[1]
Puangsombat, K.; Gadgil, P.; Houser, T.A.; Hunt, M.C.; Smith, J.S. Heterocyclic amine content in commercial ready to eat meat products. Meat Sci., 2011, 88(2), 227-233.
[2]
Lippi, G.; Mattiuzzi, C.; Cervellin, G. Meat consumption and cancer risk: A critical review of published meta-analyses. Crit. Rev. Oncol. Hematol., 2016, 97(Supplement. C), 1-14.
[3]
Liao, G.Z.; Wang, G.Y.; Xu, X.L.; Zhou, G.H. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci., 2010, 85(1), 149-154.
[4]
Zaidi, R.; Kumar, S.; Rawat, P.R. Rapid detection and quantification of dietary mutagens in food using mass spectrometry and ultra-performance liquid chromatography. Food Chem., 2012, 135(4), 2897-2903.
[5]
Elmer, P.J.; Obarzanek, E.; Vollmer, W.M.; Simons-Morton, D.; Stevens, V.J.; Young, D.R.; Lin, P.H.; Champagne, C.; Harsha, D.W.; Svetkey, L.P.; Ard, J.; Brantley, P.; Proschan, M.A.; Erlinger, T.P.; Appel, L.J. Group., P.C.R. Effects of comprehensive lifestyle modification on diet, weight, physical fitness, and blood pressure control: 18-month results of a randomized trial. Ann. Intern. Med., 2006, 144(7), 485-495.
[6]
Wolk, A. Potential health hazards of eating red meat. J. Intern. Med., 2017, 281(2), 106-122.
[7]
Ohgaki, H.; Hasegawa, H.; Kato, T.; Suenaga, M.; Ubukata, M.; Sato, S.; Takayama, S.; Sugimura, T. Carcinogenicity in mice and rats of heterocyclic amines in cooked foods. Environ. Health Perspect., 1986, 67, 129-134.
[8]
Faghfoori, Z.; Pourghassem Gargari, B.; Saber Gharamaleki, A.; Bagherpour, H.; Yari Khosroushahi, A. Cellular and molecular mechanisms of probiotics effects on colorectal cancer. J. Funct. Foods, 2015, 18(Part A), 463-472.
[9]
Gnagnarella, P.; Caini, S.; Maisonneuve, P.; Gandini, S. Carcinogenicity of high consumption of meat and lung cancer risk among non-smokers: A comprehensive meta-analysis. Nutr. Cancer, 2018, 70, 1-13.
[10]
Boskovic, M.; Baltic, M. Association between red meat consumption and cancer risk. Scient. J. Meat Technology., 2016, 57(2), 81-88.
[11]
Chen, J.; He, Z.; Qin, F.; Chen, J.; Zeng, M. Formation of free and protein-bound heterocyclic amines in roast beef patties assessed by UPLC-MS/MS. J. Agric. Food Chem., 2017, 65(22), 4493-4499.
[12]
Gross, G.A.; Turesky, R.J.; Fay, L.B.; Stillwell, W.G.; Skipper, P.L.; Tannenbaum, S.R. Heterocyclic aromatic amine formation in grilled bacon, beef and fish and in grill scrapings. Carcinogenesis, 1993, 14(11), 2313-2318.
[13]
Cheng, K.W.; Chen, F.; Wang, M. Heterocyclic amines: Chemistry and health. Mol. Nutr. Food Res., 2006, 50(12), 1150-1170.
[14]
Pezdirc, M.; Žegura, B.; Filipič, M. Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food Chem. Toxicol., 2013, 59(Suppl. C), 386-394.
[15]
Shin, A.; Shrubsole, M.J.; Ness, R.M.; Wu, H.; Sinha, R.; Smalley, W.E.; Shyr, Y.; Zheng, W. Meat and meat-mutagen intake, doneness preference and the risk of colorectal polyps: The tennessee colorectal polyp study. Int. J. Cancer, 2007, 121(1), 136-142.
[16]
International agency for research on cancer. IARC monographs on the evaluation of carcinogenic risks to humans., 2002.
[17]
Gibis, M. Heterocyclic aromatic amines in cooked meat products: Causes, formation, occurrence, and risk assessment. Compr. Rev. Food Sci. Food Saf., 2016, 15(2), 269-302.
[18]
Oz, F.; Kotan, G. Effects of different cooking methods and fat levels on the formation of heterocyclic aromatic amines in various fishes. Food Control, 2016, 67(Supplement. C), 216-224.
[19]
Szterk, A. Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. J. Food Compos. Anal., 2015, 40(Supplement. C), 39-46.
[20]
Knize, M.G.; Dolbeare, F.A.; Carroll, K.L.; Moore, D.H.; Felton, J.S. Effect of cooking time and temperature on the heterocyclic amine content of fried beef patties. Food Chem. Toxicol., 1994, 32(7), 595-603.
[21]
Tsuda, H.; Hara, K.; Miyamoto, T. Binding of mutagens to exopolysaccharide produced by lactobacillus plantarum mutant strain 301102S. J. Dairy Sci., 2008, 91(8), 2960-2966.
[22]
Zoghi, A.; Khosravi, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 2014, 14(1), 84-98.
[23]
Limdi, J.K.; O’Neill, C.; McLaughlin, J. Do probiotics have a therapeutic role in gastroenterology? World J. Gastroenterol., 2006, 12(34), 5447-5457.
[24]
Liévin-Le Moal, V.; Servin, A.L. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious bio therapeutic agents. Clin. Microbiol. Rev., 2014, 27(2), 167-199.
[25]
Masood, M.I.; Qadir, M.I.; Shirazi, J.H.; Khan, I.U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol., 2011, 37(1), 91-98.
[26]
Roberfroid, M.B. Prebiotics and probiotics: Are they functional foods? Am. J. Clin. Nutr., 2000, 71(6), 1682s-1687s.
[27]
Gilliland, S.E. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Lett., 1990, 87(1), 175-188.
[28]
Abbas Ahmadi, M.; Tajabadi Ebrahimi, M.; Mehrabian, S.; Tafvizi, F.; Bahrami, H.; Dameshghian, M. Antimutagenic and anticancer effects of lactic acid bacteria isolated from tarhana through ames test and phylogenetic analysis by 16S rDNA. Nutr. Cancer, 2014, 66(8), 1406-1413.
[29]
Butel, M.J. Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses.., 2014, 44(1), 1-8.
[30]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 2014, 14(1), 84-98.
[31]
Khorshidian, N.; Yousefi, M.; Hosseini, H.; Shadnoush, M.; Mortazavian, A. Potential Anticarcinogenic Effects of Lactic Acid Bacteria and Probiotics in Detoxification of Process-Induced Food Toxicants, 2016.
[32]
Ramona, M.; Cruz, A.; Khosravi-Darani, K.; Ochratoxin, A. From safety aspects to prevention and remediation strategies. Curr. Nutr. Food Sci., 2018, 14(1), 11-16.
[33]
Zoghi, A.; Khosravi‐Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi Sayed, A. Effect of probiotics on patulin removal from synbiotic apple juice. J. Sci. Food Agric., 2016, 97(8), 2601-2609.
[34]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Survival of probiotics in symbiotic apple juice during refrigeration and subsequent exposure to simulated gastro-intestinal conditions. IRAN. J. Chem. Chem. Eng., 2018. in press
[35]
Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal. Agric. Biotechnol., 2018, 15, 25-34.
[36]
Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Biosorption of low concentrations of mercury ions from aqueous solution by Saccharomyces cerevisiae - A green technology in food industry and water treatment. Appl. Biochem. Biotechnol., 2019.
[37]
Stidl, R.; Sontag, G.; Koller, V.; Knasmüller, S. Binding of heterocyclic aromatic amines by lactic acid bacteria: Results of a comprehensive screening trial. Mol. Nutr. Food Res., 2008, 52(3), 322-329.
[38]
Gibis, M.; Weiss, J. Inhibitory effect of cellulose fibers on the formation of heterocyclic aromatic amines in grilled beef patties. Food Chem., 2017, 229(Supplement. C), 828-836.
[39]
Natale, D.; Gibis, M.; Rodriguez-Estrada, M.T.; Weiss, J. Inhibitory effect of liposomal solutions of grape seed extract on the formation of heterocyclic aromatic amines. J. Agric. Food Chem., 2014, 62(1), 279-287.
[40]
Keşkekoğlu, H.; Üren, A. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods. Meat Sci., 2014, 96(4), 1446-1451.
[41]
Vitaglione, P.; Monti, S.; Ambrosino, P.; Skog, K.; Fogliano, V. Carotenoids from tomatoes inhibit heterocyclic amine formation. Eur. Food Res. Technol., 2002, 215(2), 108-113.
[42]
Damašius, J.; Venskutonis, P.R.; Ferracane, R.; Fogliano, V. Assessment of the influence of some spice extracts on the formation of heterocyclic amines in meat. Food Chem., 2011, 126(1), 149-156.
[43]
Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem., 2018, 239(Supplement. C), 111-118.
[44]
Oz, F.; Kaya, M. The inhibitory effect of black pepper on formation of heterocyclic aromatic amines in high-fat meatball. Food Control, 2011, 22(3), 596-600.
[45]
Oz, F.; Kaya, M. The inhibitory effect of red pepper on heterocyclic aromatic amines in fried beef longissimus dorsi muscle. J. Food Process. Preserv., 2011, 35(6), 806-812.
[46]
Quelhas, I.; Petisca, C.; Viegas, O.; Melo, A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Effect of green tea marinades on the formation of heterocyclic aromatic amines and sensory quality of pan-fried beef. Food Chem., 2010, 122(1), 98-104.
[47]
Gibis, M.; Weiss, J. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chem., 2012, 134(2), 766-774.
[48]
Gibis, M.; Weiss, J. Inhibitory effect of marinades with hibiscus extract on formation of heterocyclic aromatic amines and sensory quality of fried beef patties. Meat Sci., 2010, 85(4), 735-742.
[49]
Rounds, L.; Havens, C.M.; Feinstein, Y.; Friedman, M.; Ravishankar, S. Concentration-dependent inhibition of Escherichia coli O157:H7 and heterocyclic amines in heated ground beef patties by apple and olive extracts, onion powder and clove bud oil. Meat Sci., 2013, 94(4), 461-467.
[50]
Lewandowska, A.; Przychodzeń, W.; Kusznierewicz, B.; Kołodziejski, D.; Namieśnik, J.; Bartoszek, A. Isothiocyanates may chemically detoxify mutagenic amines formed in heat processed meat. Food Chem., 2014, 157(Supplement. C), 105-110.
[51]
Tengilimoglu-Metin, M.M.; Hamzalioglu, A.; Gokmen, V.; Kizil, M. Inhibitory effect of hawthorn extract on heterocyclic aromatic amine formation in beef and chicken breast meat. Food Res. Int., 2017, 99(Part 1), 586-595.
[52]
Nowak, A.; Libudzisz, Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolize heterocyclic aromatic amines in vitro. Eur. J. Nutr., 2009, 48(7), 419-427.
[53]
Nowak, A.; Czyżowska, A.; Stańczyk, M. Protective activity of probiotic bacteria against 2-amino-3-methyl-3H-imidazo[4,5-f] quinoline (IQ) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b] pyridine (PhIP) – An in vitro study. Food Addit. Contam. Part A., 2015, 32(11), 1927-1938.
[54]
Burns, A.J.; Rowland, I.R. Anti-carcinogenicity of probiotics and prebiotics. Curr. Issues Intest. Microbiol., 2000, 1(1), 13-24.
[55]
Commane, D.; Hughes, R.; Shortt, C.; Rowland, I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res., 2005, 591(1-2), 276-289.
[56]
Lankaputhra, W.E.; Shah, N.P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res., 1998, 397(2), 169-182.
[57]
Sinha, R.; Rothman, N.; Salmon, C.P.; Knize, M.G.; Brown, E.D.; Swanson, C.A.; Rhodes, D.; Rossi, S.; Felton, J.S.; Levander, O.A. Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings. Food Chem. Toxicol., 1998, 36(4), 279-287.
[58]
Layton, D.W.; Bogen, K.T.; Knize, M.G.; Hatch, F.T.; Johnson, V.M.; Felton, J.S. Cancer risk of heterocyclic amines in cooked foods: An analysis and implications for research. Carcinogenesis, 1995, 16(1), 39-52.
[59]
Cummings, J.H.; Antoine, J-M.; Azpiroz, F.; Bourdet-Sicard, R.; Brandtzaeg, P.; Calder, P.C.; Gibson, G.R.; Guarner, F.; Isolauri, E.; Pannemans, D.; Shortt, C.; Tuijtelaars, S.; Watzl, B. PASSCLAIM1-Gut health and immunity. Eur. J. Nutr., 2004, 43(2), 118-173.
[60]
Gutiérrez Junquera, C.; Marco, A.; Nogales, A.; Tebar, R. Total and Segmental Colonic Transit Time and Anorectal Manometry in Children with Chronic Idiopathic Constipation., 2002.
[61]
Sreekumar, O.; Hosono, A. The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat. Res. Fundament. Mol. Mechan. Mutagen., 1998, 421(1), 65-72.
[62]
Terahara, M.; Meguro, S.; Kaneko, T. Effects of Lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci. Biotechnol. Biochem., 1998, 62(2), 197-200.
[63]
Orrhage, K.; Sillerström, E.; Gustafsson, J.Å.; Nord, C.E.; Rafter, J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. Fundament. Mol. Mechan. Mutagen., 1994, 311(2), 239-248.
[64]
Bolognani, F.; Rumney, C.J.; Rowland, I.R. Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem. Toxicol., 1997, 35(6), 535-545.
[65]
Xue , Bin. Z.; Ohta, Y. Antimutagenicity of cell fractions of microorganisms on potent mutagenic pyrolysates. Mutat. Res. Genet. Toxicol., 1993, 298(4), 247-253.
[66]
Lankaputhra, W.E.V.; Shah, N.P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res. Fundament. Mol. Mechan. Mutagen., 1998, 397(2), 169-182.
[67]
Ambalam, P.; Dave, J.M.; Nair, B.M.; Vyas, B.R.M. In vitro Mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231. Anaerobe, 2011, 17(5), 217-222.
[68]
Sreekumar, O.; Hosono, A. Antimutagenicity and the influence of physical factors in binding Lactobacillus gasseri and bifidobacterium longum cells to amino acid pyrolysates. J. Dairy Sci., 1998, 81(6), 1508-1516.
[69]
Hosono, O.S.A. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Cancer. J. Microbiol., 1998, 44(11), 1029-1036.
[70]
Duangjitcharoen, Y.; Kantachote, D.; Prasitpuripreecha, C.; Peerajan, S.; Sirilun, S. Selection and characterization of probiotic lactic acid bacteria with heterocyclic amine binding and nitrosamine degradation properties., 2014.
[71]
Beer, F.; Urbat, F.; Steck, J.; Huch, M.; Bunzel, D.; Bunzel, M.; Kulling, S.E. Metabolism of foodborne heterocyclic aromatic amines by lactobacillus reuteri DSM 20016. J. Agric. Food Chem., 2017, 65(32), 6797-6811.
[72]
Dominici, L.; Villarini, M.; Trotta, F.; Federici, E.; Cenci, G.; Moretti, M. Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J. Microbiol. Biotechnol., 2014, 24(3), 371-378.
[73]
Reddy, B.S.; Rivenson, A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res., 1993, 53(17), 3914.
[74]
Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes, 2013, 4(3), 181-192.
[75]
Bin , Zhang X.; Ohta, Y. Binding of Mutagens by Fractions of the Cell Wall Skeleton of Lactic Acid Bacteria on Mutagens. 1991.