[1]
Adewusi, E.A.; Afolayan, A.J. A review of natural products with hepatoprotective activity. J. Med. Plants Res., 2010, 4(13), 1318-1334.
[2]
Deshwal, N.; Sharma, A.K.; Sharma, P. Review on hepatoprotective plants. Int. J. Pharm. Sci. Rev. Res., 2011, 7(1), 15-26.
[3]
Gupta, S.S. Prospects and perspectives of natural plant products in medicine. Indian J. Pharmacol., 1994, 26(1), 1-12.
[4]
Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N. Plants and human health in the twenty-first century. Trends Biotechnol., 2002, 20(12), 522-531.
[5]
Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of medicinal plants for secondary metabolites. Middle East J. Sci. Res., 2011, 8(3), 579-584.
[6]
Stewart, J.L.; Brandis, D. The Forest Flora of North-west and Central India: a handbook of the indigenous trees and shrubs of those countries; WH Allen & Company, 1874.
[7]
Kaisoon, O.; Siriamornpun, S.; Weerapreeyakul, N.; Meeso, N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods, 2011, 3(2), 88-99.
[8]
Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol., 2007, 110(1), 105-117.
[9]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[10]
Mohsin, R.; Choudhary, M.I. Medicinal plants with anticonvulsant activities. In: Studies in Natural Products Chemistry; Elsevier, 2000; Vol. 22, pp. 507-553.
[11]
Merzouki, A.; Ed-Derfoufi, F.; Mesa, J.M. Contribution to the knowledge of Rifian traditional medicine. II: Folk medicine in Ksar Lakbir district (NW Morocco). Fitoterapia, 2000, 71(3), 278-307.
[12]
El-Ansari, M.A.; Nawwar, M.A.M.; el-Dein, A.; el-Sherbeiny, D.A.; El-Sissi, H.I. Sulphated kaemperol 7, 4′-dimethyl ether and a quercetin isoferulylglucuronide from the flowers of Tamarix aphylla. Phytochemistry, 1976, 15(1), 231-232.
[13]
Merfort, I.; Buddrus, J.; Nawwar, M.A.M.; Lambert, J. A triterpene from the bark of Tamarix aphylla. Phytochemistry, 1992, 31(11), 4031-4032.
[14]
Nawwar, M.A.M.; Hussein, S.A.M.; Ayoub, N.A.; Hofmann, K.; Linscheid, M.; Harms, M.; Wende, K.; Lindequist, U. Aphyllin, the first isoferulic acid glycoside and other phenolics from Tamarix aphylla flowers. Die Pharmazie-An Int. J. Pharm. Sci., 2009, 64(5), 342-347.
[15]
Rastogi, R.P.; Mehrotra, B.N. Isolation and structure determination
of a new ellagitannin from the galls of Tamarix aphylla. Compend.
Indian Med. Plants, NISCOM. New Delhi, 1994, 5, 828.
[16]
Ishak, M.S.; El Sissi, H.I.; Nawwar, M.A.M.; El Sherbieny, A.E.A. Tannins and polyphenolics of the galls of Tamarix aphylla “Part I”. Planta Med., 1972, 21(03), 246-253.
[17]
Kiso, Y.; Tohkin, M.; Hikino, H.; Hattori, M.; Sakamoto, T.; Namba, T. Mechanism of antihepatotoxic activity of glycyrrhizin, I: Effect on free radical generation and lipid peroxidation. Planta Med., 1984, 50(04), 298-302.
[18]
Mattson, M.P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol., 2009, 44(10), 625-633.
[19]
Gutteridge, J.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem., 1995, 41(12), 1819-1828.
[20]
Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biologic. Interact., 2006, 160(1), 1-40.
[21]
Murphy, M.P.; Holmgren, A.; Larsson, N.-G.R.; Halliwell, B.; Chang, C.J.; Kalyanaraman, B.; Rhee, S.G.; Thornalley, P.J.
Partridge, L.; Gems, D. Unraveling the biological roles of reactive oxygen species. Cell Metab., 2011, 13(4), 361-366.
[22]
Akinmoladun, A.C.; Ibukun, E.O.; Afor, E.; Obuotor, E.M.; Farombi, E.O. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Sci. Res. Essays, 2007, 2(5), 163-166.
[23]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[24]
Boulaaba, M.; Tsolmon, S.; Ksouri, R.; Han, J.; Kawada, K.; Smaoui, A.; Abdelly, C.; Isoda, H. Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G 2/M cell cycle arrest. Cytotechnology, 2013, 65(6), 927-936.
[25]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[26]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[27]
Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol., 2000, 31(4), 247-256.
[28]
Johann, S.; Pizzolatti, M.G.; Donnici, C.U.L.; Resende, M.A.D. Antifungal properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Braz. J. Microbiol., 2007, 38(4), 632-637.
[29]
Wright, G.D.; Sutherland, A.D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med., 2007, 13(6), 260-267.
[30]
Amina Tabet, A.B. Antioxidant and Antibacterial Activities of Two Algerian Halophytes. Int. J. Pharm. Sci. Rev. Res., 2018, 50(1), 114-121.
[31]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[33]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins, 2010, 2(4), 517-551.
[34]
Qian, B.; Nag, S.A.; Su, Y.; Voruganti, S.; Qin, J-J.; Zhang, R.; Cho, W. miRNAs in cancer prevention and treatment and as molecular targets for natural product anticancer agents. Curr. Cancer Drug Targets, 2013, 13(5), 519-541.
[35]
Lowery, A.J.; Miller, N.; McNeill, R.E.; Kerin, M.J. MicroRNAs as prognostic indicators and therapeutic targets: Potential effect on breast cancer management. Clin. Cancer Res., 2008, 14(2), 360-365.
[36]
Srivastava, S.K.; Arora, S.; Averett, C.; Singh, S.; Singh, A.P. Modulation of microRNAs by phytochemicals in cancer: Underlying mechanisms and translational significance. BioMed Res. Int., 2015, 2015(9), 1155-1164.
[37]
Shaalan, Y.M.; Handoussa, H.; Youness, R.A.; Assal, R.A.; El-Khatib, A.H.; Linscheid, M.W.; El Tayebi, H.M.; Abdelaziz, A.I. Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat. Prod. Res., 2018, 32(18), 2217-2220.
[38]
Ponnusamy, S.; Ravindran, R.; Zinjarde, S.; Bhargava, S.; Ravi Kumar, A. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evidence-Based Complement. Alternat. Med., 2011, 2011, 515647.
[39]
Jung, M.; Park, M.; Lee, H.C.; Kang, Y-H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[40]
Gauttam, V.K.; Kalia, A.N. Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. J. Adv. Pharm. Technol. Res., 2013, 4(2), 108-117.
[41]
Mutalik, S.; Chetana, M.; Sulochana, B.; Devi, P.U.; Udupa, N. Effect of dianex, a herbal formulation on experimentally induced diabetes mellitus. Phytother. Res., 2005, 19(5), 409-415.
[42]
Bhattacharya, S.K.; Satyan, K.S.; Chakrabarti, A. Effect of Trasina, an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J. Experiment. Biol., 1997, 35(3), 297-299.
[43]
Wu, C.; Okar, D.A.; Kang, J.; Lange, A.J. Reduction of hepatic glucose production as a therapeutic target in the treatment of diabetes. Curr. Drug Targets Immune Endocr. Metabol. Disord., 2005, 5(1), 51-59.
[44]
Nordlie, R.C.; Foster, J.D.; Lange, A.J. Regulation of glucose production by the liver. Annu. Rev. Nutr., 1999, 19(1), 379-406.
[45]
Ou, S.; Kwok, K-C.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem., 2001, 49(2), 1026-1029.
[46]
Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res., 2013, 57(1), 48-57.
[47]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[48]
Hebi, M.; Eddouks, M. Hypolipidemic activity of Tamarix articulata Vahl. in diabetic rats. J. Integr. Med., 2017, 15(6), 476-482.
[49]
Alkreathy, H.M.; Khan, R.A.; Khan, M.R.; Sahreen, S. CCl 4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis. BMC Complement. Altern. Med., 2014, 14(1), 452.
[50]
Khan, R.A.; Khan, M.R.; Sahreen, S. Attenuation of CCl4-induced hepatic oxidative stress in rat by Launaea procumbens. Exp. Toxicol. Pathol., 2013, 65(3), 319-326.
[51]
Tili, E.; Michaille, J-J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFÎ2 signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[52]
Hagiwara, K.; Kosaka, N.; Yoshioka, Y.; Takahashi, R-U.; Takeshita, F.; Ochiya, T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci. Rep., 2012, 2, 314.
[53]
Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol., 2013, 15(9), 741-746.
[54]
Bai, T.; Dong, D-S.; Pei, L. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol. Rep., 2014, 31(5), 2293-2297.
[55]
Kumazaki, M.; Noguchi, S.; Yasui, Y.; Iwasaki, J.; Shinohara, H.; Yamada, N.; Akao, Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem., 2013, 24(11), 1849-1858.
[56]
Tili, E.; Michaille, J-J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[57]
Tsang, W.P.; Kwok, T.T. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J. Nutr. Biochem., 2010, 21(2), 140-146.
[58]
Siddiqui, I.A.; Asim, M.; Hafeez, B.B.; Adhami, V.M.; Tarapore, R.S.; Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J., 2011, 25(4), 1198-1207.
[59]
Wang, H.; Bian, S.; Yang, C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis, 2011, 32(12), 1881-1889.
[60]
Zhou, D-H.; Wang, X.; Feng, Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr. Cancer, 2014, 66(4), 636-644.
[61]
Chakrabarti, M.; Ai, W.; Banik, N.L.; Ray, S.K. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem. Res., 2013, 38(2), 420-432.
[62]
Salerno, E.; Scaglione, B.J.; Coffman, F.D.; Brown, B.D.; Baccarini, A.; Fernandes, H.; Marti, G.; Raveche, E.S. Correcting miR-
15a/16 genetic defect in New Zealand Black mouse model of CLL
enhances drug sensitivity. Mol. Cancer Therapeut, 2009, 1535-
7163. MCT-09-0127.
[63]
Chen, Y.; Zaman, M.S.; Deng, G.; Majid, S.; Saini, S.; Liu, J.; Tanaka, Y.; Dahiya, R. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev. Res., 2011, 4(1), 76-86.
[64]
Del Follo-Martinez, A.; Banerjee, N.; Li, X.; Safe, S.; Mertens-Talcott, S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer, 2013, 65(3), 494-504.
[65]
Appari, M.; Babu, K.R.; Kaczorowski, A.; Gross, W.; Herr, I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int. J. Oncol., 2014, 45(4), 1391-1400.
[66]
Yang, J.; Cao, Y.; Sun, J.; Zhang, Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol., 2010, 27(4), 1114-1118.
[67]
Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223.
[68]
Mudduluru, G.; George-William, J.N.; Muppala, S.; Asangani, I.A.; Kumarswamy, R.; Nelson, L.D.; Allgayer, H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep., 2011, 31(3), 185-197.
[69]
Zeng, C-W.; Zhang, X-J.; Lin, K-Y.; Ye, H.; Feng, S-Y.; Zhang, H.; Chen, Y-Q. Camptothecin induces apoptosis in cancer cells via miR-125b mediated mitochondrial pathways. Mol. Pharmacol., 2012, 81(4), 578-586.
[70]
Li, Y.; VandenBoom, T.G.; Kong, D.; Wang, Z.; Ali, S.; Philip, P.A.; Sarkar, F.H. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res., 2009, 69(16), 6704-6712.
[71]
Li, Y.; VandenBoom, T.G.; Wang, Z.; Kong, D.; Ali, S.; Philip, P.A.; Sarkar, F.H. miR-146a suppresses invasion of pancreatic cancer
cells. Cancer Res, 2010, 0008-5472. CAN-09-2792.
[72]
Jin, Y. 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol. Cell. Biochem., 2011, 358(1-2), 345-354.