Elcock, A.H.; McCammon, J.A. Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry. J. Mol. Biol., 1999, 294(5), 1181-1189. [http://dx.doi.org/ 10.1006/jmbi.1999.3332]. [PMID: 10600376].
[107]
Wlodek, S.T.; Shen, T.; McCammon, J.A. Electrostatic steering of substrate to acetylcholinesterase: analysis of field fluctuations. Biopolymers, 2000, 53(3), 265-271. [http://dx.doi.org/ 10.1002/(SICI) 1097-0282(200003)53:3<265:AID-BIP6>3.0.CO;2-N]. [PMID: 10679631].
[108]
Gunasekaran, K.; Pentony, M.; Shen, M.; Garrett, L.; Forte, C.; Woodward, A.; Ng, S.B.; Born, T.; Retter, M.; Manchulenko, K.; Sweet, H.; Foltz, I.N.; Wittekind, M.; Yan, W. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J. Biol. Chem., 2010, 285(25), 19637-19646. [http://dx.doi.org/ 10.1074/jbc.M110.117382]. [PMID: 20400508].
[109]
Hemsath, L.; Dvorsky, R.; Fiegen, D.; Carlier, M.F.; Ahmadian, M.R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol. Cell, 2005, 20(2), 313-324. [http://dx.doi.org/ 10.1016/j.molcel.2005.08.036]. [PMID: 16246732].
[110]
Meltzer, R.H.; Thompson, E.; Soman, K.V.; Song, X.Z.; Ebalunode, J.O.; Wensel, T.G.; Briggs, J.M.; Pedersen, S.E. Electrostatic steering at acetylcholine binding sites. Biophys. J., 2006, 91(4), 1302-1314. [http://dx.doi.org/ 10.1529/biophysj.106.081463]. [PMID: 16751247].
[111]
Persson, B.A.; Jönsson, B.; Lund, M. Enhanced protein steering: Cooperative electrostatic and van der Waals forces in antigen-antibody complexes. J. Phys. Chem. B, 2009, 113(30), 10459-10464. [http://dx.doi.org/ 10.1021/jp904541g]. [PMID: 19583233].
[112]
Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science, 1995, 268(5214), 1144-1149. [http://dx.doi.org/ 10.1126/science.7761829]. [PMID: 7761829].
[113]
Kukić, P.; Nielsen, J.E. Electrostatics in proteins and protein-ligand complexes. Future Med. Chem., 2010, 2(4), 647-666. [http://dx.doi.org/ 10.4155/fmc.10.6]. [PMID: 21426012].
[114]
McCammon, J.A. Darwinian biophysics: Electrostatics and evolution in the kinetics of molecular binding. Proc. Natl. Acad. Sci. USA, 2009, 106(19), 7683-7684. [http://dx.doi.org/ 10.1073/pnas. 0902767106]. [PMID: 19416830].
[115]
Wong, G.C.; Pollack, L. Electrostatics of strongly charged biological polymers: ion-mediated interactions and self-organization in nucleic acids and proteins. Annu. Rev. Phys. Chem., 2010, 61, 171-189. [http://dx.doi.org/ 10.1146/annurev.physchem.58.032806. 104436]. [PMID: 20055668].
[116]
Kästner, J.; Thiel, W. Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “Umbrella integration. J. Chem. Phys., 2005, 123(14), 144104. [http://dx.doi.org/ 10.1063/1.2052648]. [PMID: 16238371].
[117]
Watson, H. Biological membranes. Essays Biochem., 2015, 59, 43-69. [http://dx.doi.org/ 10.1042/bse0590043]. [PMID: 26504250].
[118]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102. [http://dx.doi.org/ 10.1007/s12551-016-0247-1]. [PMID: 28510083].
[119]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395. [http://dx.doi.org/ 10.1124/pr.112.007336]. [PMID: 24381236].
[120]
Vakser, I.A. Protein-protein docking: From interaction to interactome. Biophys. J., 2014, 107(8), 1785-1793. [http://dx.doi.org/ 10.1016/j.bpj.2014.08.033]. [PMID: 25418159].
[121]
Trezza, A.B.A.; Spiga, O. Identification of inhibitors binding site of ebola l polymerase based on its homology model. J. Virol. Antivir. Res, 2016, 5(4)
[http://dx.doi.org/10.417212324-895.1000162]
[122]
Pavelka, A.; Chovancova, E.; Damborsky, J. HotSpot Wizard: A web server for identification of hot spots in protein engineering. Nucleic Acids Res, 2009, 37(Web Server issue) W376-W383 [PMID: 19465397].
[123]
Krüger, D.M.; Garzón, J.I.; Montes, P.C.; Gohlke, H. Predicting protein-protein interactions with DrugScorePPI: Fully-flexible docking, scoring, and in silicoalanine-scanning. J. Chem., 2011, 3, 36. [http://dx.doi.org/ 10.1186/1758-2946-3-S1-P36].
[124]
Geppert, T.; Hoy, B.; Wessler, S.; Schneider, G. Context-based identification of protein-protein interfaces and “hot-spot” residues. Chem. Biol., 2011, 18(3), 344-353. [http://dx.doi.org/ 10.1016/j. chembiol.2011.01.005]. [PMID: 21439479].
[125]
Shingate, P.; Manoharan, M.; Sukhwal, A.; Sowdhamini, R. ECMIS: Computational approach for the identification of hotspots at protein-protein interfaces. BMC Bioinformatics, 2014, 15, 303. [http://dx.doi.org/ 10.1186/1471-2105-15-303]. [PMID: 25228146].
[126]
Banday, Z.; Ashraf, G. Protein-protein interactions as potential targets of drug designing. In: Advances in Biochemistry & Application in Medicine, 3rd Ed., Open Access ebooks 919, North Market Street, Suite 425 Wilmington, 2018, pp. 1-15.
[127]
Fischer, G.; Rossmann, M.; Hyvönen, M. Alternative modulation of protein-protein interactions by small molecules. Curr. Opin. Biotechnol., 2015, 35, 78-85. [http://dx.doi.org/ 10.1016/j.copbio.2015.04.006]. [PMID: 25935873].
[128]
Laraia, L.; McKenzie, G.; Spring, D.R.; Venkitaraman, A.R.; Huggins, D.J. Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J., Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem. Biol., 2015, 22(6), 689-703. [http://dx.doi.org/ 10.1016/j.chembiol.2015.04.019]. [PMID: 26091166].
[129]
Jin, L.; Wang, W.; Fang, G. Targeting protein-protein interaction by small molecules. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 435-456. [http://dx.doi.org/ 10.1146/annurev-pharmtox-011613-140028]. [PMID: 24160698].
[130]
Rosell, M.; Fernández-Recio, J. Hot-spot analysis for drug discovery targeting protein-protein interactions. Expert Opin. Drug Discov., 2018, 13(4), 327-338. [http://dx.doi.org/ 10.1080/17460441. 2018.1430763]. [PMID: 29376444].
[131]
Modell, A.E.; Blosser, S.L.; Arora, P.S. Systematic targeting of protein-protein interactions. Trends Pharmacol. Sci., 2016, 37(8), 702-713. [http://dx.doi.org/ 10.1016/j.tips.2016.05.008]. [PMID: 27267699].
[132]
Milroy, L-G.; Grossmann, T.N.; Hennig, S.; Brunsveld, L.; Ottmann, C. Modulators of protein-protein interactions. Chem. Rev., 2014, 114(9), 4695-4748. [http://dx.doi.org/ 10.1021/cr400698c]. [PMID: 24735440].
[133]
Spiga, O.; Bernini, A.; Scarselli, M.; Ciutti, A.; Bracci, L.; Lozzi, L.; Lelli, B.; Di Maro, D.; Calamandrei, D.; Niccolai, N. Peptide-protein interactions studied by surface plasmon and nuclear magnetic resonances. FEBS Lett., 2002, 511(1-3), 33-35. [http://dx.doi.org/ 10.1016/S0014-5793(01)03274-4]. [PMID: 11821044].
[134]
Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T.N. Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew. Chem. Int. Ed. Engl., 2015, 54(31), 8896-8927. [http://dx.doi.org/ 10.1002/anie.201412070]. [PMID: 26119925].
[135]
Planel, S.; Salomon, A.; Jalinot, P.; Feige, J.J.; Cherradi, N. A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene, 2010, 29(45), 5989-6003. [http://dx.doi.org/ 10.1038/onc.2010.341]. [PMID: 20802528].
[136]
Smith, B.A.; Daniels, D.S.; Coplin, A.E.; Jordan, G.E.; McGregor, L.M.; Schepartz, A. Minimally cationic cell-permeable miniature proteins via α-helical arginine display. J. Am. Chem. Soc., 2008, 130(10), 2948-2949. [http://dx.doi.org/ 10.1021/ja800074v]. [PMID: 18271592].
[137]
London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199. [http://dx.doi.org/ 10.1016/j.str.2009.11.012]. [PMID: 20159464].
[138]
Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res, 2012, 40(Web Server issue) W423-W427 [PMID: 22600738].
[139]
Tünnemann, G.; Martin, R.M.; Haupt, S.; Patsch, C.; Edenhofer, F.; Cardoso, M.C. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J., 2006, 20(11), 1775-1784. [http://dx.doi.org/ 10.1096/fj.05-5523com]. [PMID: 16940149].
[140]
Gellman, S.H. Foldamers: a manifesto. Acc. Chem. Res., 1998, 31, 173-180. [http://dx.doi.org/ 10.1021/ar960298r].
[141]
Checco, J.W.; Kreitler, D.F.; Thomas, N.C.; Belair, D.G.; Rettko, N.J.; Murphy, W.L.; Forest, K.T.; Gellman, S.H. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. USA, 2015, 112(15), 4552-4557. [http://dx.doi.org/ 10.1073/pnas.1420380112]. [PMID: 25825775].
[142]
Checco, J.W.; Lee, E.F.; Evangelista, M.; Sleebs, N.J.; Rogers, K.; Pettikiriarachchi, A.; Kershaw, N.J.; Eddinger, G.A.; Belair, D.G.; Wilson, J.L.; Eller, C.H.; Raines, R.T.; Murphy, W.L.; Smith, B.J.; Gellman, S.H.; Fairlie, W.D. α/β-peptide foldamers targeting intracellular protein–protein interactions with activity in living cells. J. Am. Chem. Soc., 2015, 137(35), 11365-11375. [http://dx.doi.org/ 10.1021/jacs.5b05896]. [PMID: 26317395].
[143]
Johnson, L.M.; Gellman, S.H. α-Helix mimicry with α/β-peptides. Methods Enzymol., 2013, 523, 407-429. [http://dx.doi.org/ 10.1016/B978-0-12-394292-0.00019-9]. [PMID: 23422441].
[144]
Werner, H.M.; Horne, W.S. Folding and function in α/β-peptides: targets and therapeutic applications. Curr. Opin. Chem. Biol., 2015, 28, 75-82. [http://dx.doi.org/ 10.1016/j.cbpa.2015.06.013]. [PMID: 26136051].
[145]
Orner, B.P.; Ernst, J.T.; Hamilton, A.D. Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. J. Am. Chem. Soc., 2001, 123(22), 5382-5383. [http://dx.doi.org/ 10.1021/ja0025548]. [PMID: 11457415].
[146]
T., E. J.; Jorge, B.; Soon, P. H.; Hang, Y.; D.H.A. Design and application of an α-helix-mimetic scaffold based on an oligoamide-foldamer strategy: Antagonism of the Bak BH3/Bcl-xL complex. Angew. Chem. Int. Ed., 2003, 42, 535-539. [http://dx.doi.org/ 10.1002/anie.200390154].
[147]
Haase, H.S.; Peterson-Kaufman, K.J.; Lan Levengood, S.K.; Checco, J.W.; Murphy, W.L.; Gellman, S.H. Extending foldamer design beyond α-helix mimicry: α/β-peptide inhibitors of vascular endothelial growth factor signaling. J. Am. Chem. Soc., 2012, 134(18), 7652-7655. [http://dx.doi.org/ 10.1021/ja302469a]. [PMID: 22548447].
[148]
Azzarito, V.; Prabhakaran, P.; Bartlett, A.I.; Murphy, N.S.; Hardie, M.J.; Kilner, C.A.; Edwards, T.A.; Warriner, S.L.; Wilson, A.J. 2-O-alkylated para-benzamide α-helix mimetics: The role of scaffold curvature. Org. Biomol. Chem., 2012, 10(32), 6469-6472. [http://dx.doi.org/ 10.1039/c2ob26262b]. [PMID: 22785578].
[149]
Renfrew, P.D.; Craven, T.W.; Butterfoss, G.L.; Kirshenbaum, K.; Bonneau, R. A rotamer library to enable modeling and design of peptoid foldamers. J. Am. Chem. Soc., 2014, 136(24), 8772-8782. [http://dx.doi.org/ 10.1021/ja503776z]. [PMID: 24823488].
[150]
Lao, B.B.; Drew, K.; Guarracino, D.A.; Brewer, T.F.; Heindel, D.W.; Bonneau, R.; Arora, P.S. Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. J. Am. Chem. Soc., 2014, 136(22), 7877-7888. [http://dx.doi.org/ 10.1021/ja502310r]. [PMID: 24972345].
[151]
Chène, P. Drugs targeting protein-protein interactions. ChemMedChem, 2006, 1(4), 400-411. [http://dx.doi.org/ 10.1002/cmdc. 200600004]. [PMID: 16892375].
[152]
Grembecka, J.; Belcher, A.M.; Hartley, T.; Cierpicki, T. Molecular basis of the mixed lineage leukemia-menin interaction: Implications for targeting mixed lineage leukemias. J. Biol. Chem., 2010, 285(52), 40690-40698. [http://dx.doi.org/ 10.1074/jbc.M110. 172783]. [PMID: 20961854].
[153]
Zhou, H.; Liu, L.; Huang, J.; Bernard, D.; Karatas, H.; Navarro, A.; Lei, M.; Wang, S. Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein-protein interaction. J. Med. Chem., 2013, 56(3), 1113-1123. [http://dx.doi.org/ 10.1021/jm3015298]. [PMID: 23244744].
[154]
Cierpicki, T.; Grembecka, J. Challenges and opportunities in targeting the menin-MLL interaction. Future Med. Chem., 2014, 6(4), 447-462. [http://dx.doi.org/ 10.4155/fmc.13.214]. [PMID: 24635524].
[155]
Perez, E.A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther., 2009, 8(8), 2086-2095. [http://dx.doi.org/ 10.1158/1535-7163.MCT-09-0366]. [PMID: 19671735].
[156]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17. [http://dx.doi.org/ 10.2174/156801102 3354290]. [PMID: 12678749].
[157]
Gigant, B.; Wang, C.; Ravelli, R.B.G.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435(7041), 519-522. [http://dx.doi.org/ 10.1038/nature03566]. [PMID: 15917812].
[158]
Ravelli, R.B.G.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/ 10.1038/nature02393]. [PMID: 15014504].
[159]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971. [http://dx.doi.org/ 10.1007/s11095-012-0828-z]. [PMID: 22814904].
[160]
Andrei, S.A.; Sijbesma, E.; Hann, M.; Davis, J.; O’Mahony, G.; Perry, M.W.D.; Karawajczyk, A.; Eickhoff, J.; Brunsveld, L.; Doveston, R.G.; Milroy, L.G.; Ottmann, C. Stabilization of protein-protein interactions in drug discovery. Expert Opin. Drug Discov., 2017, 12(9), 925-940. [http://dx.doi.org/ 10.1080/17460441. 2017.1346608]. [PMID: 28695752].
[161]
Thiel, P.; Kaiser, M.; Ottmann, C. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew. Chem. Int. Ed. Engl., 2012, 51(9), 2012-2018. [http://dx.doi.org/ 10.1002/anie.201107616]. [PMID: 22308055].
[162]
Aymami, J.; Barril, X.; Rodríguez-Pascau, L.; Martinell, M. Pharmacological chaperones for enzyme enhancement therapy in genetic diseases. Pharm. Pat. Anal., 2013, 2(1), 109-124. [http://dx.doi.org/ 10.4155/ppa.12.74]. [PMID: 24236974].
[163]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890. [http://dx.doi.org/ 10.1038/nrd2445]. [PMID: 17971784].
[164]
Ringe, D.; Petsko, G.A. What are pharmacological chaperones and why are they interesting? J. Biol., 2009, 8(9), 80. [http://dx.doi.org/ 10.1186/jbiol186]. [PMID: 19833004].
[165]
Bier, D.; Thiel, P.; Briels, J.; Ottmann, C. Stabilization of protein-protein interactions in chemical biology and drug discovery. Prog. Biophys. Mol. Biol., 2015, 119(1), 10-19. [http://dx.doi.org/ 10.1016/j.pbiomolbio.2015.05.002]. [PMID: 26093250].
[166]
Makley, L.N.; Gestwicki, J.E. Expanding the number of ‘druggable’ targets: Non-enzymes and protein-protein interactions. Chem. Biol. Drug Des., 2013, 81(1), 22-32. [http://dx.doi.org/ 10.1111/cbdd.12066]. [PMID: 23253128].
[167]
Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; Wilson, I.A.; Kelly, J.W.; Labaudinière, R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9629-9634. [http://dx.doi.org/ 10.1073/pnas.1121005109]. [PMID: 22645360].
[168]
Ranganath, L.R.; Milan, A.M.; Hughes, A.T.; Dutton, J.J.; Fitzgerald, R.; Briggs, M.C.; Bygott, H.; Psarelli, E.E.; Cox, T.F.; Gallagher, J.A.; Jarvis, J.C.; van Kan, C.; Hall, A.K.; Laan, D.; Olsson, B.; Szamosi, J.; Rudebeck, M.; Kullenberg, T.; Cronlund, A.; Svensson, L.; Junestrand, C.; Ayoob, H.; Timmis, O.G.; Sireau, N.; Le Quan Sang, K.H.; Genovese, F.; Braconi, D.; Santucci, A.; Nemethova, M.; Zatkova, A.; McCaffrey, J.; Christensen, P.; Ross, G.; Imrich, R.; Rovensky, J. Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1): An international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid excretion in patients with alkaptonuria after 4 weeks of treatment. Ann. Rheum. Dis., 2016, 75(2), 362-367. [http://dx.doi.org/ 10.1136/annrheumdis-2014-206033]. [PMID: 25475116].
[169]
Bernini, A.; Henrici De Angelis, L.; Morandi, E.; Spiga, O.; Santucci, A.; Assfalg, M.; Molinari, H.; Pillozzi, S.; Arcangeli, A.; Niccolai, N. Searching for protein binding sites from Molecular Dynamics simulations and paramagnetic fragment-based NMR studies. Biochim. Biophys. Acta, 2014, 1844(3), 561-566. [http://dx.doi.org/ 10.1016/j.bbapap.2013.12.012]. [PMID: 24373878].
[170]
Hussein, H.A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A.C. PockDrug-Server: A new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res., 2015, 43(W1), W436-42. [http://dx.doi.org/ 10.1093/nar/ gkv462]. [PMID: 25956651].
[171]
Borrel, A.; Regad, L.; Xhaard, H.; Petitjean, M.; Camproux, A.C. PockDrug: A model for predicting pocket druggability that overcomes pocket estimation uncertainties. J. Chem. Inf. Model., 2015, 55(4), 882-895. [http://dx.doi.org/ 10.1021/ci5006004]. [PMID: 25835082].
[172]
Bernini, A.; Galderisi, S.; Spiga, O.; Bernardini, G.; Niccolai, N.; Manetti, F.; Santucci, A. Toward a generalized computational workflow for exploiting transient pockets as new targets for small molecule stabilizers: Application to the homogentisate 1,2-dioxygenase mutants at the base of rare disease Alkaptonuria. Comput. Biol. Chem., 2017, 70, 133-141. [http://dx.doi.org/ 10.1016/j.compbiolchem.2017.08.008]. [PMID: 28869836].
[173]
Schrodinger, LLC The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.8 2015.
[174]
Nilsson, J.; Jonasson, P.; Samuelsson, E.; Ståhl, S.; Uhlén, M. Integrated production of human insulin and its C-peptide. J. Biotechnol., 1996, 48(3), 241-250. [http://dx.doi.org/ 10.1016/0168-1656(96)01514-3]. [PMID: 8862001].
[175]
Winter, J.; Lilie, H.; Rudolph, R. Renaturation of human proinsulin--A study on refolding and conversion to insulin. Anal. Biochem., 2002, 310(2), 148-155. [http://dx.doi.org/ 10.1016/S0003-2697(02)00287-7]. [PMID: 12423632].
[176]
Chen, J-Q.; Zhang, H-T.; Hu, M-H.; Tang, J-G. Production of human insulin in an E. coli system with Met-Lys-human proinsulin as the expressed precursor. Appl. Biochem. Biotechnol., 1995, 55(1), 5-15. [http://dx.doi.org/ 10.1007/BF02788744]. [PMID: 7486987].
[177]
Min, C-K.; Son, Y-J.; Kim, C-K.; Park, S-J.; Lee, J-W. Increased expression, folding and enzyme reaction rate of recombinant human insulin by selecting appropriate leader peptide. J. Biotechnol., 2011, 151(4), 350-356. [http://dx.doi.org/ 10.1016/j.jbiotec.2010. 12.023]. [PMID: 21219941].
[178]
Jung, S.H.; Kim, C-K.; Lee, G.; Yoon, J.; Lee, M. Structural analysis of recombinant human preproinsulins by structure prediction, molecular dynamics, and protein-protein docking. Genomics Inform., 2017, 15(4), 142-146. [http://dx.doi.org/ 10.5808/GI.2017. 15.4.142]. [PMID: 29307140].
[179]
Gurova, K. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol., 2009, 5(10), 1685-1704. [http://dx.doi.org/ 10.2217/fon.09.127]. [PMID: 20001804].
[180]
Neznanov, N.; Gorbachev, A.V.; Neznanova, L.; Komarov, A.P.; Gurova, K.V.; Gasparian, A.V.; Banerjee, A.K.; Almasan, A.; Fairchild, R.L.; Gudkov, A.V. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle, 2009, 8(23), 3960-3970. [http://dx.doi.org/ 10.4161/cc.8.23.10179]. [PMID: 19901558].
[181]
Guo, C.; Gasparian, A.V.; Zhuang, Z.; Bosykh, D.A.; Komar, A.A.; Gudkov, A.V.; Gurova, K.V. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappaB and p53 pathways. Oncogene, 2009, 28(8), 1151-1161. [http://dx.doi.org/ 10.1038/onc.2008.460]. [PMID: 19137016].
[182]
Gurova, K.V.; Hill, J.E.; Guo, C.; Prokvolit, A.; Burdelya, L.G.; Samoylova, E.; Khodyakova, A.V.; Ganapathi, R.; Ganapathi, M.; Tararova, N.D.; Bosykh, D.; Lvovskiy, D.; Webb, T.R.; Stark, G.R.; Gudkov, A.V. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17448-17453. [http://dx.doi.org/ 10.1073/pnas.0508888102]. [PMID: 16287968].
[183]
Preet, R.; Mohapatra, P.; Mohanty, S.; Sahu, S.K.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int. J. Cancer, 2012, 130(7), 1660-1670. [http://dx.doi.org/ 10.1002/ijc.26158]. [PMID: 21544805].
[184]
Mohapatra, P.; Preet, R.; Das, D.; Satapathy, S.R.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism. Oncol. Res., 2012, 20(2-3), 81-91. [http://dx.doi.org/ 10.3727/096504012X13473664562628]. [PMID: 23193914].
[185]
Preet, R.; Mohapatra, P.; Das, D.; Satapathy, S.R.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis, 2013, 34(2), 277-286. [http://dx.doi.org/ 10.1093/carcin/bgs351]. [PMID: 23129580].
[186]
Wang, W.; Gallant, J-N.; Katz, S.I.; Dolloff, N.G.; Smith, C.D.; Abdulghani, J.; Allen, J.E.; Dicker, D.T.; Hong, B.; Navaraj, A.; El-Deiry, W.S. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents. Cancer Biol. Ther., 2011, 12(3), 229-238. [http://dx.doi.org/ 10.4161/cbt.12.3.17033]. [PMID: 21725212].
[187]
Das, S.; Tripathi, N.; Preet, R.; Siddharth, S.; Nayak, A.; Bharatam, P.V.; Kundu, C.N. Quinacrine induces apoptosis in cancer cells by forming a functional bridge between TRAIL-DR5 complex and modulating the mitochondrial intrinsic cascade. Oncotarget, 2017, 8(1), 248-267. [http://dx.doi.org/ 10.18632/oncotarget.11335]. [PMID: 27542249].
[188]
Yeger-Lotem, E.; Sharan, R. Human protein interaction networks across tissues and diseases. Front. Genet., 2015, 6, 257. [http://dx.doi.org/ 10.3389/fgene.2015.00257]. [PMID: 26347769].
[189]
Welch, C.J.; Faul, M.M.; Tummala, S.; Papageorgiou, C.D.; Hicks, F.; Hawkins, J.M.; Thomson, N.; Cote, A.; Bordawekar, S.; Wittenberger, S.J.; Laffan, D.; Purdie, M.; Boulas, P.; Irdam, E.; Horspool, K.; Yang, B-S.; Tom, J.; Fernandez, P.; Ferretti, A.; May, S.; Seibert, K.; Wells, K.; McKeown, R. (ETC): fostering precompetitive collaborations on new enabling technologies for pharmaceutical research and development. Org. Process Res. Dev., 2017, 21, 414-419. [http://dx.doi.org/ 10.1021/acs.oprd.6b00427].
[190]
Pavlopoulos, G.A.; Secrier, M.; Moschopoulos, C.N.; Soldatos, T.G.; Kossida, S.; Aerts, J.; Schneider, R.; Bagos, P.G. Using graph theory to analyze biological networks. BioData Min., 2011, 4, 10. [http://dx.doi.org/ 10.1186/1756-0381-4-10]. [PMID: 21527005].
[191]
Sikandar, A.; Anwar, W.; Bajwa, U.I.; Wang, X.; Sikandar, M.; Yao, L.; Jiang, Z.L.; Chunkai, Z. Decision tree based approaches for detecting protein complex in Protein Protein Interaction network (PPI) via link and sequence analysis. IEEE Access, 2018, 6, 22108-22120. [http://dx.doi.org/ 10.1109/ACCESS.2018.2807811].
[192]
Seo, M-H.; Kim, P.M. The present and the future of motif-mediated protein-protein interactions. Curr. Opin. Struct. Biol., 2018, 50, 162-170. [http://dx.doi.org/ 10.1016/j.sbi.2018.04.005]. [PMID: 29730529].
[193]
Wang, W.; Yang, Y.; Yin, J.; Gong, X. Different protein-protein interface patterns predicted by different machine learning methods. Sci. Rep., 2017, 7(1), 16023. [http://dx.doi.org/ 10.1038/s41598-017-16397-z]. [PMID: 29167570].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy