[1]
Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T. American Cancer Society 2010 nutrition and physical activity guidelines advisory committee. Cancer J. Clin., 2012, 62(1), 30-67.
[2]
Holohan, C.; Van-Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[4]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[5]
Wegman-Ostrosky, T.; Sotoll-Reyes, E.; Vidal-Millan, S.; Sanchez-Corona, S. The renin-angiotensin system meets the hallmarks of cancer. J. Renin Angiotensin Aldosterone Syst., 2015, 16(2), 227-233.
[6]
Borzillo, G.V.; Lippa, B. The hedgehog signaling pathway as a target for anticancer drug discovery. Curr. Top. Med. Chem., 2005, 5(2), 147-157.
[7]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. Cancer J. Clin., 2011, 61(2), 69-90.
[8]
Crino, L.; Metro, G. Therapeutic options targeting angiogenesis in nonsmall cell lung cancer. Eur. Respir. Rev., 2014, 23(131), 79-91.
[9]
Zhang, J.; Jiang, X.; Jiang, Y.; Guo, M.; Zhang, S.; Li, J.; He, J.; Liu, J.; Wang, J.; Ouyang, L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur. J. Med. Chem., 2016, 108(2), 495-504.
[10]
Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol., 2015, 15(2), 1-30.
[11]
Chang, J.; Wang, S.; Zhang, Z.; Liu, X.; Wu, Z.; Geng, R. Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget, 2015, 6(4), 2009-2022.
[12]
Knowles, L.M.; Stabile, L.P.; Egloff, A.M.; Rothstein, M.E.; Thomas, S.M.; Gubish, C.T.; Lerner, E.C.; Seethala, R.R.; Suzuki, S.; Quesnelle, K.M.; Morgan, S.; Ferris, R.L.; Grandis, J.R. Siegfried. J.M. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res., 2009, 15(11), 3740-3750.
[13]
Lengyel, E.; Prechtel, D.; Resau, J.H.; Gauger, K.; Welk, A.; Lindemann, K.; Salanti, G.; Richter, T.; Knudsen, B.; Vande Woude, G.F.; Harbeck, N. C-Met overexpression in nodel-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int. J. Cancer, 2005, 113(4), 678-682.
[14]
Ramirez, R.; Hsu, D.; Patel, A.; Fenton, C.; Dinauer, C.; Tuttle, R.M.; Francis, G.L. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin. Endocrinol. (Oxf.), 2000, 53(5), 635-644.
[15]
Sierra, J.R.; Tsao, M.S. C-MET as a potential therapeutic target and biomarker in cancer. Ther. Adv. Med. Oncol., 2011, 3(Suppl. 1), S21-S35.
[16]
Singleton, K.R.; Kim, J.; Hinz, T.K.; Marek, L.A.; Casas-Selves, M.; Hatheway, C.; Tan, A.C.; DeGregori, J.; Heasley, L.E. A receptor tyrosine kinase network composed of fibroblast growth factor receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and neck squamous carcinoma cell lines. Mol. Pharmacol., 2013, 83(4), 882-893.
[17]
Tokunou, M.; Niki, T.; Eguchi, K.; Iba, S.; Tsuda, H.; Yamada, T.; Matsuno, Y.; Kondo, H.; Saitoh, Y.; Imamura, H.; Hirohashi, S. c-MET expression in myofibroblasts: Role in autocrine activation and prognostic significance in lung adenocarcinoma. Am. J. Pathol., 2001, 158(4), 1451-1463.
[18]
Iacovelli, R.; Pietrantonio, F.; Palazzo, A.; Maggi, C.; Ricchini, F.; de Brau, F.; Di Bartolomeo, M. Incidence and relative risk of hepatic toxicity in patients treated with anti-angiogenic tyrosine kinase inhibitors for malignancy. Br. J. Clin. Pharmacol., 2014, 78(6), 1228-1237.
[19]
Levitzki, A.; Gazit, A. Tyrosine kinase inhibition-an approach to drug development. Science, 1995, 267(5205), 1782-1788.
[20]
Ranieri, G.; Pantaleo, M.; Piccinno, M.; Roncetti, M.; Mutinati, M.; Marech, I.; Patruno, R.; Rizzo, A.; Sciorsci, R.L. Tyrosine kinase inhibitors (TKIs) in human and pet tumors with special reference to breast cancer: A comparative review. Crit. Rev. Oncol. Hematol., 2013, 88(2), 293-308.
[21]
Zwick, E.; Bange, J.; Ullrich, A. Receptor tyrosine kinases as targets for anti-cancer drugs. Trends Mol. Med., 2002, 8(1), 17-23.
[22]
Cameron, A.C.; Touyz, R.M.; Lang, N.N. Vascular complications of cancer chemotherapy. Can. J. Cardiol., 2016, 32(7), 852-862.
[23]
Daher, I.N.; Yeh, E.T. Vascular complications of selected cancer therapies. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(12), 797-805.
[24]
Suter, T.M.; Ewer, M.S. Cancer drugs and the heart: Importance and management. Eur. Heart J., 2013, 34(15), 1102-1111.
[25]
Lee, S.H.; Jeong, D.; Han, Y.S.; Baek, M.J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res., 2015, 89(1), 1-8.
[26]
Maes, H.; Olmeda, D.; Soengas, M.S.; Agostinis, P. Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS, 2016, 283(1), 25-38.
[27]
Chamorro-Jorganes, A.; Lee, M.Y.; Araldi, E.; Landskroner-Eiger, S.; Fernandez-Fuertes, M.; Sahraei, M.; Quiles Del Rey, M.; van Solingen, C.; Yu, J.; Fernandez-Hernando, C.; Sessa, W.C.; Suarez, Y. VEGF-induced expression of miR-17w 92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ. Res., 2016, 118(1), 38-47.
[28]
Hein, T.W.; Rosa, R.H., Jr; Ren, Y.; Xu, W.; Kuo, L. VEGF receptor-2-linked P13K/calpain/SIRT1 activation mediates retinal arteriolar dilations to VEGF and shear stress. Invest. Ophthalmol. Vis. Sci., 2015, 56(9), 5381-5389.
[29]
Heiss, C.; Schanz, A.; Amabile, N.; Jahn, S.; Chen, Q.; Wong, M.L.; Rassaf, T.; Heinen, Y.; Cortese-Krott, M.; Grossman, W.; Yeghiazarians, Y.; Springer, M.L. Nitric oxide synthase expression and functional response to nitric oxide are both important modulators of circulating angiogenic cell response to angiogenic stimuli. Arterioscler. Thromb. Vasc. Biol., 2010, 30(11), 2212-2218.
[30]
Force, T.; Krause, D.S.; Van Erten, R.A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer, 2007, 7(5), 332-344.
[31]
Chu, T.F.; Rupnick, M.A.; Kerkela, R.; Dallabrida, S.M.; Zurakowski, D.; Nguyen, L.; Woulfe, K.; Pravda, E.; Cassiola, F.; Desai, J.; George, S.; Morgan, J.A.; Harris, D.M.; Ismail, N.S.; Chen, J.H.; Schoen, F.J.; Van den Abbeele, A.D.; Demetri, G.D.; Force, T.; Chen, M.H. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 2007, 370(9604), 2011-2019.
[32]
Kerkela, R.; Woulfe, K.C.; Durand, J.B.; Vagnozzi, R.; Kramer, D.; Chu, T.F.; Beahm, C.; Chen, M.H.; Force, T. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin. Transl. Sci., 2009, 2(1), 15-25.
[33]
Limaverde-Sousa, G.; Sternberg, C.; Ferreira, C.G. Antiangiogenesis beyond VEGF inhibition: A journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat. Rev., 2014, 40(4), 548-557.
[34]
Doll, D.C.; Ringenberg, Q.S.; Yarbro, J.W. Vascular toxicity associated with antineoplastic agents. J. Clin. Oncol., 1986, 4(9), 1405-1417.
[35]
Meinardi, M.T.; Gietema, J.A.; van Veldhuisen, D.J. vander Graaf, W.T.; de Vries, E.G.; Sleijfer, D.T. Long-term chemotherapy-related cardiovascular morbidity. Cancer Treat. Rev., 2000, 26(6), 429-447.
[36]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[38]
Bardeesy, N.; DePinho, R.A. Pancreatic cancer biology and genetics. Nat. Rev. Cancer, 2002, 2(12), 897-909.
[39]
Ghadirian, P.; Lynch, H.T.; Krewski, D. Epidemiology of pancreatic cancer: An overview. Cancer Detect. Prev., 2003, 27(2), 87-93.
[40]
Hassan, M.M.; Bondy, M.L.; Wolff, R.A.; Abbruzzese, J.L.; Vauthey, J.N.; Pisters, P.W.; Evans, D.B.; Khan, R.; Chou, T.H.; Lenzi, R.; Jiao, L.; Li, D. Risk factors for pancreatic cancer: Case-control study. Am. J. Gastroenterol., 2007, 102(12), 2696-2707.
[41]
Michaud, D.S.; Giovannucci, E.; Willett, W.C.; Colditz, G.A.; Stampfer, M.J.; Fuchs, C.S. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA, 2001, 286(8), 921-929.
[42]
Raimondi, S.; Maisonneuve, P.; Lowenfels, A.B. Epidemiology of pancreatic cancer: An overview. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(12), 699-708.
[43]
Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med., 2014, 371(22), 2140-2141.
[44]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[45]
Maitra, A.; Hruban, R.H. Pancreatic cancer. Annu. Rev. Pathol., 2008, 3(1), 157-188.
[46]
Wanebo, H.J.; Vezeridis, M.P. Pancreatic carcinoma in perspective. A continuing challenge. Cancer, 1996, 78(Suppl. 3), 580-591.
[47]
Modolell, I.; Guarner, L.; Malagelada, J.R. Vagaries of clinical presentation of pancreatic and biliary tract cancer. Ann. Oncol., 1999, 10(Suppl. 4), 82-84.
[48]
Chari, S.T.; Leibson, C.L.; Rabe, K.G.; Timmons, L.J.; Ransom, J.; de Andrade, M. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology, 2008, 134(1), 95-101.
[49]
Gharibi, A.; Adamian, Y.; Kelber, J.A. Cellular and molecular aspects of pancreatic cancer. Acta Histochem., 2016, 118(3), 305-316.
[50]
Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359(6378), 926-930.
[51]
Kim, C.B.; Ahmed, S.; Hsueh, E.C. Current surgical management of pancreatic cancer. J. Gastrointest. Oncol., 2011, 2(3), 126-135.
[52]
Goodman, K.A.; Hajj, C. Role of radiation therapy in the management of pancreatic cancer. J. Surg. Oncol., 2013, 107(1), 86-96.
[53]
Brunet, L.R.; Hagemann, T.; Gaya, A.; Mudan, S.; Marabelle, A. Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer? OncoImmunology, 2016, 5(4) e1112942
[54]
Grasso, C.; Jansen, G.; Biovammetti, E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Crit. Rev. Oncol. Hematol., 2017, 114(1), 139-152.
[55]
Burris, H.A., III; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol., 1997, 15(6), 2403-2413.
[56]
de Sousa Cavalcante, L.; Monteiro, G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol., 2014, 741(1), 8-16.
[57]
Wong, H.H.; Lemoine, N.R. Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(7), 412-422.
[58]
Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; Campos, D.; Lim, R. ding, K.; Clark, G.; Voskoglou-Nomikos, T.; Ptasynski, M.; Parulekar, W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol., 2007, 25(15), 1960-1966.
[59]
Delitto, D.; Vertes-George, E.; Hughes, S.J.; Behrns, K.E.; Trevino, J.G. c-Met signaling in the development of tumorigenesis and chemoresistance: potential applications in pancreatic cancer. World J. Gastroenterol., 2014, 20(26), 8458-8470.
[60]
Kang, C.M.; Babicky, M.L.; Lowy, A.M. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies. Pancreas, 2014, 43(2), 183-189.
[61]
Carpenito, C.; Milone, M.C.; Hassan, R.; Simonet, J.C.; Lakhal, M.; Suhoski, M.M.; Varela-Rohena, A.; Haines, K.M.; Heitjan, D.F.; Albeida, S.M.; Carroll, R.G.; Riley, J.L.; Pastan, I.; June, C.H. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3360-3365.
[62]
Finn, O.J. Vaccines for cancer prevention: A practical and feasible approach to the cancer epidemic. Cancer Immunol. Res., 2014, 2(8), 708-713.
[63]
Nakamura, T.; Nishizawa, T.; Hagiya, M.; Seki, T.; Shimonishi, M.; Sugimura, A.; Tashiro, K.; Shimizu, S. Molecular cloning and expression of human hepatocyte growth factor. Nature, 1989, 342(6248), 440-443.
[64]
Koike, H.; Ishida, A.; Shimamura, M.; Mizuno, S.; Nakamura, T.; Ogihara, T.; Kaneda, Y.; Morishita, R. Prevention of onset of Parkinson’s disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: A model of gene therapy for Parkinson’s disease. Gene Ther., 2006, 13(23), 1639-1644.
[65]
Martins, G.J.; Plachez, C.; Powell, M. Loss of embryonic MET signaling alters profiles of hippocampal interneurons. Dev. Neurosci., 2007, 29(1-2), 143-158.
[66]
Nakamura, T.; Mizuno, S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jap. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(6), 588-610.
[67]
Bottaro, D.P.; Rubin, J.D.; Faletto, D.L.; Chan, A.M.; Kmiecik, T.E.; Vande Woude, G.F.; Aaronson, S.A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 1991, 251(4995), 802-804.
[68]
Ma, P.C.; Maulik, G.; Christensen, J.; Salgia, R. C-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev., 2003, 22(4), 309-325.
[69]
Skead, G.; Govender, D. Gene of the month: MET. J. Clin. Pathol., 2015, 68(6), 405.
[70]
Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin. Sci. (Lond.), 2015, 129(12), 1173-1193.
[71]
Isobe, M.; Futamatsu, H.; Suzuki, J. Hepatocyte growth factor: Effects on immune-mediated heart diseases. TCM, 2006, 16(6), 188-193.
[72]
Madonna, R.; Cevik, C.; Nasser, M.; De Caterina, R. Hepatocyte growth factor: Molecular biomarker and player in cardioprotection and cardiovascular regeneration. Thromb. Haemost., 2012, 107(4), 656-661.
[73]
Yang, X.P.; Liu, S.L.; Xu, J.F.; Cao, S.C.; Li, Y.; Zhou, Y.B. Pancreatic cancer stellate cells increase pancreatic cancer cells invasion through the hepatocyte growth factor/c-Met/survivin regulated by P53/P21. Exp. Cell Res., 2017, 357(1), 79-87.
[74]
Seki, T.; Hagiya, M.; Shimonishi, M.; Nakamura, T.; Shimizu, S. Organization of the human hepatocyte growth factor-encoding gene. Gene, 1991, 102(2), 213-219.
[75]
Basillico, C.; Amesano, A.; Galluzzo, M.; Comoglio, P.M.; Michieli, P. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J. Biol. Chem., 2008, 283(30), 21267-21277.
[76]
Birchmeier, C.; Birchmeier, W.; Gherardi, E.; Vande Woude, G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol., 2003, 4(12), 915-925.
[77]
Miyazawa, K.; Shimomura, T.; Kitamura, A.; Kondo, J.; Morimoto, Y.; Kitamura, N. Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J. Biol. Chem., 1993, 268(14), 10024-10028.
[78]
Wright, J.W.; Kawas, L.H.; Harding, J.W. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog. Neurobiol., 2015, 125(1), 26-46.
[79]
Gherardi, E.; Sandin, S.; Petoukhov, M.V.; Finch, J.; Youles, M.E.; Ofverstedt, L.G.; Miguel, R.N.; Blundell, T.L.; Vande Woude, G.F.; Skoglund, U.; Svergun, D.I. Structural basis of hepatocyte growth factor/scatter factor and MET signaling. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4046-4051.
[80]
Holmes, O.; Pillozzi, S.; Deakin, J.A.; Carafoli, F.; Kemp, L.; Butler, P.J.; Lyon, M.; Gherardi, E. Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains. J. Mol. Biol., 2007, 367(2), 395-408.
[81]
Stamos, J.; Lazarus, R.A.; Yao, X.; Kirchhofer, D.; Wiesmann, C. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J., 2004, 23(12), 2325-2335.
[82]
Lyon, M.; Deakin, J.A.; Gallagher, J.T. The mode of action of heparin and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor. J. Biol. Chem., 2002, 277(2), 1040-1046.
[83]
Youles, M.; Holmes, O.; Petoukhov, M.V.; Nessen, M.A.; Stivala, S.; Svergun, D.I.; Gherardi, E. Engineering the NK1 fragment of hepatocyte growth factor/scatter factor as a MET receptor antagonist. J. Mol. Biol., 2008, 377(3), 616-622.
[84]
Chirgadze, D.Y.; Hepple, J.P.; Zhou, H.; Byrd, R.A.; Blundell, T.L.; Cherardi, E. Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nat. Struct. Biol., 1999, 6(1), 72-79.
[85]
Tolbert, W.D.; Daugherty, J.; Gao, C.; Xie, Q.; Miranti, C.; Gherardi, E.; Vande Woude, G.; Xu, H.E. A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14592-14597.
[86]
Sheth, P.R.; Hays, J.L.; Elferink, L.A.; Watowich, S.J. Biochemical basis for the functional switch that regulates hepatocyte growth factor receptor tyrosine kinase activation. Biochemistry, 2008, 47(13), 4028-4038.
[87]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande Woude, G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[88]
Stella, M.C.; Comoglio, P.M. HGF: A multifunctional growth factor controlling cell scattering. Int. J. Biochem. Cell Biol., 1999, 31(12), 1357-1362.
[89]
Cooper, S.; Park, M.; Blair, D.G.; Tainsky, M.A.; Huebner, K.; Croce, C.M.; Vande Woude, G.F. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature, 1984, 311(5981), 29-33.
[90]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(Suppl. 1), S7-S19.
[91]
Matsumoto, K.; Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci., 2003, 94(4), 321-327.
[92]
Gherardi, E.; Youles, M.E.; Miguel, R.N.; Blundell, T.L.; Lamele, L.; Gough, J.; Bandyopadhyay, A.; Hartmann, G.; Butler, P.J. Functional map and domain structure of MET, the product of the c-met proto-oncogene and receptor for hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12039-12044.
[93]
Okigaki, M.; Komada, M.; Uehara, Y.; Miyazawa, K.; Kitamura, N. Functional characterization of human hepatocyte growth factor mutants obtained by deletion of structural domains. Biochemistry, 1992, 31(40), 9555-9561.
[94]
Rosario, M.; Birchmeier, W. How to make tubes: Signaling by the Met receptor tyrosine kinase. Trends Cell Biol., 2003, 13(6), 328-335.
[95]
Tulasne, D.; Foveau, B. The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ., 2008, 15(3), 427-434.
[96]
Nakamura, T.; Sakai, K.; Matsumoto, K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J. Gastroenterol. Hepatol., 2011, 26(Suppl. 1), 188-202.
[97]
Rong, S.; Segal, S.; Anver, M.; Resau, J.H.; Vande Woude, G.F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 4731-4735.
[98]
Ebert, M.; Yokoyama, M.; Friess, H.; Buchler, M.W.; Dorc, M. Coexpression of the c-Met ptoto-oncogene and hepatocyte growth factor in human pancreatic cancer. Cancer Res., 1994, 54(22), 5775-5778.
[99]
Avan, A.; Quint, K.; Nicolini, F.; Funel, N.; Frampton, A.E.; Maftouh, M.; Pelliccioni, S.; Schuurhuis, G.J.; Peters, G.J.; Giovannetti, E. Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr. Pharm. Des., 2013, 19(5), 940-950.
[100]
Rizwani, W.; Allen, A.E.; Trevino, J.G. Hepatocyte growth factor from a clinical perspective: A pancreatic cancer challenge. Cancers (Basel), 2015, 7(3), 1785-1805.
[101]
Yoshimura, T.; Yuhki, N.; Wang, M.H.; Skeel, A.; Leonard, E.J. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3. J. Biol. Chem., 1993, 268(21), 15461-15468.
[102]
Leonard, E.J.; Danilkovitch, A. Macrophage stimulating protein. Adv. Cancer Res., 2000, 77(1), 139-167.
[103]
Wagh, P.K.; Peace, B.E.; Waltz, S.E. Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. Adv. Cancer Res., 2008, 100(1), 1-33.
[104]
Wang, M.H.; Dlugosz, A.A.; Sun, Y.; Suda, T.; Skeel, A.L.; Leonard, E.J. Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes. Exp. Cell Res., 1996, 226(1), 39-46.
[105]
Leonar, E.J.; Skeel, A.H. Isolation of macrophage stimulating protein (MSP) from human serum. Exp. Cell Res., 1978, 114(1), 117-126.
[106]
Skeel, A.; Yoshimura, T.; Showalter, S.D.; Tanaka, S.; Appella, E.; Leonard, E.J. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J. Exp. Med., 1991, 173(5), 1227-1234.
[107]
Han, S.; Stuart, L.A.; Degen, S.J. Characterization of the DNF15S2 locus on human chromosome 3: Identification of a gene coding for four kringle domains with homology to hepatocyte growth factor. Biochemistry, 1991, 30(40), 9768-9780.
[108]
Ganesan, R.; Kolumam, G.A.; Lin, S.J.; Xie, M.H.; Santell, L.; Wu, T.D.; Lazarus, R.A.; Chaudhuri, A.; Kirchhofer, D. Proteolytic activation of pro-macrophage-stimulating protein by hepsin. Mol. Cancer Res., 2011, 9(9), 1175-1186.
[109]
Wang, M.H.; Yoshimura, T.; Skeel, A.; Leonard, E.J. Proteolytic conversion of single chain precursor macrophage-stimulating protein to a biologically active heterodimer by contact enzymes of the coagulation cascade. J. Biol. Chem., 1994, 269(19), 3436-3440.
[110]
Ronsin, C.; Muscatelli, F.; Mattei, M.G.; Breathnach, R. A novel putative receptor protein tyrosine kinase of the met family. Oncogene, 1993, 8(5), 1195-1202.
[111]
Gaudino, G.; Follenzi, A.; Naldini, L.; Collesi, C.; Santoro, M.; Gallo, K.A.; Godowski, P.J.; Comoglio, P.M. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J., 1994, 13(15), 3524-3532.
[112]
Wang, M.H.; Julian, F.M.; Breathnach, R.; Godowski, P.J.; Takehara, T.; Yoshikawa, W.; Hagiya, M.; Leonard, E.J. Macrophage stimulating protein (MSP) binds to its receptor via the MSP beta chain. J. Biol. Chem., 1997, 272(27), 16999-17004.
[113]
Waltz, S.E.; McDowell, S.A.; Muraoka, R.S.; Air, E.L.; Flick, L.M.; Chen, Y.Q.; Wang, M.H.; Degan, S.J. Functional characterization of domains contained in hepatocyte growth factor-like protein. J. Biol. Chem., 1997, 272(48), 30526-30537.
[114]
Danilkovitch, A.; Miller, M.; Leonard, E.J. Interaction of macrophage-stimulating protein with its receptor. Residues critical for beta chain binding and evidence for independent alpha chain binding. J. Biol. Chem., 1999, 274(42), 29937-29943.
[115]
Yao, H.P.; Zhou, Y.Q.; Zhang, R.; Wang, M.H. MSP-RON signaling in cancer: pathogenesis and therapeutic potential. Nat. Rev. Cancer, 2013, 13(7), 466-481.
[116]
Chaudhuri, A.; Xie, M.H.; Yang, B.; Mahapatra, K.; Liu, J.; Marsters, S.; Bodepudi, S.; Ashkenazi, A. Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET. J. Biol. Chem., 2011, 286(37), 32762-32774.
[117]
Wang, M.H.; Lee, W.; Luo, Y.L.; Weis, M.T.; Yao, H.P. Altered expression of the RON receptor tyrosine kinase in various epithelial cancers and its contribution to tumourigenic phenotypes in thyroid cancer cells. J. Pathol., 2007, 213(4), 402-411.
[118]
Santoro, M.M.; Penengo, L.; Minetto, M.; Orecchia, S.; Cilli, M.; Gaudino, G. Point mutations in the tyrosine kinase domain release the oncogenic and metastatic potential of the Ron receptor. Oncogene, 1998, 17(6), 741-749.
[119]
Potratz, J.C.; Saunders, D.N.; Wai, D.H.; Ng, T.L.; McKinney, S.E.; Carboni, J.M.; Gottardis, M.M.; Triche, T.J.; Jurgens, H.; Pollak, M.N.; Aparicio, S.A.; Sorensen, P.H. Synthetic lethality screens reveal RPS6 and MST1R as modifiers of insulin-like growth factor-1 receptor inhibitor activity in childhood sarcomas. Cancer Res., 2010, 70(21), 8770-8781.
[120]
Camp, E.R.; Yang, A.; Gray, M.J.; Fan, F.; Hamilton, S.R.; Evans, D.B.; Hooper, A.T.; Pereira, D.S.; Hicklin, D.J.; Ellis, L.M. Tyrosine kinase receptor RON in human pancreatic cancer: expression, function, and validation as a target. Cancer, 2007, 109(6), 1030-1039.
[121]
Thomas, R.M.; Jaquish, D.V.; French, R.P.; Lowy, A.M. The RON tyrosine kinase receptor regulates vascular endothelial growth factor production in pancreatic cancer cells. Pancreas, 2010, 39(3), 301-307.
[122]
Passos-Silva, D.G.; Brandan, E.; Santos, R.A.S. Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol. Sci., 2015, 36(5), 310-320.
[123]
Wang, M.H.; Padhye, S.S.; Guin, S.; Ma, Q.; Zhou, Y.Q. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol. Sin., 2010, 31(9), 1181-1188.
[124]
Gordon, M.S.; Sweeney, C.S.; Mendelson, D.S.; Eckhardt, S.G.; Anderson, A.; Beaupre, D.M.; Branstetter, D.; Burgess, T.L.; Coxon, A.; Deng, H.; Kaplan-Lefko, P.; Leitch, I.M.; Oliner, K.S.; Yan, L.; Zhu, M.; Gore, L. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin. Cancer Res., 2010, 16(2), 699-710.
[125]
Wright, J.W.; Kawas, L.H.; Harding, J.W. A role for the brain RAS in Alzheimer’s and Parkinson;s diseases. Front. Endocrinol., 2013, 4(1), article 158.
[126]
Allen, A.M.; Moeller, I.; Jenkings, T.A.; Zhuo, J.; Aldred, G.P.; Chai, S.Y.; Mendelsohn, F.A. Angiotensin receptors in the nervous system. Brain Res. Bull., 1998, 47(1), 17-28.
[127]
Sandberg, K.; Ji, H.; Catt, K.J. Regulation of angiotensin II receptors in rat brain during dietary sodium changes. Hypertension, 1994, 23(Suppl. 1), I-137-I-141.
[128]
Unger, T.; Chung, O.; Csikos, T.; Culman, J.; Gallinat, S.; Gohlke, P.; Hohle, S.; Meffert, S.; Stoll, M.; Stroth, U.; Zhu, Y.A. Angiotensin receptors. J. Hypertens., 1996, 14(5), S95-S103.
[129]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[130]
Phillips, M.I.; de Oliveira, E.M. Brain renin angiotensin in disease. J. Mol. Med., 2008, 86(6), 715-722.
[131]
Hanesworth, J.M.; Sardinia, J.F.; Krebs, L.T.; Hall, K.L.; Harding, J.W. Elucidation of a specific binding site for angiotensin II(3-8), angiotensin IV, in mammalian heart membranes. J. Pharmcol. Exp. Ther., 1993, 266(2), 1036-1042.
[132]
Harding, J.W.; Cook, V.I.; Miller-Wing, A.V.; Hanesworth, J.M.; Sardinia, M.F.; Hall, K.L.; Stobb, J.W.; Swanson, G.N.; Coleman, J.K.; Wright, J.W.; Harding, E.C. Identification of an AII (3-8) [AIV] binding site in guinea pig hippocampus. Brain Res., 1992, 583(1-2), 340-343.
[133]
Swanson, G.N.; Hanesworth, J.M.; Sardinia, M.F.; Coleman, J.K.; Wright, J.W.; Hall, K.L.; Miller-Wing, A.V.; Stobb, J.W.; Cook, V.I.; Harding, E.C.; Harding, J.W. Discovery of a distinct binding site for angiotensin II (3-8), a putative angiotensin IV receptor. Regul. Pept., 1992, 40(3), 409-419.
[134]
Wright, J.W.; Krebs, L.T.; Stobb, J.W.; Harding, J.W. The angiotensin IV system: Functional implications. Front. Neuroendocrinol., 1995, 16(1), 23-52.
[135]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin system. Physiol. Rev., 2006, 86(3), 747-803.
[136]
Skipworth, J.R.A.; Szabadkai, L.G.; Olde Damink, S.W.M.; Leung, P.S.; Humphries, S.E.; Montgomery, H.E. Review article: Pancreatic renin-angiotensin systems in health and disease. Aliment. Pharmacol. Ther., 2011, 34(8), 840-852.
[137]
Campbell, D.J.; Habener, J.F. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J. Clin. Invest., 1986, 78(1), 31-39.
[138]
Deshepper, C.F.; Mellon, S.H.; Cumin, F.; Baxter, J.D.; Ganong, W.F. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc. Natl. Acad. Sci. USA, 1986, 83(19), 7552-7556.
[139]
Leung, P.S.; Ip, S.P. Pancreatic acinar cell: Its role in acute pancreatitis. Int. J. Biochem. Cell Biol., 2006, 38(7), 1024-1030.
[140]
Leung, P.S.; Chan, W.P.; Wong, T.P.; Sernia, C. Expression and localization of the renin-angiotensin system in the rat pancreas. J. Endocrinol., 1999, 160(1), 13-19.
[141]
Speth, R.C.; Daubert, D.L.; Grove, K.L.; Angiotensin, I.I. A reproductive hormone too? Regul. Pept., 1999, 79(1), 25-40.
[142]
Wright, J.W.; Harding, J.W. Brain renin-angiotensin: a new look at an old system. Prog. Neurobiol., 2011, 95(1), 49-67.
[143]
George, A.J.; Thomas, W.G.; Hannan, R.D. The renin angiotensin system and cancer: Old dog, new tricks. Nat. Rev. Cancer, 2010, 10(11), 745-759.
[144]
Hernandez, N.A.; Correa, E.; Avila, E.P.; Vela, T.A.; Perez, V.M. PAR1 is selectively over expressed in high grade breast cancer patients: A cohort study. J. Transl. Med., 2009, 7, 47.
[145]
Chow, L.; Rezmann, L.; Catt, K.J.; Louis, W.J.; Frauman, A.G.; Nahmias, C.; Louis, S.N. Role of the renin-angiotensin system in prostate cancer. Mol. Cell. Endocrinol., 2009, 302(2), 219-229.
[146]
Wilop, S.; von Hobe, S.; Crysandt, M.; Esser, A.; Osieka, R.; Jost, E. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J. Cancer Res. Clin. Oncol., 2009, 135(10), 1429-1435.
[147]
Napoleone, E.; Cutrone, A.; Cugino, D.; Amore, C.; Di Santo, A.; Iacoviello, L.; de Gaetano, G.; Donati, M.B.; Lorenzet, R. Inhibition of the renin-angiotensin system downregulates tissue factor and vascular endothelial growth factor in human breast carcinoma cells. Thromb. Res., 2012, 129(6), 736-742.
[148]
Okazaki, M.; Fushida, S.; Harada, S.; Tsukada, T.; Kinoshita, J.; Oyama, K.; Tajima, H.; Ninomiya, I.; Fujimura, T.; Ohta, T. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett., 2014, 355(1), 46-53.
[149]
Egami, K. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J. Clin. Invest., 2003, 112(1), 67-75.
[150]
Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; Han, X.; Adstamongkonkul, P.; Popovic, Z.; Huang, P.; Bawendi, M.G.; Boucher, Y.; Jain, R.K. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun., 2013, 4, 2516.
[151]
Chen, Y.H.; Huang, C.H.; Lu, H.I.; Chen, C.H.; Huang, W.T.; Hsieh, M.J. Prognostic impact of renin-angiotensin system blockade in esophageal squamous cell carcinoma. J. Renin Angiotensin Aldosterone Syst., 2015, 16(4), 1185-1192.
[152]
Chae, Y.K.; Brown, E.N.; Lei, X.; Milhem-Bertrandt, A.; Giordano, S.H.; Litton, J.K.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M.; Chavez-Macgregor, M. Use of ACE inhibitors and angiotensin receptor blockers and primary breast cancer outcomes. J. Cancer, 2013, 4(7), 549-556.
[153]
Engineer, D.R.; Burney, B.O.; Hayes, T.G.; Garcia, J.M. Exposure to ACEI/ARB and β-blockers is associated with improved survival and decreased tumor progression and hospitalizations in patients with advanced colon cancer. Transl. Oncol., 2013, 6(5), 539-545.
[154]
Yuge, K.; Miyajima, A.; Tanaka, N.; Shirotake, S.; Kosaka, T.; Kikuchi, E.; Oya, M. Prognostic value of renin-angiotensin system blockade in non-muscle-invasive bladder cancer. Ann. Surg. Oncol., 2012, 19(12), 3987-3993.
[155]
Cardwell, C.R.; McMenamin, U.C.; Hicks, B.M.; Hughes, C.; Cantwell, M.M.; Murray, L.J. Drugs affecting the renin-angiotensin system and survival from cancer: A population based study of breast, colorectal and prostate cancer patient cohorts. BMC Med., 2014, 12, 28.
[156]
Chiang, Y.Y.; Chen, K.B.; Tsai, T.H.; Tsai, W.C. Lowered cancer risk with ACE inhibitors/ARBs: A population-based cohort study. J. Clin. Hypertens., 2014, 16(1), 27-33.
[157]
Hallas, J.; Christensen, R.; Andersen, M.; Friis, S.; Bjerrum, L. Long term use of drugs affecting the renin-angiotensin system and the risk of cancer: A population-based case-control study. Br. J. Clin. Pharmacol., 2012, 74(1), 180-188.
[158]
Huang, C.C.; Chan, W.L.; Chen, Y.C.; Chen, T.J.; Lin, S.J.; Chen, J.W.; Leu, H.B. Angiotensin II receptor blockers and risk of cancer in patients with systemic hypertension. Am. J. Cardiol., 2011, 107(7), 1028-1033.
[159]
Pasternak, B.; Svanstrom, H.; Callreus, T.; Melbye, M.; Hviid, A. Use of angiotensin receptor blockers and the risk of cancer. Circulation, 2011, 123(16), 1729-1736.
[160]
Rao, G.A.; Mann, J.R.; Shoaibi, A.; Pai, S.B.; Bottai, M.; Sutton, S.S.; Haddock, K.S.; Bennett, C.I.; Hebert, J.R. Angiotensin receptor blockers: Are they related to lung cancer? J. Hypertens., 2013, 31(8), 1669-1675.
[161]
Sipahi, I.; Debanne, S.M.; Rowland, D.Y.; Simon, D.I.; Fang, J.C. Angiotensin-receptor blockade and risk of cancer: Meta-analysis of randomized controlled trials. Lancet Oncol., 2010, 11(7), 627-636.
[162]
Kim, S.; Toyokawa, H.; Yamao, J.; Satoi, S.; Yanagimoto, H.; Yamamoto, T.; Hirooka, S.; Yamaki, S.; Inoue, K.; Matsui, Y.; Kwon, A.H. Antitumor effect of angiotensin II type 1 receptor blocker losartan for orthotopic rat pancreatic adenocarcinoma. Pancreas, 2014, 43(6), 886-890.
[163]
Park, H.; Poo, N.N. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci., 2013, 14(1), 7-23.
[164]
Guimond, M.O.; Battista, M.C.; Nikjouitavabi, F.; Carmel, M.; Barres, V.; Doueik, A.A.; Fazli, L.; Gleave, M.; Sabbagh, R.; Gallo-Payet, N. Expression and role of the angiotensin II AT2 receptor in human prostate tissue: In search of a new therapeutic option for prostate cancer. Prostate, 2013, 73(10), 1057-1068.
[165]
Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Kogure, H.; Yagioka, H.; Miyabayashi, K.; Mizuno, I.S.; Yamamoto, K.; Mouri, D.; Kawakubo, K.; Yamamoto, N.; Hirano, K.; Sasahira, N.; Tateishi, K.; Tada, M.; Koike, K. Phase I trial of gemcitabine and candesartan combination therapy in normotensive patients with advanced pancreatic cancer: GECA1. Cancer Sci., 2012, 103(8), 1489-1492.
[166]
Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Takahara, N.; Ito, Y.; Matsubara, S.; Uchino, R.; Yagioka, H.; Arizumi, T.; Hamada, T.; Miyabayashi, K.; Mizuno, S.; Yamamoto, K.; Kogure, H.; Yamamoto, N.; Hirano, K.; Sasahira, N.; Tateishi, K.; Tada, M.; Koike, K. A multicenter phase II trial of gemcitabine and candesartan combination therapy in patients with advanced pancreatic cancer: GECA2. Invest. New Drugs, 2013, 31(5), 1294-1299.
[167]
de Gasparo, M.; Husain, A.; Alexander, W.; Catt, K.J.; Chiu, A.T.; Drew, M.; Goodfriend, T.; Harding, J.W.; Inagami, T.; Timmermans, P.B. Proposed update of angiotensin receptor nomenclature. Hypertension, 1995, 25(5), 924-939.
[168]
de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International Union of Pharmacology. XIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472.
[169]
Kawas, L.H.; McCoy, A.T.; Yamamoto, B.J.; Wright, J.W.; Harding, J.W. Development of angiotensin IV analogs as hepatocyte growth factor/Met modifiers. J. Pharmacol. Exp. Ther., 2012, 340(3), 539-548.
[170]
McCoy, A.T.; Benoist, C.C.; Wright, J.W.; Kawas, L.H.; Bule-Ghogare, J.M.; Zhu, M.; Appleyard, S.M.; Wayman, G.A.; Harding, J.W. Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents. J. Pharmacol. Exp. Ther., 2013, 344(1), 141-154.
[171]
Wright, J.W.; Kawas, L.H.; Harding, J.W. A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front. Endocrinol., 2013, 4, 158.
[172]
Yamamoto, B.J.; Elias, P.D.; Masino, J.A.; Hudson, B.D.; McCoy, A.T.; Anderson, Z.J.; Varnum, M.D.; Sardinia, M.F.; Wright, J.W.; Harding, J.W. The angiotensin IV analog Nle-Tyr-Leu-ψ-(CH2-NH2)3-4-His-Pro-Phe (Norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J. Pharmacol. Exp. Ther., 2010, 333(1), 161-173.
[173]
Kawas, L.H.; Yamamoto, B.J.; Wright, J.W.; Harding, J.W. Mimics of the dimerization domain of hepatocyte growth factor exhibit anti-Met and anticancer activity. J. Pharmacol. Exp. Ther., 2011, 339(2), 509-518.
[174]
Lu, P.C.; Yang, Y.S.; Wang, Z.C. Recent progress in the development of small c-Met inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1276-1288.
[175]
Kiehne, K.; Herzig, K.H.; Folsch, U.R. c-Met expression in pancreatic cancer and effects of hepatocyte growth factor on pancreatic cancer cell growth. Pancreas, 1997, 15(1), 35-40.
[176]
Church, K.J.; Vanderwerff, B.R.; Riggers, R.R.; McMicheal, M.D.; Mateo-Victoriano, B.; Sukumar, S.R.; Harding, J.W. Analogs of the hepatocyte growth factor and macrophage stimulating protein hinge regions act as Met and Ron dual inhibitors in pancreatic cancer cells. Anti-Cancer Drugs, 2016, 27(8), 766-779.
[177]
Church, K.J.; Vanderwerff, B.R.; Riggers, R.R.; Mateo-Victoriano, B.; Fagnan, M.; Phillip, H.; Harris, P.H. LeValley, J.C.; Harding, J.W. Norleual, a hepatocyte growth factor and macrophage stimulating protein dual antagonist, increases pancreatic cancer sensitivity to gemcitabine. Anti-Cancer Drugs, 2018, 29(4), 295-306.