[1]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[2]
Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11(3): 259-73.
[3]
Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 2013; 27(1): 13-24.
[4]
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68.
[5]
Tanei T, Morimoto K, Shimazu K, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009; 15(12): 4234-41.
[6]
Kim MP, Fleming JB, Wang H, et al. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 2011; 6(6)e20636
[7]
Addla SK, Brown MD, Hart CA, Ramani VA, Clarke NW. Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol 2008; 295(3): F680-7.
[8]
Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2016; 7(10): 11018-32.
[9]
Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 2011; 7(2): 292-306.
[10]
Ji J, Wang XW. Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 2012; 39(4): 461-72.
[11]
Moitra K, Lou H, Dean M. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 2011; 89(4): 491-502.
[12]
Albermann N, Schmitz-Winnenthal FH. Z'Graggen K, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 2005; 70(6): 949-58.
[13]
Wang J, Gan C, Sparidans RW, et al. P-glycoprotein [MDR1/ABCB1] and Breast Cancer Resistance Protein [BCRP/ABCG2] affect brain accumulation and intestinal disposition of encorafenib in mice. Pharmacol Res 2018; 129: 414-23.
[14]
Peng XX, Tiwari AK, Wu HC, Chen ZS. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin J Cancer 2012; 31(2): 110-8.
[15]
Tang L, Bergevoet SM, Gilissen C, et al. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells. BMC Pharmacol 2010; 10: 12.
[16]
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18(11)
[17]
Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 2013; 13(7): 511-8.
[18]
Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer 2011; 129(10): 2315-27.
[19]
Ostman A. The tumor microenvironment controls drug sensitivity. Nat Med 2012; 18(9): 1332-4.
[20]
Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2(1): 38-47.
[21]
Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab 2010; 12(Suppl. 2): 4-14.
[22]
Ojha R, Bhattacharyya S, Singh SK. Autophagy in cancer stem cells: A potential link between chemoresistance, recurrence, and metastasis Biores Open Access 2015; 4(1): 97-108
[23]
Oskarsson T, Batlle E, Massague J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell 2014; 14(3): 306-21.
[24]
Roato I, Ferracini R. Cancer stem cells, bone and tumor microenvironment: Key players in bone metastases. Cancers (Basel) 2018; 10(2) Pii: E56.
[25]
Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 2016; 15(2): 196-212.
[26]
Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015; 6(13): 10697-711.
[27]
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265-73.
[28]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[29]
Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol 2016; 9(1): 74.
[30]
Shetzer Y, Solomon H, Koifman G, Molchadsky A, Horesh S, Rotter V. The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis 2014; 35(6): 1196-208.
[31]
Flores I, Blasco MAA. p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 2009; 4(3)e4934
[32]
Sarig R, Rivlin N, Brosh R, et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 2010; 207(10): 2127-40.
[33]
Zhou Z, Flesken-Nikitin A, Nikitin AY. Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 2007; 67(12): 5683-90.
[34]
Rinkenbaugh AL, Baldwin AS. The NF-kappaB Pathway and Cancer Stem Cells. Cells 2016; 5(2)
[35]
Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, Schmitz ML. The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem 2000; 267(12): 3828-35.
[36]
Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine 2017; 7(4): 23. [Taipei].
[37]
Safa AR. Resistance to Cell Death and Its Modulation in Cancer Stem Cells. Crit Rev Oncog 2016; 21(3-4): 203-19.
[38]
Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 2015; 16(9): 1084-98.
[39]
Nemoto T, Kitagawa M, Hasegawa M, et al. Expression of IAP family proteins in esophageal cancer. Exp Mol Pathol 2004; 76(3): 253-9.
[40]
Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 2011; 108(5): 1850-5.
[41]
Wang QE. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J Biol Chem 2015; 6(3): 57-64.
[42]
Cheng L, Wu Q, Huang Z, et al. L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 2011; 30(5): 800-13.
[43]
Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol 2014; 110(3): 538-45.
[44]
Leslie EM, Haimeur A, Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 [MRP1/ABCC1]. Evidence that a tri-glutathione conjugate is required. J Biol Chem 2004; 279(31): 32700-8.
[45]
Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458(7239): 780-3.
[46]
Shi X, Zhang Y, Zheng J, Pan J. Reactive oxygen species in cancer stem cells. Antioxid Redox Signal 2012; 16(11): 1215-28.
[47]
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov 2009; 8(7): 579-91.
[48]
Ozols RF, Cunnion RE, Klecker RW Jr, et al. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 1987; 5(4): 641-7.
[49]
Shiraga K, Sakaguchi K, Senoh T, et al. Modulation of doxorubicin sensitivity by cyclosporine A in hepatocellular carcinoma cells and their doxorubicin-resistant sublines. J Gastroenterol Hepatol 2001; 16(4): 460-6.
[50]
Safa AR. Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci USA 1988; 85(19): 7187-91.
[51]
Bark H, Choi CH. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-kappaB. Cancer Chemother Pharmacol 2010; 65(6): 1131-6.
[52]
Bates SF, Chen C, Robey R, Kang M, Figg WD, Fojo T. Reversal of multidrug resistance: lessons from clinical oncologyNovartis Found Symp 2002; 243: 83-96; discussion 102, 80-5
[53]
Biscardi M, Teodori E, Caporale R, et al. Multidrug reverting activity toward leukemia cells in a group of new verapamil analogues with low cardiovascular activity. Leuk Res 2006; 30(1): 1-8.
[54]
Lee SY, Rhee YH, Jeong SJ, et al. Hydrocinchonine, cinchonine, and quinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. Environ Toxicol 2011; 26(4): 424-31.
[55]
Pires MM, Emmert D, Hrycyna CA, Chmielewski J. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 2009; 75(1): 92-100.
[56]
Palmeira A, Rodrigues F, Sousa E, Pinto M, Vasconcelos MH, Fernandes MX. New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem Biol Drug Des 2011; 78(1): 57-72.
[57]
Kelly RJ, Draper D, Chen CC, et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar [XR9576] in patients with lung, ovarian, and cervical cancer. Clin Cancer Res 2011; 17(3): 569-80.
[58]
Kuppens IE, Witteveen EO, Jewell RC, et al. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar [GF120918] and oral topotecan in cancer patients. Clin Cancer Res 2007; 13(11): 3276-85.
[59]
Sandler A, Gordon M, De Alwis DP, et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride [LY335979], administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 2004; 10(10): 3265-72.
[60]
Oldham RK, Reid WK, Preisler HD, Barnett D. A phase I and pharmacokinetic study of CBT-1 as a multidrug resistance modulator in the treatment of patients with advanced cancer. Cancer Biother Radiopharm 1998; 13(2): 71-80.
[61]
Kong DH, Kim MR, Jang JH, Na HJ, Lee S. A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. Int J Mol Sci 2017; 18(8)
[62]
Scholz A, Harter PN, Cremer S, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med 2016; 8(1): 39-57.
[63]
Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: Bevacizumab [Avastin] as treatment of recurrent glioblastoma multiforme. Oncologist 2009; 14(11): 1131-8.
[64]
Planchard D. Bevacizumab in non-small-cell lung cancer: A review. Expert Rev Anticancer Ther 2011; 11(8): 1163-79.
[65]
Rinne ML, Lee EQ, Nayak L, et al. Update on bevacizumab and other angiogenesis inhibitors for brain cancer. Expert Opin Emerg Drugs 2013; 18(2): 137-53.
[66]
Shih T, Lindley C. Bevacizumab: An angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006; 28(11): 1779-802.
[67]
Garcia A, Singh H. Bevacizumab and ovarian cancer. Ther Adv Med Oncol 2013; 5(2): 133-41.
[68]
Vincent L, Kermani P, Young LM, et al. Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 2005; 115(11): 2992-3006.
[69]
Di C, Zhao Y. Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer. [Review]. Exp Ther Med 2015; 9(2): 289-93.
[70]
Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99(19): 1441-54.
[71]
Foehrenbacher A, Secomb TW, Wilson WR, Hicks KO. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling. Front Oncol 2013; 3: 314.
[72]
Hunter FW, Wouters BG, Wilson WR. Hypoxia-activated prodrugs: Paths forward in the era of personalised medicine. Br J Cancer 2016; 114(10): 1071-7.
[73]
Chawla SP, Cranmer LD, Van Tine BA, et al. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J Clin Oncol 2014; 32(29): 3299-306.
[74]
Brown JM, Giaccia AJ. The unique physiology of solid tumors: Opportunities [and problems] for cancer therapy. Cancer Res 1998; 58(7): 1408-16.
[75]
Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Hypoxia-inducible factor [HIF1A and HIF2A], angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002; 53(5): 1192-202.
[76]
Nordsmark M, Bentzen SM, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 2005; 77(1): 18-24.
[77]
Evans JW, Chernikova SB, Kachnic LA, et al. Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res 2008; 68(1): 257-65.
[78]
Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164: 152-69.
[79]
Mimeault M, Batra SK. New promising drug targets in cancer- and metastasis-initiating cells. Drug Discov Today 2010; 15(9-10): 354-64.
[80]
Carlisi D, Buttitta G, Di Fiore R, et al. Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis 2016; 7e2194
[81]
Shibue T, Takeda K, Oda E, et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003; 17(18): 2233-8.
[82]
Hervouet E, Cheray M, Vallette FM, Cartron PF. DNA methylation and apoptosis resistance in cancer cells. Cells 2013; 2(3): 545-73.
[83]
Labi V, Grespi F, Baumgartner F, Villunger A. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 2008; 15(6): 977-87.
[84]
Taylor Ripley R, Surman DR, Diggs LP, et al. Metabolomic and BH3 profiling of esophageal cancers: novel assessment methods for precision therapy. BMC Gastroenterol 2018; 18(1): 94.
[85]
Triscott J, Lee C, Hu K, et al. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget 2012; 3(10): 1112-23.
[86]
Mohammad IS, He W, Yin L. A Smart Paclitaxel-Disulfiram Nanococrystals for Efficient MDR Reversal and Enhanced Apoptosis. Pharm Res 2018; 35(4): 77.
[87]
Smith KM, Datti A, Fujitani M, et al. Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens. EMBO Mol Med 2010; 2(9): 371-84.
[88]
Alvero AB, Montagna MK, Chen R, et al. NV-128, a novel isoflavone derivative, induces caspase-independent cell death through the Akt/mammalian target of rapamycin pathway. Cancer 2009; 115(14): 3204-16.
[89]
Khanna A. DNA damage in cancer therapeutics: A boon or a curse? Cancer Res 2015; 75(11): 2133-8.
[90]
Wang Y, Xu H, Liu T, et al. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight 2018; 3(3)
[91]
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: Clinical potential and biomarkers. Oncotarget 2017; 8(46): 81662-78.
[92]
Dungl DA, Maginn EN, Stronach EA. Preventing Damage Limitation: Targeting DNA-PKcs and DNA Double-Strand Break Repair Pathways for Ovarian Cancer Therapy. Front Oncol 2015; 5: 240.
[93]
Munck JM, Batey MA, Zhao Y, et al. Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3K. Mol Cancer Ther 2012; 11(8): 1789-98.
[94]
Sibanda BL, Chirgadze DY, Blundell TL. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 2010; 463(7277): 118-21.
[95]
Gavande NS, VanderVere-Carozza PS, Hinshaw HD, et al. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol Ther 2016; 160: 65-83.
[96]
Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol 2017; 8: 992.
[97]
Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014; 3e02523
[98]
Xie Y, Hou W, Song X, et al. Ferroptosis: Process and function. Cell Death Differ 2016; 23(3): 369-79.
[99]
Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 2017; 21(4): 648-57.
[100]
Moreb JS, Maccow C, Schweder M, Hecomovich J. Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther 2000; 293(2): 390-6.
[101]
Yan Y, Li Z, Xu X, et al. All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med 2016; 16: 113.
[102]
Conticello C, Martinetti D, Adamo L, et al. Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int J Cancer 2012; 131(9): 2197-203.
[103]
Duan L, Shen H, Zhao G, et al. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells. Biochem Biophys Res Commun 2014; 446(4): 1010-6.
[104]
Liu P, Brown S, Goktug T, et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br J Cancer 2012; 107(9): 1488-97.
[105]
Bista R, Lee DW, Pepper OB, Azorsa DO, Arceci RJ, Aleem E. Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells. J Exp Clin Cancer Res 2017; 36(1): 22.
[106]
Zhao Y, Xiao Z, Chen W, Yang J, Li T, Fan B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep 2015; 12(2): 2313-22.
[107]
Aulmann S, Waldburger N, Penzel R, Andrulis M, Schirmacher P, Sinn HP. Reduction of CD44[+]/CD24[-] breast cancer cells by conventional cytotoxic chemotherapy. Hum Pathol 2010; 41(4): 574-81.
[108]
Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase [ALDH] activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44[+] human breast cancer cells. Breast Cancer Res Treat 2012; 133(1): 75-87.
[109]
Venton G, Perez-Alea M, Baier C, et al. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J 2016; 6(9)e469
[110]
Morgan CA, Hurley TD. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Chem Biol Interact 2015; 234: 29-37.
[111]
Pan Q, Li Q, Liu S, et al. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches. Stem Cells 2015; 33(7): 2085-92.