[1]
Pickering TG. Ambulatory monitoring and blood pressure variability. London: Science Press 1991.
[2]
Parati G, Mutti E, Omboni S, Mancia G. How to deal with blood pressure variability.In: Brunner H, B. Waeber B, Eds. Ambulatory blood pressure recording, New York: Raven Press, Ltd. 1992: pp. 71-99.
[3]
James GD. Understanding blood pressure variation and variability: Biological importance and clinical significance. Adv Exp Med Biol 2017; 956: 3-19.
[4]
Pickering G. Hyperpiesis: High blood-pressure without evident cause: Essential hypertension. Br Med J 1965; 2: 959-68.
[5]
James PA, Oparil S, Carter BL, et al. Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). J Am Med Assoc 2014; 311(5): 507-20.
[6]
Whelton PK, Carey RM, Wilbert S, et al. 2017 ACC/AHA/AAPA/ ABC/ ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71: e13-e115.
[7]
Sterling P. Principles of allostasis: Optimal design, predictive regulation, pathophysiology, and rational therapeutics. In: Schulkin J, Ed. Allostasis, homeostasis, and the costs of physiological adaptation. Cambridge: Cambridge University Press 2004; pp. 17-64.
[8]
Paskalev D, Kircheva A, Krivoshiev S. A centenary of auscultatory blood pressure measurement: A tribute to Nikolai Korotkoff. Kidney Blood Press Res 2005; 2: 259-63.
[9]
Joint Recommendations of the American Heart Association and Cardiac Society of Great Britain and Ireland. Standardization of blood pressure readings. Am Heart J 1939; 18: 95-101.
[10]
Rowell LB. Human circulation: Regulation during physical stress. New York: Oxford University Press 1986.
[11]
Ayman D, Goldshine AD. Blood pressure determinations by patients with essential hypertension: The difference between clinic and home readings before treatment. Am J Med Sci 1940; 200: 465-74.
[12]
Levy RL, Hillman CC, Stroud WD, White PD. Transient hypertension: Its significance in terms of later development of sustained hypertension and cardiovascular-renal disease. J Am Med Assn 1944; 126: 829-33.
[13]
Rogers WF, Palmer RS. Transient hypertension as a military risk: Its relation to essential hypertension. N Engl J Med 1944; 230: 39-42.
[14]
Shapiro A, Meyers T, Reier MF, Ferris EB. Comparison of blood pressure response to Veriloid and to the doctor. Psychosom Med 1954; 16: 478-88.
[15]
Comstock GW. An epidemiological study of blood pressure levels in a biracial community in the southern United States. Am J Hyg 1957; 65: 271-315.
[16]
Pickering G. Hyperpiesis: High blood-pressure without evident cause: Essential hypertension. Brit Med J 1965; 2: 1021-6.
[17]
Kain HK, Hinman AT, Sokolow M. Arterial blood pressure measurements with a portable recorder in hypertensive patients: Variability and correlation with ‘casual’ pressure. Circulation 1964; 30: 882-92.
[18]
Hinman AT, Engel BT, Bickford AF. Portable blood pressure recorder: accuracy and preliminary use in evaluating intra-daily variation in pressure. Am Heart J 1962; 63: 663-8.
[19]
Sokolow M, Werdegar D, Kain HK, Hinman AT. Relationship between level of blood pressure measured casually and by portable recorders and severity of complications in essential hypertension. Circulation 1966; 34: 279-98.
[20]
Richardson DW, Honour AJ, Fenton GW, Stott FH, Pickering GW. Variation in pressure throughout the day and night. Clin Sci 1964; 26: 445-60.
[21]
Bevan AT, Honor AJ, Stott FH. Direct arterial pressure recording in unrestricted man. Clin Sci 1969; 36: 329-44.
[22]
James GD. Ambulatory blood pressure variation: Allostasis and adaptation. Autonom Neuro Basic Clin 2013; 177: 87-94.
[23]
James GD. Evaluation of journals, diaries, and indexes of worksite and environmental stress. In: White WH, Ed. Clinical hypertension and vascular disease: Blood pressure monitoring in cardiovascular medicine and therapeutics. 2nd ed. Totowa, N.J: The Humana Press 2007; pp. 39-58.
[24]
Flores JS. Blood pressure variability: A novel and important risk factor. Can J Cardiol 2013; 29: 557-63.
[25]
Palatini P, Reboldi G, Beilin LJ, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: The Ambulatory Blood Pressure International Study. Hypertension 2014; 64: 487-93.
[26]
Asayama K, Fang-Fei W, Hara A, Hansen TW, Li Y, Staessen JA. Prognosis in relation to blood pressure variability; con side of the argument. Hypertension 2015; 65: 1170-9.
[27]
Parati G, Ochoa JE, Lombardi C, Bilo G. Blood pressure variability: Assessment, predictive value, and potential as a therapeutic target. Curr Hypertens Rep 2015; 17: 23.
[28]
Cannon WB. The wisdom of the body New York; The Norton
Library, Norton WW & Company, reprint 1963. 1939.
[29]
Sterling P, Eyer J. Allostasis: A new paradigm to explain arousal pathology. In: Fisher J, Reason J, Eds. Handbook of life stress. New York: John Wiley 1988; pp. 629-49.
[30]
Mancia G, Parati G, Pomidossi G, Grassi G, Casadei R, Zanchetti A. Alerting reaction and rise in pressure during management by physician and nurse. Hypertension 1987; 9: 209-15.
[31]
Jhalani J, Goyala T, Clemow L, Schwartz JE, Pickering TG, Gerin W. Anxiety and outcome expectations predict the white-coat effect. Blood Press Monit 2005; 10: 317-9.
[32]
Longo D, Dorigatti F, Palatini P. Masked hypertension in adults. Blood Press Monit 2005; 10: 307-10.
[33]
James GD. Continuous blood pressure variation: Hidden adaptability. In: Sievert LL, Brown DE, Eds. Biological measures of human experience across the lifespan: Making visible the invisible. New York: Springer, Inc. 2016; pp. 143-69.
[34]
Pickering TG, James GD, Boddie C, Harshfield GA, Blank SG, Laragh JH. How common is white coat hypertension? J Am Med Assoc 1988; 259: 225-8.
[35]
Stergiou G, Palatini P, Asmar R, et al. Blood pressure measurement and hypertension diagnosis in the 2017 US guidelines: First things first. Hypertension 2018; 71: 963-5.
[36]
Zanstra YJ, Johnston DW. Cardiovascular reactivity in real life settings: Measurement, mechanisms and meaning. Biol Psychol 2011; 86: 98-105.
[37]
Hansen TW, Thijs L, Li Y, et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension 2010; 55: 1049-57.
[38]
Taylor KS, Heneghan CJ, Stevens RJ, Adams EC, Nunan D, Ward A. Heterogeneity of prognostic studies of 24-hour blood pressure variability: Systematic review and meta-analysis. PLoS One 2015; 10(5): e0126375.
[39]
James GD, Pickering TG, Schlussel YR, Clark LA, Denby L, Pregibon D. Measures of reproducibility of blood pressure variability measured by noninvasive ambulatory blood pressure monitors. J Ambul Monit 1990; 3(2): 139-47.
[40]
James GD, Cates EM, Pickering TG, Laragh JH. Parity and perceived job stress elevate blood pressure in young normotensive working women. Am J Hypertens 1989; 2: 637-9.
[41]
Ice GH, James GD, Crews DE. Blood pressure variation in the institutionalized elderly. Coll Antropol 2003; 27: 47-55.
[42]
Ice GH, James GD. Human biology and stress. In: Stinson S, Bogin B, O’Rourke D, Eds. Human biology: An evolutionary and biocultural perspective. 2nd Edition (pp. 459-512). New York: Wiley-Blackwell Publishing 2012; pp. 459-512.
[43]
James GD, Bovbjerg DH, Hill LA. Daily environmental differences in blood pressure and heart rate variability in healthy premenopausal women. Am J Hum Biol 215(27): 136-8.
[44]
Cochran WG. Sampling techniques. New York: John Wiley & Sons 1977.
[45]
James GD. Blood pressure response to the daily stressors of urban environments: methodology, basic concepts, and significance. Yrbk Phys Anthropol 1991; 34: 189-210.
[46]
Gerin W, James GD. Psychosocial determinants of hypertension: Laboratory and field models. Blood Press Monit 2010; 15: 93-9.
[47]
James GD, Pecker MS, Pickering TG, et al. Extreme changes in dietary sodium effect the daily variability and level of blood pressure in borderline hypertensive patients. Am J Hum Biol 1994; 6: 283-91.
[48]
Modesti PA, Moriabito M, Bertolozzi I. et al. Weather-related changes in 24-hour blood pressure profile: Effects of age and implications for hypertension management. Hypertension 2006; 47: 155-61.
[49]
James GD, Yee LS, Harshfield GA, Blank S, Pickering TG. Sex differences in factors affecting the daily variation of blood pressure. Soc Sci Med 1988; 26: 1019-23.
[50]
Schwartz JE, Warren K, Pickering TG. Mood, location and physical position as predictors of ambulatory blood pressure and heart rate: application of a multilevel random effects model. Ann Behav Med 1994; 16: 210-20.
[51]
Kamarck TW, Schiffman SM, Smithline L, et al. Effects of task strain, social conflict, on ambulatory cardiovascular activity: Life consequences of recurring stress in a multiethnic adult sample. Health Psychol 1998; 17: 17-29.
[52]
Brondolo E, Karlin W, Alexander K, Bubrow A, Schwartz J. Workday communication and ambulatory blood pressure: Implications for the reactivity hypothesis. Psychophysiology 1999; 36: 86-94.
[53]
Gump BB, Polk DE, Kamarck TW, Shiffman S. Partner interactions are associated with reduced blood pressure in the natural environment: Ambulatory blood pressure monitoring evidence from a healthy, multiethnic adult sample. Psychosom Med 2001; 63: 423-33.
[54]
Kamarck TW, Janicki DL, Shiffman S, et al. Psychosocial demands and ambulatory blood pressure: A field assessment approach. Physiol Behav 2002; 77: 699-704.
[55]
Brown DE, James GD, Nordloh L. Comparison of factors affecting daily variation of blood pressure in Filipino-American and Caucasian nurses in Hawaii. Am J Phys Anthropol 1998; 106: 373-83.
[56]
Kamarck TW, Schwartz JE, Janiki DL, Schiffman S, Raynor DA. Correspondence between laboratory and ambulatory measures of cardiovascular reactivity: A multilevel modeling approach. Psychophysiology 2003; 40: 675-83.
[57]
James GD. Measuring changes in the cardiovascular system: Ambulatory blood pressure. In: Ice GH, James GD, Eds. Measuring stress in humans: A practical guide for the field. Cambridge: Cambridge University Press 2007; pp. 158-80.
[58]
Pickering TG, Gerin W. Cardiovascular reactivity in the laboratory and the role of behavioral factors in hypertension: A critical review. Ann Behav Med 1990; 12: 3-16.
[59]
Linden W, Gerin W, Davidson K. Cardiovascular reactivity: Status quo and a research agenda for the new millennium. Psychosom Med 2003; 65: 5-8.
[60]
Van Berge-Landry HM, Bovbjerg DH, James GD. The relationship between waking-sleep blood pressure and catecholamine changes in African American and European American women. Blood Pres Monit 208; 13: 257-62.
[61]
James GD. Climate-related morphological variation and physiological adaptations in Homo Sapiens. In: Larsen CS, Ed. A companion to biological anthropology. Malden, MA: Wiley-Blackwell 2010; pp. 153-66.
[62]
James GD, Baker PT. Human population biology and blood pressure: Evolutionary and ecological considerations and interpretations of population studies. In: Laragh JH, Brenner BM, Eds. Hypertension: Pathophysiology, diagnosis and management. New York: Raven Press, Ltd. 1995; pp. 115-26.
[63]
Hanna JM, Brown DA. Human heat tolerance: Biological and cultural adaptations. Yrbk Phys Anthropol 1979; 22: 163-86.
[64]
Young JH, Chang YC, Kim JD, et al. Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet 2005; 1(6): e82.
[65]
Steegmann AG. Human adaptation to cold. In: Damon A, Ed. Physiological anthropology. New York: Oxford University Press 1975; pp. 130-66.
[66]
Beall CM, Jablonski NG, Steegmann AT. Human adaptation to climate: Temperature, ultraviolet radiation, and altitude. In: Stinson S, Bogin B, O’Rourke D, Eds. Human biology: An evolutionary and biocultural perspective. 2nd ed. New York: Wiley-Blackwell Publishing 2012; pp. 177-250.
[67]
Anderson NB, Lane LD, Muranaka M, Williams RB Jr, Houseworth SJ. Racial differences in blood pressure and forearm vascular responses to the cold face stimulus. Psychosom Med 1988; 50: 57-63.
[68]
Treiber FA, Musante L, Braden D, et al. Racial differences in hemodynamic responses to the cold face stimulus in children and adults. Psychosom Med 1990; 52: 286-96.
[69]
Kelsey RM, Alpert BS, Patterson SM, Barnard M. Racial differences in hemodynamic responses to environmental thermal stress among adolescents. Circulation 2000; 101: 2284-9.
[70]
Mills PJ, Dimsdale JE, Ziegler MG, Nelesen RA. Racial differences in epinephrine and beta 2-adrenergic receptors. Hypertension 1995; 25: 88-91.
[71]
Parati G, Ochoa JE, Bilo G. Moving beyond office blood pressure to achieve a personalized and more precise hypertension management. Which way to go? Hypertension 2017; 70: e20-31.
[72]
James GD, Moucha OP, Pickering TG. The normal hourly variation of blood pressure in women: average patterns and the effect of work stress. J Hum Hypertens 1991; 5: 505-9.