Review Article

非小细胞肺癌的基因型驱动疗法:耐药性,泛抑制剂和免疫疗法

卷 27, 期 32, 2020

页: [5274 - 5316] 页: 43

弟呕挨: 10.2174/0929867326666190222183219

价格: $65

摘要

百分之八十五的肺癌患者患有非小细胞肺癌(NSCLC)。靶向治疗方法是肺癌的有前途的治疗方法。然而,尽管开发了使用酪氨酸激酶抑制剂(TKI)和单克隆抗体的靶向疗法,肺癌患者的五年相对存活率仍仅为18%,患者不可避免地变得对治疗产生抗药性。 Kirsten Ras肉瘤病毒同系物(KRAS)和表皮生长因子受体(EGFR)的突变是肺腺癌中两个最常见的遗传事件。他们分别占案件的25%和20%。间变性淋巴瘤激酶(ALK)是一种跨膜受体酪氨酸激酶,ALK重排是NSCLC的3-7%,主要是腺癌亚型,并且与KRAS和EGFR突变互斥。在耐药的NSCLC患者中,近一半的人在EGFR外显子20处出现T790M突变。这篇综述着重于NSCLC中涉及的分子的一些基本方面,NSCLC中对治疗的耐药性的发展以及过去十年中肺癌治疗的进展。还涵盖了一些近期的进展,例如针对NSCLC的基于PD-1-PD-L1检查点的免疫疗法。

关键词: 非小细胞肺癌(NSCLC),EGFR,HER2,KRAS,ALK,耐药性,酪氨酸激酶抑制剂(TKI),PD-1-PD-L1。

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Milano, M.T.; Strawderman, R.L.; Venigalla, S.; Ng, K.; Travis, L.B. Non-small-cell lung cancer after breast cancer: a population-based study of clinicopathologic characteristics and survival outcomes in 3529 women. J. Thorac. Oncol., 2014, 9(8), 1081-1090.
[http://dx.doi.org/10.1097/JTO.0000000000000213] [PMID: 25157761]
[4]
Kenfield, S.A.; Wei, E.K.; Stampfer, M.J.; Rosner, B.A.; Colditz, G.A. Comparison of aspects of smoking among the four histological types of lung cancer. Tob. Control, 2008, 17(3), 198-204.
[http://dx.doi.org/10.1136/tc.2007.022582] [PMID: 18390646]
[5]
Sun, S.; Schiller, J.H.; Gazdar, A.F. Lung cancer in never smokers--a different disease. Nat. Rev. Cancer, 2007, 7(10), 778-790.
[http://dx.doi.org/10.1038/nrc2190] [PMID: 17882278]
[6]
Vineis, P.; Airoldi, L.; Veglia, F.; Olgiati, L.; Pastorelli, R.; Autrup, H.; Dunning, A.; Garte, S.; Gormally, E.; Hainaut, P.; Malaveille, C.; Matullo, G.; Peluso, M.; Overvad, K.; Tjonneland, A.; Clavel-Chapelon, F.; Boeing, H.; Krogh, V.; Palli, D.; Panico, S.; Tumino, R.; Bueno-De-Mesquita, B.; Peeters, P.; Berglund, G.; Hallmans, G.; Saracci, R.; Riboli, E. Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study. BMJ, 2005, 330(7486), 277.
[http://dx.doi.org/10.1136/bmj.38327.648472.82] [PMID: 15681570]
[7]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[8]
Calikusu, Z.; Yildirim, Y.; Akcali, Z.; Sakalli, H.; Bal, N.; Unal, I.; Ozyilkan, O. The effect of HER2 expression on cisplatin-based chemotherapy in advanced non-small cell lung cancer patients. J. Exp. Clin. Cancer Res., 2009, 28, 97.
[http://dx.doi.org/10.1186/1756-9966-28-97] [PMID: 19575783]
[9]
Rothschild, S.I. Targeted therapies in non-small cell lung cancer-beyond EGFR and ALK. Cancers (Basel), 2015, 7(2), 930-949.
[http://dx.doi.org/10.3390/cancers7020816] [PMID: 26018876]
[10]
Pao, W.; Hutchinson, K.E. Chipping away at the lung cancer genome. Nat. Med., 2012, 18(3), 349-351.
[http://dx.doi.org/10.1038/nm.2697] [PMID: 22395697]
[11]
Somasundaram, A.; Socinski, M.A.; Burns, T.F. Personalized treatment of EGFR mutant and ALK-positive patients in NSCLC. Expert Opin. Pharmacother., 2014, 15(18), 2693-2708.
[http://dx.doi.org/10.1517/14656566.2014.971013] [PMID: 25381900]
[12]
Roberts, P.J.; Stinchcombe, T.E.; Der, C.J.; Socinski, M.A. Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy? J. Clin. Oncol., 2010, 28(31), 4769-4777.
[http://dx.doi.org/10.1200/JCO.2009.27.4365] [PMID: 20921461]
[13]
Ladanyi, M.; Pao, W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod. Pathol., 2008, 21(Suppl. 2), S16-S22.
[http://dx.doi.org/10.1038/modpathol.3801018] [PMID: 18437168]
[14]
Boolell, V.; Alamgeer, M.; Watkins, D.N.; Ganju, V. The evolution of therapies in non-small cell lung cancer. Cancers (Basel), 2015, 7(3), 1815-1846.
[http://dx.doi.org/10.3390/cancers7030864] [PMID: 26371045]
[15]
Bahce, I.; Yaqub, M.; Smit, E.F.; Lammertsma, A.A.; van Dongen, G.A.; Hendrikse, N.H. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET. Lung Cancer, 2017, 107, 1-13.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.025] [PMID: 27319335]
[16]
Tetsu, O.; Hangauer, M.J.; Phuchareon, J.; Eisele, D.W.; McCormick, F. Drug resistance to EGFR inhibitors in lung cancer. Chemotherapy, 2016, 61(5), 223-235.
[http://dx.doi.org/10.1159/000443368] [PMID: 26910730]
[17]
Chong, C.R.; Jänne, P.A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med., 2013, 19(11), 1389-1400.
[http://dx.doi.org/10.1038/nm.3388] [PMID: 24202392]
[18]
Tanizaki, J.; Okamoto, I.; Sakai, K.; Nakagawa, K. Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br. J. Cancer, 2011, 105(6), 807-813.
[http://dx.doi.org/10.1038/bjc.2011.322] [PMID: 21847121]
[19]
Iida, M.; Bahrar, H.; Brand, T.M.; Pearson, H.E.; Coan, J.P.; Orbuch, R.A.; Flanigan, B.G.; Swick, A.D.; Prabakaran, P.J.; Lantto, J.; Horak, I.D.; Kragh, M.; Salgia, R.; Kimple, R.J.; Wheeler, D.L. Targeting the HER family with pan-HER effectively overcomes resistance to cetuximab. Mol. Cancer Ther., 2016, 15(9), 2175-2186.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0012] [PMID: 27422810]
[20]
Golding, B.; Luu, A.; Jones, R.; Viloria-Petit, A.M. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol. Cancer, 2018, 17(1), 52.
[http://dx.doi.org/10.1186/s12943-018-0810-4] [PMID: 29455675]
[21]
Köhler, J. Second-Line Treatment of NSCLC-The Pan-ErbB inhibitor afatinib in times of shifting paradigms. Second-line treatment of NSCLC-the pan-ErbB Inhibitor afatinib in times of shifting paradigms. Front. Med. (Lausanne), 2017, 4, 9.
[http://dx.doi.org/10.3389/fmed.2017.00009] [PMID: 28243590]
[22]
Landi, L.; Cappuzzo, F. HER2 and lung cancer. Expert Rev. Anticancer Ther., 2013, 13(10), 1219-1228.
[http://dx.doi.org/10.1586/14737140.2013.846830] [PMID: 24134423]
[23]
Yousefi, H.; Yuan, J.; Keshavarz-Fathi, M.; Murphy, J.F.; Rezaei, N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol., 2017, 13(10), 1001-1015.
[http://dx.doi.org/10.1080/1744666X.2017.1366315] [PMID: 28795649]
[24]
Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181.
[http://dx.doi.org/10.1038/nrc2088] [PMID: 17318210]
[25]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[26]
Kanthala, S.; Pallerla, S.; Jois, S. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors. Future Oncol., 2015, 11(5), 865-878.
[http://dx.doi.org/10.2217/fon.14.312] [PMID: 25757687]
[27]
Ferguson, K.M. Structure-based view of epidermal growth factor receptor regulation. Annu. Rev. Biophys., 2008, 37, 353-373.
[http://dx.doi.org/10.1146/annurev.biophys.37.032807.125829] [PMID: 18573086]
[28]
Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat. Rev. Clin. Oncol., 2011, 9(1), 16-32.
[http://dx.doi.org/10.1038/nrclinonc.2011.177] [PMID: 22124364]
[29]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[30]
Lee-Hoeflich, S.T.; Crocker, L.; Yao, E.; Pham, T.; Munroe, X.; Hoeflich, K.P.; Sliwkowski, M.X.; Stern, H.M. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res., 2008, 68(14), 5878-5887.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0380] [PMID: 18632642]
[31]
Shankaran, H.; Wiley, H.S.; Resat, H. Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response. Biophys. J., 2006, 90(11), 3993-4009.
[http://dx.doi.org/10.1529/biophysj.105.080580] [PMID: 16533841]
[32]
Tao, R.H.; Maruyama, I.N.; All, E.G.F. All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. J. Cell Sci., 2008, 121(Pt 19), 3207-3217.
[http://dx.doi.org/10.1242/jcs.033399] [PMID: 18782861]
[33]
Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer, 2010, 10(11), 760-774.
[http://dx.doi.org/10.1038/nrc2947] [PMID: 20966921]
[34]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11(8), 473-481.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[35]
Li, J.; Deng, H.; Hu, M.; Fang, Y.; Vaughn, A.; Cai, X.; Xu, L.; Wan, W.; Li, Z.; Chen, S.; Yang, X.; Wu, S.; Xiao, J. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR. Oncotarget, 2015, 6(9), 6749-6761.
[http://dx.doi.org/10.18632/oncotarget.3155] [PMID: 25730907]
[36]
Chi, F.; Wu, R.; Jin, X.; Jiang, M.; Zhu, X. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway. OncoTargets Ther., 2016, 9, 2709-2716.
[PMID: 27217781]
[37]
Peters, S.; Zimmermann, S. Targeted therapy in NSCLC driven by HER2 insertions. Transl. Lung Cancer Res., 2014, 3(2), 84-88.
[PMID: 25806285]
[38]
Garrido-Castro, A.C.; Felip, E. HER2 driven non-small cell lung cancer (NSCLC): potential therapeutic approaches. Transl. Lung Cancer Res., 2013, 2(2), 122-127.
[PMID: 25806223]
[39]
Spector, N.L.; Blackwell, K.L. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol., 2009, 27(34), 5838-5847.
[http://dx.doi.org/10.1200/JCO.2009.22.1507] [PMID: 19884552]
[40]
Mazières, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M.; Besse, B.; Blons, H.; Mansuet-Lupo, A.; Urban, T.; Moro-Sibilot, D.; Dansin, E.; Chouaid, C.; Wislez, M.; Diebold, J.; Felip, E.; Rouquette, I.; Milia, J.D.; Gautschi, O. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol., 2013, 31(16), 1997-2003.
[http://dx.doi.org/10.1200/JCO.2012.45.6095] [PMID: 23610105]
[41]
Singh, S.S.; Jois, S.D. Homo- and heterodimerization of proteins in cell signaling: inhibition and drug design. Adv. Protein Chem. Struct. Biol., 2018, 111, 1-59.
[http://dx.doi.org/10.1016/bs.apcsb.2017.08.003] [PMID: 29459028]
[42]
Wang, S.E.; Narasanna, A.; Perez-Torres, M.; Xiang, B.; Wu, F.Y.; Yang, S.; Carpenter, G.; Gazdar, A.F.; Muthuswamy, S.K.; Arteaga, C.L. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell, 2006, 10(1), 25-38.
[http://dx.doi.org/10.1016/j.ccr.2006.05.023] [PMID: 16843263]
[43]
Ricciardi, G.R.; Russo, A.; Franchina, T.; Ferraro, G.; Zanghì, M.; Picone, A.; Scimone, A.; Adamo, V. NSCLC and HER2: between lights and shadows. J. Thorac. Oncol., 2014, 9(12), 1750-1762.
[http://dx.doi.org/10.1097/JTO.0000000000000379] [PMID: 25247338]
[44]
Brabender, J.; Danenberg, K.D.; Metzger, R.; Schneider, P.M.; Park, J.; Salonga, D.; Hölscher, A.H.; Danenberg, P.V. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin. Cancer Res., 2001, 7(7), 1850-1855.
[PMID: 11448895]
[45]
Mar, N.; Vredenburgh, J.J.; Wasser, J.S. Targeting HER2 in the treatment of non-small cell lung cancer. Lung Cancer, 2015, 87(3), 220-225.
[http://dx.doi.org/10.1016/j.lungcan.2014.12.018] [PMID: 25601485]
[46]
Heinmöller, P.; Gross, C.; Beyser, K.; Schmidtgen, C.; Maass, G.; Pedrocchi, M.; Rüschoff, J. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin. Cancer Res., 2003, 9(14), 5238-5243.
[PMID: 14614004]
[47]
Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J. Thorac. Oncol., 2016, 11(3), 414-419.
[http://dx.doi.org/10.1016/j.jtho.2015.10.025] [PMID: 26723242]
[48]
Fichter, C.D.; Przypadlo, C.M.; Buck, A.; Herbener, N.; Riedel, B.; Schäfer, L.; Nakagawa, H.; Walch, A.; Reinheckel, T.; Werner, M.; Lassmann, S. A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. J. Pathol., 2017, 243(4), 481-495.
[http://dx.doi.org/10.1002/path.4987] [PMID: 28940194]
[49]
Arcila, M.E.; Chaft, J.E.; Nafa, K.; Roy-Chowdhuri, S.; Lau, C.; Zaidinski, M.; Paik, P.K.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Cancer Res., 2012, 18(18), 4910-4918.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0912] [PMID: 22761469]
[50]
Takezawa, K.; Pirazzoli, V.; Arcila, M.E.; Nebhan, C.A.; Song, X.; de Stanchina, E.; Ohashi, K.; Janjigian, Y.Y.; Spitzler, P.J.; Melnick, M.A.; Riely, G.J.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Politi, K.; Pao, W. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov., 2012, 2(10), 922-933.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0108] [PMID: 22956644]
[51]
Serra, V.; Vivancos, A.; Puente, X.S.; Felip, E.; Silberschmidt, D.; Caratù, G.; Parra, J.L.; De Mattos-Arruda, L.; Grueso, J.; Hernández-Losa, J.; Arribas, J.; Prudkin, L.; Nuciforo, P.; Scaltriti, M.; Seoane, J.; Baselga, J. Clinical response to a lapatinib-based therapy for a Li-Fraumeni syndrome patient with a novel HER2V659E mutation. Cancer Discov., 2013, 3(11), 1238-1244.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0132] [PMID: 23950206]
[52]
Ou, S.I.; Schrock, A.B.; Bocharov, E.V.; Klempner, S.J.; Haddad, C.K.; Steinecker, G.; Johnson, M.; Gitlitz, B.J.; Chung, J.; Campregher, P.V.; Ross, J.S.; Stephens, P.J.; Miller, V.A.; Suh, J.H.; Ali, S.M.; Velcheti, V. HER2 transmembrane domain (TMD) mutations (V659/G660) that stabilize homo- and heterodimerization are rare oncogenic drivers in lung adenocarcinoma that respond to afatinib. J. Thorac. Oncol., 2017, 12(3), 446-457.
[http://dx.doi.org/10.1016/j.jtho.2016.11.2224] [PMID: 27903463]
[53]
Iida, M.; Brand, T.M.; Starr, M.M.; Huppert, E.J.; Luthar, N.; Bahrar, H.; Coan, J.P.; Pearson, H.E.; Salgia, R.; Wheeler, D.L. Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy. Mol. Cancer, 2014, 13, 242.
[http://dx.doi.org/10.1186/1476-4598-13-242] [PMID: 25344208]
[54]
Wheeler, D.L.; Huang, S.; Kruser, T.J.; Nechrebecki, M.M.; Armstrong, E.A.; Benavente, S.; Gondi, V.; Hsu, K.T.; Harari, P.M. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene, 2008, 27(28), 3944-3956.
[http://dx.doi.org/10.1038/onc.2008.19] [PMID: 18297114]
[55]
Ou, S.H. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit. Rev. Oncol. Hematol., 2012, 83(3), 407-421.
[http://dx.doi.org/10.1016/j.critrevonc.2011.11.010] [PMID: 22257651]
[56]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; Pazdur, R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist, 2003, 8(4), 303-306.
[http://dx.doi.org/10.1634/theoncologist.8-4-303] [PMID: 12897327]
[57]
Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; van Kooten, M.; Dediu, M.; Findlay, B.; Tu, D.; Johnston, D.; Bezjak, A.; Clark, G.; Santabarbara, P.; Seymour, L. National Cancer Institute of Canada Clinical Trials, G. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med., 2005, 353(2), 123-132.
[http://dx.doi.org/10.1056/NEJMoa050753] [PMID: 16014882]
[58]
Ke, E.E.; Wu, Y.L. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends Pharmacol. Sci., 2016, 37(11), 887-903.
[http://dx.doi.org/10.1016/j.tips.2016.09.003] [PMID: 27717507]
[59]
Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med. (Lausanne), 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076] [PMID: 28149837]
[60]
Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; Lu, S.; Zhang, L.; Hu, C.; Hu, C.; Luo, Y.; Chen, L.; Ye, M.; Huang, J.; Zhi, X.; Zhang, Y.; Xiu, Q.; Ma, J.; Zhang, L.; You, C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol., 2011, 12(8), 735-742.
[http://dx.doi.org/10.1016/S1470-2045(11)70184-X] [PMID: 21783417]
[61]
Gatzemeier, U.; Pluzanska, A.; Szczesna, A.; Kaukel, E.; Roubec, J.; De Rosa, F.; Milanowski, J.; Karnicka-Mlodkowski, H.; Pesek, M.; Serwatowski, P.; Ramlau, R.; Janaskova, T.; Vansteenkiste, J.; Strausz, J.; Manikhas, G.M.; Von Pawel, J. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva lung cancer investigation trial. J. Clin. Oncol., 2007, 25(12), 1545-1552.
[http://dx.doi.org/10.1200/JCO.2005.05.1474] [PMID: 17442998]
[62]
Liao, B.C.; Lin, C.C.; Yang, J.C. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol., 2015, 27(2), 94-101.
[http://dx.doi.org/10.1097/CCO.0000000000000164] [PMID: 25611025]
[63]
Engelman, J.A.; Zejnullahu, K.; Gale, C.M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K.K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885] [PMID: 18089823]
[64]
Marquez-Medina, D.; Popat, S. Afatinib: a second-generation EGF receptor and ErbB tyrosine kinase inhibitor for the treatment of advanced non-small-cell lung cancer. Future Oncol., 2015, 11(18), 2525-2540.
[http://dx.doi.org/10.2217/fon.15.183] [PMID: 26314834]
[65]
Stasi, I.; Cappuzzo, F. Second generation tyrosine kinase inhibitors for the treatment of metastatic non-small-cell lung cancer. Transl. Respir. Med., 2014, 2, 2.
[http://dx.doi.org/10.1186/2213-0802-2-2] [PMID: 25505694]
[66]
Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(1), i10-i19.
[67]
Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther., 2012, 343(2), 342-350.
[http://dx.doi.org/10.1124/jpet.112.197756] [PMID: 22888144]
[68]
Suzawa, K.; Toyooka, S.; Sakaguchi, M.; Morita, M.; Yamamoto, H.; Tomida, S.; Ohtsuka, T.; Watanabe, M.; Hashida, S.; Maki, Y.; Soh, J.; Asano, H.; Tsukuda, K.; Miyoshi, S. Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancers harboring HER2 oncogene alterations. Cancer Sci., 2016, 107(1), 45-52.
[http://dx.doi.org/10.1111/cas.12845] [PMID: 26545934]
[69]
De Grève, J.; Teugels, E.; Geers, C.; Decoster, L.; Galdermans, D.; De Mey, J.; Everaert, H.; Umelo, I.; In’t Veld, P.; Schallier, D. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer, 2012, 76(1), 123-127.
[http://dx.doi.org/10.1016/j.lungcan.2012.01.008] [PMID: 22325357]
[70]
Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; Xu, C.R.; Massey, D.; Kim, M.; Shi, Y.; Geater, S.L. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol., 2014, 15(2), 213-222.
[http://dx.doi.org/10.1016/S1470-2045(13)70604-1] [PMID: 24439929]
[71]
Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[72]
Soria, J.C.; Felip, E.; Cobo, M.; Lu, S.; Syrigos, K.; Lee, K.H.; Göker, E.; Georgoulias, V.; Li, W.; Isla, D.; Guclu, S.Z.; Morabito, A.; Min, Y.J.; Ardizzoni, A.; Gadgeel, S.M.; Wang, B.; Chand, V.K.; Goss, G.D. LUX-Lung 8 Investigators. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol., 2015, 16(8), 897-907.
[http://dx.doi.org/10.1016/S1470-2045(15)00006-6] [PMID: 26156651]
[73]
Sequist, L.V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; Ananthakrishnan, R.; Quinn, S.; Soria, J.C. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(18), 3076-3083.
[http://dx.doi.org/10.1200/JCO.2009.27.9414] [PMID: 20479403]
[74]
Jänne, P.A.; Boss, D.S.; Camidge, D.R.; Britten, C.D.; Engelman, J.A.; Garon, E.B.; Guo, F.; Wong, S.; Liang, J.; Letrent, S.; Millham, R.; Taylor, I.; Eckhardt, S.G.; Schellens, J.H. Phase I dose-escalation study of the pan-HER inhibitor, PF299804, in patients with advanced malignant solid tumors. Clin. Cancer Res., 2011, 17(5), 1131-1139.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1220] [PMID: 21220471]
[75]
Ramalingam, S.S.; Blackhall, F.; Krzakowski, M.; Barrios, C.H.; Park, K.; Bover, I.; Seog Heo, D.; Rosell, R.; Talbot, D.C.; Frank, R.; Letrent, S.P.; Ruiz-Garcia, A.; Taylor, I.; Liang, J.Q.; Campbell, A.K.; O’Connell, J.; Boyer, M. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(27), 3337-3344.
[http://dx.doi.org/10.1200/JCO.2011.40.9433] [PMID: 22753918]
[76]
Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res., 2013, 19(8), 2240-2247.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2246] [PMID: 23470965]
[77]
Wang, S.; Cang, S.; Liu, D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol., 2016, 9, 34.
[http://dx.doi.org/10.1186/s13045-016-0268-z] [PMID: 27071706]
[78]
Barnes, T.A.; O’Kane, G.M.; Vincent, M.D.; Leighl, N.B. Third-generation tyrosine kinase inhibitors targeting epidermal growth factor receptor mutations in non-small cell lung cancer. Front. Oncol., 2017, 7, 113.
[http://dx.doi.org/10.3389/fonc.2017.00113] [PMID: 28620581]
[79]
Tan, C.S.; Kumarakulasinghe, N.B.; Huang, Y.Q.; Ang, Y.L.E.; Choo, J.R.; Goh, B.C.; Soo, R.A. Third generation EGFR TKIs: current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0] [PMID: 29455654]
[80]
Jänne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699.
[http://dx.doi.org/10.1056/NEJMoa1411817] [PMID: 25923549]
[81]
Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S.E.; Cantarini, M.; Barrett, J.C.; Jänne, P.A.; Oxnard, G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med., 2015, 21(6), 560-562.
[http://dx.doi.org/10.1038/nm.3854] [PMID: 25939061]
[82]
Chabon, J.J.; Simmons, A.D.; Lovejoy, A.F.; Esfahani, M.S.; Newman, A.M.; Haringsma, H.J.; Kurtz, D.M.; Stehr, H.; Scherer, F.; Karlovich, C.A.; Harding, T.C.; Durkin, K.A.; Otterson, G.A.; Purcell, W.T.; Camidge, D.R.; Goldman, J.W.; Sequist, L.V.; Piotrowska, Z.; Wakelee, H.A.; Neal, J.W.; Alizadeh, A.A.; Diehn, M. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun., 2016, 7, 11815.
[http://dx.doi.org/10.1038/ncomms11815] [PMID: 27283993]
[83]
Knebel, F.H.; Bettoni, F.; Shimada, A.K.; Cruz, M.; Alessi, J.V.; Negrão, M.V.; Reis, L.F.L.; Katz, A.; Camargo, A.A. Sequential liquid biopsies reveal dynamic alterations of EGFR driver mutations and indicate EGFR amplification as a new mechanism of resistance to osimertinib in NSCLC. Lung Cancer, 2017, 108, 238-241.
[http://dx.doi.org/10.1016/j.lungcan.2017.04.004] [PMID: 28625643]
[84]
Ou, S.I.; Agarwal, N.; Ali, S.M. High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression. Lung Cancer, 2016, 98, 59-61.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.015] [PMID: 27393507]
[85]
Planchard, D.; Loriot, Y.; André, F.; Gobert, A.; Auger, N.; Lacroix, L.; Soria, J.C. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann. Oncol., 2015, 26(10), 2073-2078.
[http://dx.doi.org/10.1093/annonc/mdv319] [PMID: 26269204]
[86]
Kim, T.M.; Song, A.; Kim, D.W.; Kim, S.; Ahn, Y.O.; Keam, B.; Jeon, Y.K.; Lee, S.H.; Chung, D.H.; Heo, D.S. Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J. Thorac. Oncol., 2015, 10(12), 1736-1744.
[http://dx.doi.org/10.1097/JTO.0000000000000688] [PMID: 26473643]
[87]
Wang, S.; Song, Y.; Liu, D. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett., 2017, 385, 51-54.
[http://dx.doi.org/10.1016/j.canlet.2016.11.008] [PMID: 27840244]
[88]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[89]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[90]
Goldstein, N.I.; Prewett, M.; Zuklys, K.; Rockwell, P.; Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res., 1995, 1(11), 1311-1318.
[PMID: 9815926]
[91]
Kurai, J.; Chikumi, H.; Hashimoto, K.; Yamaguchi, K.; Yamasaki, A.; Sako, T.; Touge, H.; Makino, H.; Takata, M.; Miyata, M.; Nakamoto, M.; Burioka, N.; Shimizu, E. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin. Cancer Res., 2007, 13(5), 1552-1561.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1726] [PMID: 17332301]
[92]
Butts, C.A.; Bodkin, D.; Middleman, E.L.; Englund, C.W.; Ellison, D.; Alam, Y.; Kreisman, H.; Graze, P.; Maher, J.; Ross, H.J.; Ellis, P.M.; McNulty, W.; Kaplan, E.; Pautret, V.; Weber, M.R.; Shepherd, F.A. Randomized phase II study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer. J. Clin. Oncol., 2007, 25(36), 5777-5784.
[http://dx.doi.org/10.1200/JCO.2007.13.0856] [PMID: 18089875]
[93]
Rosell, R.; Robinet, G.; Szczesna, A.; Ramlau, R.; Constenla, M.; Mennecier, B.C.; Pfeifer, W.; O’Byrne, K.J.; Welte, T.; Kolb, R.; Pirker, R.; Chemaissani, A.; Perol, M.; Ranson, M.R.; Ellis, P.A.; Pilz, K.; Reck, M. Randomized phase II study of cetuximab plus cisplatin/vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer. Ann. Oncol., 2008, 19(2), 362-369.
[http://dx.doi.org/10.1093/annonc/mdm474] [PMID: 17947225]
[94]
Lynch, T.J.; Patel, T.; Dreisbach, L.; McCleod, M.; Heim, W.J.; Hermann, R.C.; Paschold, E.; Iannotti, N.O.; Dakhil, S.; Gorton, S.; Pautret, V.; Weber, M.R.; Woytowitz, D. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J. Clin. Oncol., 2010, 28(6), 911-917.
[http://dx.doi.org/10.1200/JCO.2009.21.9618] [PMID: 20100966]
[95]
Pirker, R.; Pereira, J.R.; Szczesna, A.; von Pawel, J.; Krzakowski, M.; Ramlau, R.; Vynnychenko, I.; Park, K.; Yu, C.T.; Ganul, V.; Roh, J.K.; Bajetta, E.; O’Byrne, K.; de Marinis, F.; Eberhardt, W.; Goddemeier, T.; Emig, M.; Gatzemeier, U.; Team, F.S. FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet, 2009, 373(9674), 1525-1531.
[http://dx.doi.org/10.1016/S0140-6736(09)60569-9] [PMID: 19410716]
[96]
Ramalingam, S.S.; Lee, J.W.; Belani, C.P.; Aisner, S.C.; Kolesar, J.; Howe, C.; Velasco, M.R.; Schiller, J.H. Cetuximab for the treatment of advanced bronchioloalveolar carcinoma (BAC): an eastern cooperative oncology group phase II study (ECOG 1504). J. Clin. Oncol., 2011, 29(13), 1709-1714.
[http://dx.doi.org/10.1200/JCO.2010.33.4094] [PMID: 21422434]
[97]
Kim, E.S.; Neubauer, M.; Cohn, A.; Schwartzberg, L.; Garbo, L.; Caton, J.; Robert, F.; Reynolds, C.; Katz, T.; Chittoor, S.; Simms, L.; Saxman, S. Docetaxel or pemetrexed with or without cetuximab in recurrent or progressive non-small-cell lung cancer after platinum-based therapy: a phase 3, open-label, randomised trial. Lancet Oncol., 2013, 14(13), 1326-1336.
[http://dx.doi.org/10.1016/S1470-2045(13)70473-X] [PMID: 24231627]
[98]
Regales, L.; Gong, Y.; Shen, R.; de Stanchina, E.; Vivanco, I.; Goel, A.; Koutcher, J.A.; Spassova, M.; Ouerfelli, O.; Mellinghoff, I.K.; Zakowski, M.F.; Politi, K.A.; Pao, W. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J. Clin. Invest., 2009, 119(10), 3000-3010.
[http://dx.doi.org/10.1172/JCI38746] [PMID: 19759520]
[99]
Janjigian, Y.Y.; Smit, E.F.; Groen, H.J.; Horn, L.; Gettinger, S.; Camidge, D.R.; Riely, G.J.; Wang, B.; Fu, Y.; Chand, V.K.; Miller, V.A.; Pao, W. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov., 2014, 4(9), 1036-1045.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0326] [PMID: 25074459]
[100]
Bianco, R.; Troiani, T.; Tortora, G.; Ciardiello, F. Intrinsic and acquired resistance to EGFR inhibitors in human cancer therapy. Endocr. Relat. Cancer, 2005, 12(Suppl. 1), S159-S171.
[http://dx.doi.org/10.1677/erc.1.00999] [PMID: 16113092]
[101]
Samakoglu, S.; Deevi, D.S.; Li, H.; Wang, S.; Murphy, M.; Bao, C.; Bassi, R.; Prewett, M.; Tonra, J.R. Preclinical rationale for combining an EGFR antibody with cisplatin/gemcitabine for the treatment of NSCLC. Cancer Genomics Proteomics, 2012, 9(2), 77-92.
[PMID: 22399498]
[102]
Paz-Ares, L.; Mezger, J.; Ciuleanu, T.E.; Fischer, J.R.; von Pawel, J.; Provencio, M.; Kazarnowicz, A.; Losonczy, G.; de Castro, G., Jr; Szczesna, A.; Crino, L.; Reck, M.; Ramlau, R.; Ulsperger, E.; Schumann, C.; Miziara, J.E.; Lessa, A.E.; Dediu, M.; Bálint, B.; Depenbrock, H.; Soldatenkova, V.; Kurek, R.; Hirsch, F.R.; Thatcher, N.; Socinski, M.A. INSPIRE investigators Necitumumab plus pemetrexed and cisplatin as first-line therapy in patients with stage IV non-squamous non-small-cell lung cancer (INSPIRE): an open-label, randomised, controlled phase 3 study. Lancet Oncol., 2015, 16(3), 328-337.
[http://dx.doi.org/10.1016/S1470-2045(15)70046-X] [PMID: 25701171]
[103]
Thatcher, N.; Hirsch, F.R.; Luft, A.V.; Szczesna, A.; Ciuleanu, T.E.; Dediu, M.; Ramlau, R.; Galiulin, R.K.; Bálint, B.; Losonczy, G.; Kazarnowicz, A.; Park, K.; Schumann, C.; Reck, M.; Depenbrock, H.; Nanda, S.; Kruljac-Letunic, A.; Kurek, R.; Paz-Ares, L.; Socinski, M.A.; Investigators, S. SQUIRE Investigators Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol., 2015, 16(7), 763-774.
[http://dx.doi.org/10.1016/S1470-2045(15)00021-2] [PMID: 26045340]
[104]
Reck, M.; Socinski, M.A.; Luft, A.; Szczęsna, A.; Dediu, M.; Ramlau, R.; Losonczy, G.; Molinier, O.; Schumann, C.; Gralla, R.J.; Bonomi, P.; Brown, J.; Soldatenkova, V.; Chouaki, N.; Obasaju, C.; Peterson, P.; Thatcher, N. The effect of necitumumab in combination with gemcitabine plus cisplatin on tolerability and on quality of life: results from the phase 3 SQUIRE trial. J. Thorac. Oncol., 2016, 11(6), 808-818.
[http://dx.doi.org/10.1016/j.jtho.2016.03.002] [PMID: 26980471]
[105]
Thakur, M.K.; Wozniak, A.J. Spotlight on necitumumab in the treatment of non-small-cell lung carcinoma. Lung Cancer (Auckl.), 2017, 8, 13-19.
[http://dx.doi.org/10.2147/LCTT.S104207] [PMID: 28293124]
[106]
Ramakrishnan, M.S.; Eswaraiah, A.; Crombet, T.; Piedra, P.; Saurez, G.; Iyer, H.; Arvind, A.S. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs, 2009, 1(1), 41-48.
[http://dx.doi.org/10.4161/mabs.1.1.7509] [PMID: 20046573]
[107]
Lee, J.Y.; Sun, J.M.; Lim, S.H.; Kim, H.S.; Yoo, K.H.; Jung, K.S.; Song, H.N.; Ku, B.M.; Koh, J.; Bae, Y.H.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. A phase Ib/II study of afatinib in combination with nimotuzumab in non-small cell lung cancer patients with Acquired resistance to gefitinib or erlotinib. Clin. Cancer Res., 2016, 22(9), 2139-2145.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1653] [PMID: 26667485]
[108]
Azzoli, C.G.; Krug, L.M.; Miller, V.A.; Kris, M.G.; Mass, R. Trastuzumab in the treatment of non-small cell lung cancer. Semin. Oncol., 2002, 29(1)(Suppl. 4), 59-65.
[http://dx.doi.org/10.1053/sonc.2002.31526] [PMID: 11894015]
[109]
Nahta, R.; Esteva, F.J. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res., 2006, 8(6), 215.
[http://dx.doi.org/10.1186/bcr1612] [PMID: 17096862]
[110]
Lara, P.N., Jr; Laptalo, L.; Longmate, J.; Lau, D.H.; Gandour-Edwards, R.; Gumerlock, P.H.; Doroshow, J.H.; Gandara, D.R.; California Cancer, C. California cancer consortium. Trastuzumab plus docetaxel in HER2/neu-positive non-small-cell lung cancer: A California cancer consortium screening and phase II trial. Clin. Lung Cancer, 2004, 5(4), 231-236.
[http://dx.doi.org/10.3816/CLC.2004.n.004] [PMID: 14967075]
[111]
Cappuzzo, F.; Bemis, L.; Varella-Garcia, M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N. Engl. J. Med., 2006, 354(24), 2619-2621.
[http://dx.doi.org/10.1056/NEJMc060020] [PMID: 16775247]
[112]
Gatzemeier, U.; Groth, G.; Butts, C.; Van Zandwijk, N.; Shepherd, F.; Ardizzoni, A.; Barton, C.; Ghahramani, P.; Hirsh, V. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann. Oncol., 2004, 15(1), 19-27.
[http://dx.doi.org/10.1093/annonc/mdh031] [PMID: 14679114]
[113]
Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol., 2011, 12(2), 175-180.
[http://dx.doi.org/10.1016/S1470-2045(10)70087-5] [PMID: 21277552]
[114]
Purba, E.R.; Saita, E.I.; Maruyama, I.N. Activation of the EGF receptor by ligand binding and oncogenic mutations: the “rotation model”. Cells, 2017, 6(2), E13.
[http://dx.doi.org/10.3390/cells6020013] [PMID: 28574446]
[115]
Roengvoraphoj, M.; Tsongalis, G.J.; Dragnev, K.H.; Rigas, J.R. Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell lung cancer: focus on epidermal growth factor receptor mutation testing and mutation-positive patients. Cancer Treat. Rev., 2013, 39(8), 839-850.
[http://dx.doi.org/10.1016/j.ctrv.2013.05.001] [PMID: 23768755]
[116]
Riely, G.J.; Pao, W.; Pham, D.; Li, A.R.; Rizvi, N.; Venkatraman, E.S.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M.; Miller, V.A. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin. Cancer Res., 2006, 12(3 Pt 1), 839-844.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1846] [PMID: 16467097]
[117]
Zhu, J.Q.; Zhong, W.Z.; Zhang, G.C.; Li, R.; Zhang, X.C.; Guo, A.L.; Zhang, Y.F.; An, S.J.; Mok, T.S.; Wu, Y.L. Better survival with EGFR exon 19 than exon 21 mutations in gefitinib-treated non-small cell lung cancer patients is due to differential inhibition of downstream signals. Cancer Lett., 2008, 265(2), 307-317.
[http://dx.doi.org/10.1016/j.canlet.2008.02.064] [PMID: 18407408]
[118]
Yasuda, H.; Kobayashi, S.; Costa, D.B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol., 2012, 13(1), e23-e31.
[http://dx.doi.org/10.1016/S1470-2045(11)70129-2] [PMID: 21764376]
[119]
Oxnard, G.R.; Arcila, M.E.; Sima, C.S.; Riely, G.J.; Chmielecki, J.; Kris, M.G.; Pao, W.; Ladanyi, M.; Miller, V.A. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin. Cancer Res., 2011, 17(6), 1616-1622.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2692] [PMID: 21135146]
[120]
Jackman, D.; Pao, W.; Riely, G.J.; Engelman, J.A.; Kris, M.G.; Jänne, P.A.; Lynch, T.; Johnson, B.E.; Miller, V.A. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(2), 357-360.
[http://dx.doi.org/10.1200/JCO.2009.24.7049] [PMID: 19949011]
[121]
Hammerman, P.S.; Jänne, P.A.; Johnson, B.E. Resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res., 2009, 15(24), 7502-7509.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0189] [PMID: 20008850]
[122]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[123]
Pérez-Ramírez, C.; Cañadas-Garre, M.; Jiménez-Varo, E.; Faus-Dáder, M.J.; Calleja-Hernández, M.A. MET: a new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics, 2015, 16(6), 631-647.
[http://dx.doi.org/10.2217/pgs.15.11] [PMID: 25893986]
[124]
Ohashi, K.; Sequist, L.V.; Arcila, M.E.; Moran, T.; Chmielecki, J.; Lin, Y.L.; Pan, Y.; Wang, L.; de Stanchina, E.; Shien, K.; Aoe, K.; Toyooka, S.; Kiura, K.; Fernandez-Cuesta, L.; Fidias, P.; Yang, J.C.; Miller, V.A.; Riely, G.J.; Kris, M.G.; Engelman, J.A.; Vnencak-Jones, C.L.; Dias-Santagata, D.; Ladanyi, M.; Pao, W. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc. Natl. Acad. Sci. USA, 2012, 109(31), E2127-E2133.
[http://dx.doi.org/10.1073/pnas.1203530109] [PMID: 22773810]
[125]
Suda, K.; Tomizawa, K.; Fujii, M.; Murakami, H.; Osada, H.; Maehara, Y.; Yatabe, Y.; Sekido, Y.; Mitsudomi, T. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol., 2011, 6(7), 1152-1161.
[http://dx.doi.org/10.1097/JTO.0b013e318216ee52] [PMID: 21597390]
[126]
Yu, S.; Zhang, Y.; Pan, Y.; Cheng, C.; Sun, Y.; Chen, H. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive. OncoTargets Ther., 2017, 10, 4507-4515.
[http://dx.doi.org/10.2147/OTT.S131999] [PMID: 28979142]
[127]
Arena, S.; Bellosillo, B.; Siravegna, G.; Martínez, A.; Cañadas, I.; Lazzari, L.; Ferruz, N.; Russo, M.; Misale, S.; González, I.; Iglesias, M.; Gavilan, E.; Corti, G.; Hobor, S.; Crisafulli, G.; Salido, M.; Sánchez, J.; Dalmases, A.; Bellmunt, J.; De Fabritiis, G.; Rovira, A.; Di Nicolantonio, F.; Albanell, J.; Bardelli, A.; Montagut, C. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res., 2015, 21(9), 2157-2166.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2821] [PMID: 25623215]
[128]
Furge, K.A.; Zhang, Y-W.; Vande Woude, G.F. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene, 2000, 19(49), 5582-5589.
[http://dx.doi.org/10.1038/sj.onc.1203859] [PMID: 11114738]
[129]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G.; Viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[130]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[131]
Kohno, T.; Ichikawa, H.; Totoki, Y.; Yasuda, K.; Hiramoto, M.; Nammo, T.; Sakamoto, H.; Tsuta, K.; Furuta, K.; Shimada, Y.; Iwakawa, R.; Ogiwara, H.; Oike, T.; Enari, M.; Schetter, A.J.; Okayama, H.; Haugen, A.; Skaug, V.; Chiku, S.; Yamanaka, I.; Arai, Y.; Watanabe, S.; Sekine, I.; Ogawa, S.; Harris, C.C.; Tsuda, H.; Yoshida, T.; Yokota, J.; Shibata, T. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med., 2012, 18(3), 375-377.
[http://dx.doi.org/10.1038/nm.2644] [PMID: 22327624]
[132]
Lutterbach, B.; Zeng, Q.; Davis, L.J.; Hatch, H.; Hang, G.; Kohl, N.E.; Gibbs, J.B.; Pan, B.S. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res., 2007, 67(5), 2081-2088.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3495] [PMID: 17332337]
[133]
Scagliotti, G.; von Pawel, J.; Novello, S.; Ramlau, R.; Favaretto, A.; Barlesi, F.; Akerley, W.; Orlov, S.; Santoro, A.; Spigel, D.; Hirsh, V.; Shepherd, F.A.; Sequist, L.V.; Sandler, A.; Ross, J.S.; Wang, Q.; von Roemeling, R.; Shuster, D.; Schwartz, B. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus Erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J. Clin. Oncol., 2015, 33(24), 2667-2674.
[http://dx.doi.org/10.1200/JCO.2014.60.7317] [PMID: 26169611]
[134]
Yao, Z.; Fenoglio, S.; Gao, D.C.; Camiolo, M.; Stiles, B.; Lindsted, T.; Schlederer, M.; Johns, C.; Altorki, N.; Mittal, V.; Kenner, L.; Sordella, R. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15535-15540.
[http://dx.doi.org/10.1073/pnas.1009472107] [PMID: 20713723]
[135]
Ninomiya, K.; Ohashi, K.; Makimoto, G.; Tomida, S.; Higo, H.; Kayatani, H.; Ninomiya, T.; Kubo, T.; Ichihara, E.; Hotta, K.; Tabata, M.; Maeda, Y.; Kiura, K. MET or NRAS amplification is an acquired resistance mechanism to the third-generation EGFR inhibitor naquotinib. Sci. Rep., 2018, 8(1), 1955.
[http://dx.doi.org/10.1038/s41598-018-20326-z] [PMID: 29386539]
[136]
Cho, H.S.; Leahy, D.J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science, 2002, 297(5585), 1330-1333.
[http://dx.doi.org/10.1126/science.1074611] [PMID: 12154198]
[137]
Jura, N.; Shan, Y.; Cao, X.; Shaw, D.E.; Kuriyan, J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21608-21613.
[http://dx.doi.org/10.1073/pnas.0912101106] [PMID: 20007378]
[138]
Umelo, I.; Noeparast, A.; Chen, G.; Renard, M.; Geers, C.; Vansteenkiste, J.; Giron, P.; De Wever, O.; Teugels, E.; De Grève, J. Identification of a novel HER3 activating mutation homologous to EGFR-L858R in lung cancer. Oncotarget, 2016, 7(3), 3068-3083.
[http://dx.doi.org/10.18632/oncotarget.6585] [PMID: 26689995]
[139]
Noto, A.; De Vitis, C.; Roscilli, G.; Fattore, L.; Malpicci, D.; Marra, E.; Luberto, L.; D’Andrilli, A.; Coluccia, P.; Giovagnoli, M.R.; Normanno, N.; Ruco, L.; Aurisicchio, L.; Mancini, R.; Ciliberto, G. Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits non-small cell lung cancer. Oncotarget, 2013, 4(8), 1253-1265.
[http://dx.doi.org/10.18632/oncotarget.1141] [PMID: 23896512]
[140]
Nishio, M.; Horiike, A.; Murakami, H.; Yamamoto, N.; Kaneda, H.; Nakagawa, K.; Horinouchi, H.; Nagashima, M.; Sekiguchi, M.; Tamura, T. Phase I study of the HER3-targeted antibody patritumab (U3-1287) combined with erlotinib in Japanese patients with non-small cell lung cancer. Lung Cancer, 2015, 88(3), 275-281.
[http://dx.doi.org/10.1016/j.lungcan.2015.03.010] [PMID: 25891541]
[141]
Yonesaka, K.; Kudo, K.; Nishida, S.; Takahama, T.; Iwasa, T.; Yoshida, T.; Tanaka, K.; Takeda, M.; Kaneda, H.; Okamoto, I.; Nishio, K.; Nakagawa, K. The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget, 2015, 6(32), 33602-33611.
[http://dx.doi.org/10.18632/oncotarget.5286] [PMID: 26418897]
[142]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.G.; Shapiro, D.N.; Saltman, D.L.; Look, A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1994, 263(5151), 1281-1284.
[http://dx.doi.org/10.1126/science.8122112] [PMID: 8122112]
[143]
Palmer, R.H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J., 2009, 420(3), 345-361.
[http://dx.doi.org/10.1042/BJ20090387] [PMID: 19459784]
[144]
Zondag, G.C.; Koningstein, G.M.; Jiang, Y.P.; Sap, J.; Moolenaar, W.H.; Gebbink, M.F. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain. J. Biol. Chem., 1995, 270(24), 14247-14250.
[http://dx.doi.org/10.1074/jbc.270.24.14247] [PMID: 7782276]
[145]
Beckmann, G.; Bork, P. An adhesive domain detected in functionally diverse receptors. Trends Biochem. Sci., 1993, 18(2), 40-41.
[http://dx.doi.org/10.1016/0968-0004(93)90049-S] [PMID: 8387703]
[146]
Li, R.; Morris, S.W. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med. Res. Rev., 2008, 28(3), 372-412.
[http://dx.doi.org/10.1002/med.20109] [PMID: 17694547]
[147]
Guan, J.; Umapathy, G.; Yamazaki, Y.; Wolfstetter, G.; Mendoza, P.; Pfeifer, K.; Mohammed, A.; Hugosson, F.; Zhang, H.; Hsu, A.W.; Halenbeck, R.; Hallberg, B.; Palmer, R.H. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife, 2015, 4, e09811.
[http://dx.doi.org/10.7554/eLife.09811] [PMID: 26418745]
[148]
Shaw, A.T.; Solomon, B. Targeting anaplastic lymphoma kinase in lung cancer. Clin. Cancer Res., 2011, 17(8), 2081-2086.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1591] [PMID: 21288922]
[149]
Lobello, C.; Bikos, V.; Janikova, A.; Pospisilova, S. The role of oncogenic tyrosine kinase NPM-ALK in genomic instability. Cancers (Basel), 2018, 10(3), E64.
[http://dx.doi.org/10.3390/cancers10030064] [PMID: 29510549]
[150]
Wang, Y.; Wang, S.; Xu, S.; Qu, J.; Liu, B. Clinicopathologic features of patients with non-small cell lung cancer harboring the EML4-ALK fusion gene: a meta-analysis. PLoS One, 2014, 9(10), e110617.
[http://dx.doi.org/10.1371/journal.pone.0110617] [PMID: 25360721]
[151]
Gainor, J.F.; Varghese, A.M.; Ou, S.H.; Kabraji, S.; Awad, M.M.; Katayama, R.; Pawlak, A.; Mino-Kenudson, M.; Yeap, B.Y.; Riely, G.J.; Iafrate, A.J.; Arcila, M.E.; Ladanyi, M.; Engelman, J.A.; Dias-Santagata, D.; Shaw, A.T. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res., 2013, 19(15), 4273-4281.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0318] [PMID: 23729361]
[152]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[153]
Takeuchi, K.; Choi, Y.L.; Togashi, Y.; Soda, M.; Hatano, S.; Inamura, K.; Takada, S.; Ueno, T.; Yamashita, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Ishikawa, Y.; Mano, H. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res., 2009, 15(9), 3143-3149.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3248] [PMID: 19383809]
[154]
Jung, Y.; Kim, P.; Jung, Y.; Keum, J.; Kim, S.N.; Choi, Y.S.; Do, I.G.; Lee, J.; Choi, S.J.; Kim, S.; Lee, J.E.; Kim, J.; Lee, S.; Kim, J. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer, 2012, 51(6), 590-597.
[http://dx.doi.org/10.1002/gcc.21945] [PMID: 22334442]
[155]
Choi, Y.L.; Lira, M.E.; Hong, M.; Kim, R.N.; Choi, S.J.; Song, J.Y.; Pandy, K.; Mann, D.L.; Stahl, J.A.; Peckham, H.E.; Zheng, Z.; Han, J.; Mao, M.; Kim, J. A novel fusion of TPR and ALK in lung adenocarcinoma. J. Thorac. Oncol., 2014, 9(4), 563-566.
[http://dx.doi.org/10.1097/JTO.0000000000000093] [PMID: 24736082]
[156]
Togashi, Y.; Soda, M.; Sakata, S.; Sugawara, E.; Hatano, S.; Asaka, R.; Nakajima, T.; Mano, H.; Takeuchi, K. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One, 2012, 7(2), e31323.
[http://dx.doi.org/10.1371/journal.pone.0031323] [PMID: 22347464]
[157]
Fang, D.D.; Zhang, B.; Gu, Q.; Lira, M.; Xu, Q.; Sun, H.; Qian, M.; Sheng, W.; Ozeck, M.; Wang, Z.; Zhang, C.; Chen, X.; Chen, K.X.; Li, J.; Chen, S.H.; Christensen, J.; Mao, M.; Chan, C.C. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J. Thorac. Oncol., 2014, 9(3), 285-294.
[http://dx.doi.org/10.1097/JTO.0000000000000087] [PMID: 24496003]
[158]
Sabir, S.R.; Yeoh, S.; Jackson, G.; Bayliss, R. EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients. Cancers (Basel), 2017, 9(9), E118.
[http://dx.doi.org/10.3390/cancers9090118] [PMID: 28872581]
[159]
Richards, M.W.; O’Regan, L.; Roth, D.; Montgomery, J.M.; Straube, A.; Fry, A.M.; Bayliss, R. Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain. Biochem. J., 2015, 467(3), 529-536.
[http://dx.doi.org/10.1042/BJ20150039] [PMID: 25740311]
[160]
Heuckmann, J.M.; Balke-Want, H.; Malchers, F.; Peifer, M.; Sos, M.L.; Koker, M.; Meder, L.; Lovly, C.M.; Heukamp, L.C.; Pao, W.; Küppers, R.; Thomas, R.K. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin. Cancer Res., 2012, 18(17), 4682-4690.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3260] [PMID: 22912387]
[161]
Bayliss, R.; Choi, J.; Fennell, D.A.; Fry, A.M.; Richards, M.W. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell. Mol. Life Sci., 2016, 73(6), 1209-1224.
[http://dx.doi.org/10.1007/s00018-015-2117-6] [PMID: 26755435]
[162]
Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; Doebele, R.C.; Le, L.P.; Zheng, Z.; Tan, W.; Stephenson, P.; Shreeve, S.M.; Tye, L.M.; Christensen, J.G.; Wilner, K.D.; Clark, J.W.; Iafrate, A.J. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 371(21), 1963-1971.
[http://dx.doi.org/10.1056/NEJMoa1406766] [PMID: 25264305]
[163]
Yoshida, T.; Oya, Y.; Tanaka, K.; Shimizu, J.; Horio, Y.; Kuroda, H.; Sakao, Y.; Hida, T.; Yatabe, Y. Clinical impact of crizotinib on central nervous system progression in ALK-positive non-small lung cancer. Lung Cancer, 2016, 97, 43-47.
[http://dx.doi.org/10.1016/j.lungcan.2016.04.006] [PMID: 27237026]
[164]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H.; Group, A.L.K.L.C.S. ALK lung cancer study group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[http://dx.doi.org/10.1056/NEJMoa1007478] [PMID: 20979473]
[165]
Heuckmann, J.M.; Hölzel, M.; Sos, M.L.; Heynck, S. Bal-ke-Want, H.; Koker, M.; Peifer, M.; Weiss, J.; Lovly, C.M.; Grütter, C.; Rauh, D.; Pao, W.; Thomas, R.K., ALK mutations conferring differential resistance to structurally Di-verse ALK inhibitors. Clin. Cancer Res., 2011, 17(23), 7394-7401.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1648] [PMID: 21948233]
[166]
Toyokawa, G.; Seto, T. Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: clinical and preclinical data. Oncol. Res. Treat., 2015, 38(6), 291-298.
[http://dx.doi.org/10.1159/000430852] [PMID: 26045026]
[167]
Wu, J.; Savooji, J.; Liu, D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. J. Hematol. Oncol., 2016, 9(1), 19.
[http://dx.doi.org/10.1186/s13045-016-0251-8] [PMID: 26951079]
[168]
Wei, J.; van der Wekken, A.J.; Saber, A.; Terpstra, M.M.; Schuuring, E.; Timens, W.; Hiltermann, T.J.N.; Groen, H.J.M.; van den Berg, A.; Kok, K. Mutations in EMT-related genes in ALK positive crizotinib resistant non-small cell lung cancers. Cancers (Basel), 2018, 10(1), 10.
[http://dx.doi.org/10.3390/cancers10010010] [PMID: 29300322]
[169]
Wilson, C.; Nimick, M.; Nehoff, H.; Ashton, J.C. ALK and IGF-1R as independent targets in crizotinib resistant lung cancer. Sci. Rep., 2017, 7(1), 13955.
[http://dx.doi.org/10.1038/s41598-017-14289-w] [PMID: 29066738]
[170]
Shaw, A.T.; Kim, D.W.; Mehra, R.; Tan, D.S.; Felip, E.; Chow, L.Q.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y.Y.; Goldwasser, M.; Boral, A.L.; Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 370(13), 1189-1197.
[http://dx.doi.org/10.1056/NEJMoa1311107] [PMID: 24670165]
[171]
Lim, S.M.; Kim, H.R.; Lee, J.S.; Lee, K.H.; Lee, Y.G.; Min, Y.J.; Cho, E.K.; Lee, S.S.; Kim, B.S.; Choi, M.Y.; Shim, H.S.; Chung, J.H.; La Choi, Y.; Lee, M.J.; Kim, M.; Kim, J.H.; Ali, S.M.; Ahn, M.J.; Cho, B.C. Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J. Clin. Oncol., 2017, 35(23), 2613-2618.
[http://dx.doi.org/10.1200/JCO.2016.71.3701] [PMID: 28520527]
[172]
Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D-W.; Ou, S.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; Zeaiter, A.; Mitry, E.; Golding, S.; Balas, B.; Noe, J.; Morcos, P.N.; Mok, T. ALEX trial investigators. Alectinib versus Crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med., 2017, 377(9), 829-838.
[http://dx.doi.org/10.1056/NEJMoa1704795] [PMID: 28586279]
[173]
Zhang, S.; Anjum, R.; Squillace, R.; Nadworny, S.; Zhou, T.; Keats, J.; Ning, Y.; Wardwell, S.D.; Miller, D.; Song, Y.; Eichinger, L.; Moran, L.; Huang, W-S.; Liu, S.; Zou, D.; Wang, Y.; Mohemmad, Q.; Jang, H.G.; Ye, E.; Narasimhan, N.; Wang, F.; Miret, J.; Zhu, X.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Rivera, V.M. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res., 2016, 22(22), 5527-5538.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0569] [PMID: 27780853]
[174]
Hochmair, M.J.; Tiseo, M.; Reckamp, K.L.; West, H.L.; Groen, H.J.; Langer, C.J.; Reichmann, W.; Kerstein, D.; Kim, D.W.; Camidge, D.R. 97PBrigatinib in crizotinib-refractory ALK+ NSCLC: up-dates from the pivotal randomized phase 2 Trial (ALTA). Ann. Oncol., 2017, 28(2)
[http://dx.doi.org/10.1093/annonc/mdx091.017]
[175]
Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of Brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00306] [PMID: 27144831]
[176]
Hatcher, J.M.; Bahcall, M.; Choi, H.G.; Gao, Y.; Sim, T.; George, R.; Jänne, P.A.; Gray, N.S. Discovery of inhibitors that overcome the G1202R anaplastic lymphoma kinase resistance mutation. J. Med. Chem., 2015, 58(23), 9296-9308.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01136] [PMID: 26568289]
[177]
Lovly, C.M.; Heuckmann, J.M.; de Stanchina, E.; Chen, H.; Thomas, R.K.; Liang, C.; Pao, W. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res., 2011, 71(14), 4920-4931.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3879] [PMID: 21613408]
[178]
Horn, L.; Infante, J.R.; Blumenschein, G.R.; Wakelee, H.A.; Arkenau, H-T.; Dukart, G.; Liang, C.; Harrow, K.; Gibbons, J.; Lovly, C.M.; Pao, W. A phase I trial of X-396, a novel ALK inhibitor, in patients with advanced solid tumors. J Clin Oncol, 2014, 32(15), 8030-8030.
[179]
Dong, X.; Fernandez-Salas, E.; Li, E.; Wang, S. Elucidation of resistance mechanisms to second-generation alk inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia, 2016, 18(3), 162-171.
[http://dx.doi.org/10.1016/j.neo.2016.02.001] [PMID: 26992917]
[180]
Zou, H.Y.; Li, Q.; Engstrom, L.D.; West, M.; Appleman, V.; Wong, K.A.; McTigue, M.; Deng, Y-L.; Liu, W.; Brooun, A.; Timofeevski, S.; McDonnell, S.R.P.; Jiang, P.; Falk, M.D.; Lappin, P.B.; Affolter, T.; Nichols, T.; Hu, W.; Lam, J.; Johnson, T.W.; Smeal, T.; Charest, A.; Fantin, V.R. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3493-3498.
[http://dx.doi.org/10.1073/pnas.1420785112] [PMID: 25733882]
[181]
Solomon, B.; Shaw, A.; Ou, S.; Besse, B.; Felip, E.; Bauer, T.; Soo, R.; Bearz, A.; Lin, C.; Clancy, J.; Abbattista, A.; Thurm, H.; Peltz, G.; Masters, E.; Martini, J.; James, L.; Se-to, T. OA 05.06 phase 2 study of lorlatinib in patients with advanced ALK+/ROS1+ non-small-cell lung cancer. J. Thorac. Oncol., 2017, 12(11), S1756.
[http://dx.doi.org/10.1016/j.jtho.2017.09.351]
[182]
Ardini, E.; Menichincheri, M.; De Ponti, C.; Amboldi, N.; Saccardo, B.M.; Texido, G.; Russo, M.; Orsini, P.; Bandiera, T.; Lombardi Borgia, A.; Isacchi, A.; Pesenti, E.; Colotta, F.; Magnaghi, P.; Galvani, A.; Medical, N. Abstract A243: characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol. Cancer Ther., 2009, 8(Suppl. 1), A244.
[http://dx.doi.org/10.1158/1535-7163.TARG-09-A244]
[183]
Ardini, E.; Menichincheri, M.; Banfi, P.; Casero, D.; Giorgini, M.L.; Saccardo, M.B.; Amboldi, N.; Avanzi, N.; Orsini, P.; Isacchi, A.; Pesenti, E.; Galvani, A. Abstract 2092: The ALK inhibitor NMS-E628 also potently inhibits ROS1 and induces tumor regression in ROS-driven models. Cancer Res., 2013, 73(8)(Suppl.), 2092-2092.
[http://dx.doi.org/10.1158/1538-7445.AM2013-2092]
[184]
Arkenau, H.-T.; Sachdev, J.C.; Mita, M.M.; Dziadziuszko, R.; Lin, C.-C.; Yang, J.C.; Infante, J.R.; Anthony, S.P.; Voskoboynik, M.; Su, W.-C.; Castro, J.D.; Natale, R.B.; Zhang, Z.-Y.; Hughes, L.; Bobilev, D.; Weiss, G.J. Phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer. J Clin Oncol, 2015, 33(15), 8063-8063.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.8063]
[185]
Salem, I.; Alsalahi, M.; Chervoneva, I.; Aburto, L.D.; Addya, S.; Ott, G.R.; Ruggeri, B.A.; Cristofanilli, M.; Fernandez, S.V. The effects of CEP-37440, an inhibitor of focal adhesion kinase, in vitro and in vivo on inflammatory breast cancer cells. Breast Cancer Res., 2016, 18(1), 37.
[http://dx.doi.org/10.1186/s13058-016-0694-4] [PMID: 27009091]
[186]
Zhang, X.; Schwartz, J.C.; Guo, X.; Bhatia, S.; Cao, E.; Lorenz, M.; Cammer, M.; Chen, L.; Zhang, Z.Y.; Edidin, M.A.; Nathenson, S.G.; Almo, S.C. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3), 337-347.
[http://dx.doi.org/10.1016/S1074-7613(04)00051-2] [PMID: 15030777]
[187]
Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med., 2009, 206(13), 3015-3029.
[http://dx.doi.org/10.1084/jem.20090847] [PMID: 20008522]
[188]
Talay, O.; Shen, C-H.; Chen, L.; Chen, J. B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2741-2746.
[http://dx.doi.org/10.1073/pnas.0813367106] [PMID: 19202065]
[189]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[190]
Finger, L.R.; Pu, J.; Wasserman, R.; Vibhakar, R.; Louie, E.; Hardy, R.R.; Burrows, P.D.; Billips, L.G. The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene, 1997, 197(1-2), 177-187.
[http://dx.doi.org/10.1016/S0378-1119(97)00260-6] [PMID: 9332365]
[191]
Shinohara, T.; Taniwaki, M.; Ishida, Y.; Kawaichi, M.; Honjo, T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 1994, 23(3), 704-706.
[http://dx.doi.org/10.1006/geno.1994.1562] [PMID: 7851902]
[192]
Riley, J.L. PD-1 signaling in primary T cells. Immunol. Rev., 2009, 229(1), 114-125.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00767.x] [PMID: 19426218]
[193]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26(1), 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[194]
Okazaki, T.; Maeda, A.; Nishimura, H.; Kurosaki, T.; Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13866-13871.
[http://dx.doi.org/10.1073/pnas.231486598] [PMID: 11698646]
[195]
Bardhan, K.; Patsoukis, N.; Weaver, J.; Freeman, G.; Li, L.; Boussiotis, V.A. PD-1 inhibits the TCR signaling cascade by sequestering SHP-2 phosphatase, preventing its translocation to lipid rafts and facilitating Csk-mediated inhibitory phosphorylation of Lck J Immunol, 2016, 196(1), 128.115-128.115..
[196]
Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol., 2016, 7, 550.
[http://dx.doi.org/10.3389/fimmu.2016.00550] [PMID: 28018338]
[197]
He, J.; Hu, Y.; Hu, M.; Li, B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci. Rep., 2015, 5, 13110.
[http://dx.doi.org/10.1038/srep13110] [PMID: 26279307]
[198]
Lázár-Molnár, E.; Yan, Q.; Cao, E.; Ramagopal, U.; Nathenson, S.G.; Almo, S.C. Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10483-10488.
[http://dx.doi.org/10.1073/pnas.0804453105] [PMID: 18641123]
[199]
Zak, K.M.; Kitel, R.; Przetocka, S.; Golik, P.; Guzik, K.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure, 2015, 23(12), 2341-2348.
[http://dx.doi.org/10.1016/j.str.2015.09.010] [PMID: 26602187]
[200]
Ota, K.; Azuma, K.; Kawahara, A.; Hattori, S.; Iwama, E.; Tanizaki, J.; Harada, T.; Matsumoto, K.; Takayama, K.; Takamori, S.; Kage, M.; Hoshino, T.; Nakanishi, Y.; Okamoto, I. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res., 2015, 21(17), 4014-4021.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0016] [PMID: 26019170]
[201]
Guo, R.; Wang, J.; Bai, H. PUB147 KRAS mutants regulated PD-L1 expression through NF-κB and HIF-1α path-ways in non-small cell lung cancer cells. J. Thorac. Oncol., 2017, 12(1), S1531.
[http://dx.doi.org/10.1016/j.jtho.2016.11.2118]
[202]
Lastwika, K.J.; Wilson, W., III; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; Liu, L.N.; Gills, J.J.; Dennis, P.A. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res., 2016, 76(2), 227-238.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3362] [PMID: 26637667]
[203]
Aust, S.; Felix, S.; Auer, K.; Bachmayr-Heyda, A.; Kenner, L.; Dekan, S.; Meier, S.M.; Gerner, C.; Grimm, C.; Pils, D. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer. Sci. Rep., 2017, 7, 42929.
[http://dx.doi.org/10.1038/srep42929] [PMID: 28266500]
[204]
Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.; Topalian, S.L.; Chen, L. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med., 2012, 4(127), 127ra37.
[http://dx.doi.org/10.1126/scitranslmed.3003689] [PMID: 22461641]
[205]
Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallwe-ber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; Vale, R.D. T cell co-stimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 2017, 355(6332), 1428-1433.
[http://dx.doi.org/10.1126/science.aaf1292] [PMID: 28280247]
[206]
O’Donnell, J.S.; Smyth, M.J.; Teng, M.W.L. PD1 functions by inhibiting CD28-mediated co-stimulation. Clin. Transl. Immunology, 2017, 6(5), e138.
[http://dx.doi.org/10.1038/cti.2017.15] [PMID: 28690844]
[207]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[208]
Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; Vale, R.D. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 2017, 355(6332), 1428-1433.
[http://dx.doi.org/10.1126/science.aaf1292] [PMID: 28280247]
[209]
Sheppard, K.A.; Fitz, L.J.; Lee, J.M.; Benander, C.; George, J.A.; Wooters, J.; Qiu, Y.; Jussif, J.M.; Carter, L.L.; Wood, C.R.; Chaudhary, D. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett., 2004, 574(1-3), 37-41.
[http://dx.doi.org/10.1016/j.febslet.2004.07.083] [PMID: 15358536]
[210]
Arasanz, H.; Gato-Cañas, M.; Zuazo, M.; Ibañez-Vea, M.; Breckpot, K.; Kochan, G.; Escors, D. PD1 signal transduction pathways in T cells. Oncotarget, 2017, 8(31), 51936-51945.
[http://dx.doi.org/10.18632/oncotarget.17232] [PMID: 28881701]
[211]
Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist, 2016, 21(5), 634-642.
[http://dx.doi.org/10.1634/theoncologist.2015-0507] [PMID: 26984449]
[212]
Vokes, E.E.; Ready, N.; Felip, E.; Horn, L.; Burgio, M.A.; Antonia, S.J.; Arén Frontera, O.; Gettinger, S.; Holgado, E.; Spigel, D.; Waterhouse, D.; Domine, M.; Garassino, M.; Chow, L.Q.M.; Blumenschein, G., Jr; Barlesi, F.; Coudert, B.; Gainor, J.; Arrieta, O.; Brahmer, J.; Butts, C.; Steins, M.; Geese, W.J.; Li, A.; Healey, D.; Crinò, L. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann. Oncol., 2018, 29(4), 959-965.
[http://dx.doi.org/10.1093/annonc/mdy041] [PMID: 29408986]
[213]
Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; Pluzanski, A.; Reckamp, K.L.; Burgio, M.A.; Kohlhäeufl, M.; Waterhouse, D.; Barlesi, F.; Antonia, S.; Arrieta, O.; Fayette, J.; Crinò, L.; Rizvi, N.; Reck, M.; Hellmann, M.D.; Geese, W.J.; Li, A.; Blackwood-Chirchir, A.; Healey, D.; Brahmer, J.; Eberhardt, W.E.E. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (checkmate 017 and checkmate 057). J. Clin. Oncol., 2017, 35(35), 3924-3933.
[http://dx.doi.org/10.1200/JCO.2017.74.3062] [PMID: 29023213]
[214]
Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T-E.; Badin, F.; Ready, N.; Hiltermann, T.J.N.; Nair, S.; Juergens, R.; Peters, S.; Minenza, E.; Wrangle, J.M.; Rodriguez-Abreu, D.; Borghaei, H.; Blumenschein, G.R., Jr; Villaruz, L.C.; Havel, L.; Krejci, J.; Corral Jaime, J.; Chang, H.; Geese, W.J.; Bhagavatheeswaran, P.; Chen, A.C.; Socinski, M.A. CheckMate 026 investigators. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med., 2017, 376(25), 2415-2426.
[http://dx.doi.org/10.1056/NEJMoa1613493] [PMID: 28636851]
[215]
Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; Shepherd, F.A.; Laurie, S.A.; Geese, W.J.; Agrawal, S.; Young, T.C.; Li, X.; Antonia, S.J. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol., 2017, 18(1), 31-41.
[http://dx.doi.org/10.1016/S1470-2045(16)30624-6] [PMID: 27932067]
[216]
Hellmann, M.D.; Ciuleanu, T-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; Borghaei, H.; Ramalingam, S.S.; Brahmer, J.; Reck, M.; O’Byrne, K.J.; Geese, W.J.; Green, G.; Chang, H.; Szustakowski, J.; Bhagavatheeswaran, P.; Healey, D.; Fu, Y.; Nathan, F.; Paz-Ares, L. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med., 2018, 378(22), 2093-2104.
[http://dx.doi.org/10.1056/NEJMoa1801946] [PMID: 29658845]
[217]
Lim, S.H.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opin. Biol. Ther., 2016, 16(3), 397-406.
[http://dx.doi.org/10.1517/14712598.2016.1145652] [PMID: 26800463]
[218]
Seetharamu, N.; Preeshagul, I.R.; Sullivan, K.M. New PD-L1 inhibitors in non-small cell lung cancer - impact of atezolizumab. Lung Cancer (Auckl.), 2017, 8, 67-78.
[http://dx.doi.org/10.2147/LCTT.S113177] [PMID: 28761384]
[219]
Peters, S.; Gettinger, S.; Johnson, M.L.; Jänne, P.A.; Garassino, M.C.; Christoph, D.; Toh, C.K.; Rizvi, N.A.; Chaft, J.E.; Carcereny Costa, E.; Patel, J.D.; Chow, L.Q.M.; Koczywas, M.; Ho, C.; Früh, M.; van den Heuvel, M.; Rothenstein, J.; Reck, M.; Paz-Ares, L.; Shepherd, F.A.; Kurata, T.; Li, Z.; Qiu, J.; Kowanetz, M.; Mocci, S.; Shankar, G.; Sandler, A.; Felip, E.; Phase, I.I. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J. Clin. Oncol., 2017, 35(24), 2781-2789.
[http://dx.doi.org/10.1200/JCO.2016.71.9476] [PMID: 28609226]
[220]
Verschraegen, C.F.; Chen, F.; Spigel, D.R.; Iannotti, N.; McClay, E.F.; Redfern, C.H.; Bennouna, J.; Taylor, M.H.; Kaufman, H.; Kelly, K.; Bajars, M.; von Heydebreck, A.; Cuillerot, J-M.; Jerusalem, G.H.M. Avelumab (MSB0010718C; anti-PD-L1) as a first-line treatment for patients with advanced NSCLC from the JAVELIN solid tumor phase 1b trial: safety, clinical activity, and PD-L1 expression. J Clin Oncol, 2016, 34(15), 9036-9036.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9036]
[221]
Jerusalem, G.; Chen, F.; Spigel, D.; Iannotti, N.; McClay, E.; Redfern, C.; Bennouna, J.; Taylor, M.; Kaufman, H.; Kelly, K.; Chand, V.; Von Heydebreck, A.; Verschraegen, C. OA03.03 JAVELIN solid tumor: safety and clinical activity of Avelumab (Anti-PD-L1) as first-line treatment in patients with advanced NSCLC. J. Clin. Oncol., 2017, 12(1), S252.
[http://dx.doi.org/10.1016/j.jtho.2016.11.240]
[222]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[223]
Garrido, P.; Olmedo, M.E.; Gómez, A.; Paz Ares, L.; López-Ríos, F.; Rosa-Rosa, J.M.; Palacios, J. Treating KRAS-mutant NSCLC: latest evidence and clinical consequences. Ther. Adv. Med. Oncol., 2017, 9(9), 589-597.
[http://dx.doi.org/10.1177/1758834017719829] [PMID: 29081842]
[224]
Matikas, A.; Mistriotis, D.; Georgoulias, V.; Kotsakis, A. Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Crit. Rev. Oncol. Hematol., 2017, 110, 1-12.
[http://dx.doi.org/10.1016/j.critrevonc.2016.12.005] [PMID: 28109399]
[225]
Jancík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical relevance of KRAS in human cancers. J. Biomed. Biotechnol., 2010, 2010, 150960.
[http://dx.doi.org/10.1155/2010/150960] [PMID: 20617134]
[226]
Friday, B.B.; Adjei, A.A. K-RAS as a target for cancer therapy. Biochim. Biophys. Acta, 2005, 1756(2), 127-144.
[PMID: 16139957]
[227]
Westcott, P.M.; To, M.D. The genetics and biology of KRAS in lung cancer. Chin. J. Cancer, 2013, 32(2), 63-70.
[http://dx.doi.org/10.5732/cjc.012.10098] [PMID: 22776234]
[228]
Knickelbein, K.; Zhang, L. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis., 2015, 2(1), 4-12.
[http://dx.doi.org/10.1016/j.gendis.2014.10.002] [PMID: 25815366]
[229]
Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[230]
Stolze, B.; Reinhart, S.; Bulllinger, L.; Fröhling, S.; Scholl, C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep., 2015, 5, 8535.
[http://dx.doi.org/10.1038/srep08535] [PMID: 25705018]
[231]
Bhattacharya, S.; Socinski, M.A.; Burns, T.F. KRAS mutant lung cancer: progress thus far on an elusive therapeutic target. Clin. Transl. Med., 2015, 4(1), 35.
[http://dx.doi.org/10.1186/s40169-015-0075-0] [PMID: 26668062]
[232]
Karachaliou, N.; Mayo, C.; Costa, C.; Magrí, I.; Gimenez-Capitan, A.; Molina-Vila, M.A.; Rosell, R. KRAS mutations in lung cancer. Clin. Lung Cancer, 2013, 14(3), 205-214.
[http://dx.doi.org/10.1016/j.cllc.2012.09.007] [PMID: 23122493]
[233]
Ostrem, J.M.; Shokat, K.M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov., 2016, 15(11), 771-785.
[http://dx.doi.org/10.1038/nrd.2016.139] [PMID: 27469033]
[234]
Athuluri-Divakar, S.K.; Vasquez-Del Carpio, R.; Dutta, K.; Baker, S.J.; Cosenza, S.C.; Basu, I.; Gupta, Y.K.; Reddy, M.V.; Ueno, L.; Hart, J.R.; Vogt, P.K.; Mulholland, D.; Guha, C.; Aggarwal, A.K.; Reddy, E.P. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell, 2016, 165(3), 643-655.
[http://dx.doi.org/10.1016/j.cell.2016.03.045] [PMID: 27104980]
[235]
Tomasini, P.; Walia, P.; Labbe, C.; Jao, K.; Leighl, N.B. Targeting the KRAS pathway in non-small cell lung cancer. Oncologist, 2016, 21(12), 1450-1460.
[http://dx.doi.org/10.1634/theoncologist.2015-0084] [PMID: 27807303]
[236]
Janes, M.R.; Zhang, J.; Li, L.S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell, 2018, 172(3), 578-589.
[http://dx.doi.org/10.1016/j.cell.2018.01.006]
[237]
Zeng, M.; Lu, J.; Li, L.; Feru, F.; Quan, C.; Gero, T.W.; Ficarro, S.B.; Xiong, Y.; Ambrogio, C.; Paranal, R.M.; Cata-lano, M.; Shao, J.; Wong, K.K.; Marto, J.A.; Fischer, E.S.; Janne, P.A.; Scott, D.A.; Westover, K.D.; Gray, N.S. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem. Biol., 2017, 24(8), 1005-1016.
[http://dx.doi.org/10.1016/j.chembiol.2017.06.017]]
[238]
Casaluce, F.; Sgambato, A.; Maione, P.; Sacco, P.C.; Santabarbara, G.; Gridelli, C. Selumetinib for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs, 2017, 26(8), 973-984.
[http://dx.doi.org/10.1080/13543784.2017.1351543] [PMID: 28675058]
[239]
Luk, P.P.; Yu, B.; Ng, C.C.; Mercorella, B.; Selinger, C.; Lum, T.; Kao, S.; O’Toole, S.A.; Cooper, W.A. BRAF mutations in non-small cell lung cancer. Transl. Lung Cancer Res., 2015, 4(2), 142-148.
[PMID: 25870796]
[240]
Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F.; Souquet, P.J.; Smit, E.F.; Groen, H.J.; Kelly, R.J.; Cho, B.C.; Socinski, M.A.; Pandite, L.; Nase, C.; Ma, B.; D’Amelio, A., Jr.; Mookerjee, B.; Curtis, C.M., Jr; Johnson, B.E. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol., 2016, 17(5), 642-650.
[http://dx.doi.org/10.1016/S1470-2045(16)00077-2] [PMID: 27080216]
[241]
Martinez-Martí, A.; Felip, E. PI3K Pathway in NSCLC. Front. Oncol., 2012, 1, 55.
[http://dx.doi.org/10.3389/fonc.2011.00055] [PMID: 22655251]
[242]
Massacesi, C.; Di Tomaso, E.; Urban, P.; Germa, C.; Quadt, C.; Trandafir, L.; Aimone, P.; Fretault, N.; Dharan, B.; Tavorath, R.; Hirawat, S. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. OncoTargets Ther., 2016, 9, 203-210.
[http://dx.doi.org/10.2147/OTT.S89967] [PMID: 26793003]
[243]
Cardenal, F.; Nadal, E.; Jové, M.; Faivre-Finn, C. Concurrent systemic therapy with radiotherapy for the treatment of poor-risk patients with unresectable stage III non-small-cell lung cancer: a review of the literature. Ann. Oncol., 2015, 26(2), 278-288.
[http://dx.doi.org/10.1093/annonc/mdu229] [PMID: 24942274]
[244]
Ottlakan, A.; Martucci, N.; Rocco, G. Is surgery still the best management option for early stage NSCLC? Transl. Lung Cancer Res., 2014, 3(3), 159-163.
[PMID: 25806295]
[245]
Blum, T.G.; Rich, A.; Baldwin, D.; Beckett, P.; De Ruysscher, D.; Faivre-Finn, C.; Gaga, M.; Gamarra, F.; Grigoriu, B.; Hansen, N.C.; Hubbard, R.; Huber, R.M.; Jakobsen, E.; Jovanovic, D.; Konsoulova, A.; Kollmeier, J.; Massard, G.; McPhelim, J.; Meert, A.P.; Milroy, R.; Paesmans, M.; Peake, M.; Putora, P.M.; Scherpereel, A.; Schönfeld, N.; Sitter, H.; Skaug, K.; Spiro, S.; Strand, T.E.; Taright, S.; Thomas, M.; van Schil, P.E.; Vansteenkiste, J.F.; Wiewrodt, R.; Sculier, J.P. The European initiative for quality management in lung cancer care. Eur. Respir. J., 2014, 43(5), 1254-1277.
[http://dx.doi.org/10.1183/09031936.00106913] [PMID: 24659546]
[246]
Wigle, D.A. Biologic approaches to drug selection and targeted therapy: hype or clinical reality? Thorac. Surg. Clin., 2013, 23(3), 421-428.
[http://dx.doi.org/10.1016/j.thorsurg.2013.05.003] [PMID: 23931024]
[247]
Morán, T.; Quiroga, V. Gil, Mde.L.; Vilà, L.; Pardo, N.; Carcereny, E.; Capdevila, L.; Muñoz-Mármol, A.M.; Rosell, R. Targeting EML4-ALK driven non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res., 2013, 2(2), 128-141.
[PMID: 25806224]
[248]
Ruiz, R.; Hunis, B.; Raez, L.E. Immunotherapeutic agents in non-small-cell lung cancer finally coming to the front lines. Curr. Oncol. Rep., 2014, 16(9), 400.
[http://dx.doi.org/10.1007/s11912-014-0400-6] [PMID: 25030654]
[249]
Szyszka-Barth, K.; Ramlau, K.; Goździk-Spychalska, J.; Spychalski, L.; Bryl, M.; Gołda-Gocka, I.; Kopczyńska, A.; Barinow-Wojewódzki, A.; Ramlau, R. Actual status of therapeutic vaccination in non-small cell lung cancer. Contemp. Oncol. (Pozn.), 2014, 18(2), 77-84.
[http://dx.doi.org/10.5114/wo.2014.42724] [PMID: 24966788]
[250]
Seetharamu, N. The state of the art in non-small cell lung cancer immunotherapy. Semin. Thorac. Cardiovasc. Surg., 2014, 26(1), 26-35.
[http://dx.doi.org/10.1053/j.semtcvs.2014.02.005] [PMID: 24952755]
[251]
Zakaria, N.; Satar, N.A.; Abu Halim, N.H.; Ngalim, S.H.; Yusoff, N.M.; Lin, J.; Yahaya, B.H. Targeting lung cancer stem cells: research and clinical impacts. Front. Oncol., 2017, 7, 80.
[http://dx.doi.org/10.3389/fonc.2017.00080] [PMID: 28529925]
[252]
Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.; Mohindra, N.; Villaflor, V.; Giles, F.J. Immune checkpoint pathways in non-small cell lung cancer. Ann. Transl. Med., 2018, 6(5), 88.
[http://dx.doi.org/10.21037/atm.2017.09.30] [PMID: 29666811]
[253]
Teixidó, C.; Vilariño, N.; Reyes, R.; Reguart, N. PD-L1 expression testing in non-small cell lung cancer. Ther. Adv. Med. Oncol., 2018, 10, 1758835918763493.
[http://dx.doi.org/10.1177/1758835918763493] [PMID: 29662547]
[254]
Li, H.; Huang, Y.; Jiang, D.Q.; Cui, L.Z.; He, Z.; Wang, C.; Zhang, Z.W.; Zhu, H.L.; Ding, Y.M.; Li, L.F.; Li, Q.; Jin, H.J.; Qian, Q.J. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis., 2018, 9(2), 177.
[http://dx.doi.org/10.1038/s41419-017-0238-6] [PMID: 29415996]
[255]
Zeltsman, M.; Dozier, J.; McGee, E.; Ngai, D.; Adusumilli, P.S. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl. Res., 2017, 187, 1-10.
[http://dx.doi.org/10.1016/j.trsl.2017.04.004] [PMID: 28502785]
[256]
Kanthala, S.P.; Liu, Y.Y.; Singh, S.; Sable, R.; Pallerla, S.; Jois, S.D. A peptidomimetic with a chiral switch is an inhibitor of epidermal growth factor receptor heterodimerization. Oncotarget, 2017, 8(43), 74244-74262.
[http://dx.doi.org/10.18632/oncotarget.19013] [PMID: 29088782]
[257]
Nero, T.L.; Morton, C.J.; Holien, J.K.; Wielens, J.; Parker, M.W. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer, 2014, 14(4), 248-262.
[http://dx.doi.org/10.1038/nrc3690] [PMID: 24622521]
[258]
Doroshow, D.B.; Herbst, R.S. Treatment of advanced non-small cell lung cancer in 2018. JAMA Oncol., 2018, 4(4), 569-570.
[http://dx.doi.org/10.1001/jamaoncol.2017.5190] [PMID: 29494728]
[259]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J. Jr.; Wu, Y-L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[260]
Immune checkpoint Inhibitor. Available at: https://siteman.wustl.edu/glossary/cdr0000772606/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy